Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Biochem ; 478(3): 433-441, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35857251

RESUMEN

Acute myeloid leukemia (AML) is a type of hematologic diseases, which is related to abnormal genes. The aberrant microtubule actin cross-linking factor 1 (MACF1) is associated with progression of multiple tumors by initiating cell proliferation. Nevertheless, the function and action mechanism of MACF1 in AML cell proliferation remain mostly unknown. Our study aimed to explore the influence of MACF1 on AML cell proliferation by CCK-8 and EdU staining assays. Moreover, we aimed to explore the effect of MACF1 on downstream Runx2 and the PI3K/Akt signaling. MACF1 expression in AML patients was predicted by bioinformatics analysis. Cells were transfected with si-con, si-MACF1 or Runx2 using Lipofectamine 2000. Upregulated MACF1 was found in AML patients and predicted worse overall survival. MACF1 expression was upregulated in AML cells compared with that in hematopoietic stem and progenitor cells. MACF1 silencing reduced AML cell proliferation. Runx2 level was increased in AML cells, and decreased by silencing MACF1. Runx2 upregulation rescued MACF1 silencing-mediated inhibition of proliferation. MACF1 downregulation inhibited activation of the PI3K/Akt pathway by decreasing Runx2. Activation of the PI3K/Akt pathway abrogated the suppressive role of MACF1 downregulation in AML cell proliferation. In conclusion, MACF1 knockdown decreased AML cell proliferation by reducing Runx2 and inactivating the PI3K/Akt signaling.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Leucemia Mieloide Aguda , Proteínas de Microfilamentos , Humanos , Actinas , Línea Celular Tumoral , Proliferación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas de Microfilamentos/metabolismo , Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
BMC Genomics ; 23(1): 695, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207684

RESUMEN

BACKGROUND: Previous studies have shown that microtubule actin crosslinking factor 1 (MACF1) can regulate osteoblast proliferation and differentiation through non-coding RNA (ncRNA) in bone-forming osteoblasts. However, the role of MACF1 in targeting the competing endogenous RNA (ceRNA) network to regulate osteoblast differentiation remains poorly understood. Here, we profiled messenger RNA (mRNA), microRNA (miRNA), and long ncRNA (lncRNA) expression in MACF1 knockdown MC3TC­E1 pre­osteoblast cells. RESULTS: In total, 547 lncRNAs, 107 miRNAs, and 376 mRNAs were differentially expressed. Significantly altered lncRNAs, miRNAs, and mRNAs were primarily found on chromosome 2. A lncRNA-miRNA-mRNA network was constructed using a bioinformatics computational approach. The network indicated that mir-7063 and mir-7646 were the most potent ncRNA regulators and mef2c was the most potent target gene. Pathway enrichment analysis showed that the fluid shear stress and atherosclerosis, p53 signaling, and focal adhesion pathways were highly enriched and contributed to osteoblast proliferation. Importantly, the fluid shear stress and atherosclerosis pathway was co-regulated by lncRNAs and miRNAs. In this pathway, Dusp1 was regulated by AK079370, while Arhgef2 was regulated by mir-5101. Furthermore, Map3k5 was regulated by AK154638 and mir-466q simultaneously. AK003142 and mir-3082-5p as well as Ak141402 and mir-446 m-3p were identified as interacting pairs that regulate target genes. CONCLUSION: This study revealed the global expression profile of ceRNAs involved in the differentiation of MC3TC­E1 osteoblasts induced by MACF1 deletion. These results indicate that loss of MACF1 activates a comprehensive ceRNA network to regulate osteoblast proliferation.


Asunto(s)
Aterosclerosis , MicroARNs , ARN Largo no Codificante , Actinas/genética , Actinas/metabolismo , Proliferación Celular/genética , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Osteoblastos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína p53 Supresora de Tumor/genética
3.
Cell Mol Neurobiol ; 42(7): 2187-2204, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33871731

RESUMEN

1p34.2p34.3 deletion syndrome is characterized by an increased risk for autism. Microtubule Actin Crosslinking Factor 1 (MACF1) is one candidate gene for this syndrome. It is unclear, however, how MACF1 deletion is linked to brain development and neurodevelopmental deficits. Here we report on Macf1 deletion in the developing mouse cerebral cortex, focusing on radial glia polarity and morphological integrity, as these are critical factors in brain formation. We found that deleting Macf1 during cortical development resulted in double cortex/subcortical band heterotopia as well as disrupted cortical lamination. Macf1-deleted radial progenitors showed increased proliferation rates compared to control cells but failed to remain confined within their defined proliferation zone in the developing brain. The overproliferation of Macf1-deleted radial progenitors was associated with elevated cell cycle speed and re-entry. Microtubule stability and actin polymerization along the apical ventricular area were decreased in the Macf1 mutant cortex. Correspondingly, there was a disconnection between radial glial fibers and the apical and pial surfaces. Finally, we observed that Macf1-mutant mice exhibited social deficits and aberrant emotional behaviors. Together, these results suggest that MACF1 plays a critical role in cortical progenitor proliferation and localization by promoting glial fiber stabilization and polarization. Our findings may provide insights into the pathogenic mechanism underlying the 1p34.2p34.3 deletion syndrome.


Asunto(s)
Actinas , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Animales , Encéfalo , Corteza Cerebral , Ratones , Proteínas de Microfilamentos , Microtúbulos
4.
BMC Pulm Med ; 22(1): 27, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996416

RESUMEN

BACKGROUND: Resistance to gefitinib remains a major obstacle for the successful treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. In this paper, we studied the precise actions of circular RNA (circRNA) microtubule actin crosslinking factor 1 (circ_MACF1) in gefitinib resistance. METHODS: We established gefitinib-resistant NSCLC cells (PC9/GR and A549/GR). The levels of circ_MACF1, microRNA (miR)-942-5p, and transforming growth factor beta receptor 2 (TGFBR2) were gauged by quantitative real-time PCR (qRT-PCR) or western blot. Subcellular fractionation and Ribonuclease R (RNase R) assays were done to characterize circ_MACF1. Cell survival, proliferation, colony formation, apoptosis, migration, and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-Ethynyl-2'-Deoxyuridine (EdU), colony formation, flow cytometry, and transwell assays, respectively. Dual-luciferase reporter assays were used to verify the direct relationship between miR-942-5p and circ_MACF1 or TGFBR2. The xenograft assays were used to assess the role of circ_MACF1 in vivo. RESULTS: Circ_MACF1 was down-regulated in A549/GR and PC9/GR cells. Overexpression of circ_MACF1 repressed proliferation, migration, invasion, and promoted apoptosis and gefitinib sensitivity of A549/GR and PC9/GR cells in vitro, as well as inhibited tumor growth under gefitinib in vivo. Circ_MACF1 directly targeted miR-942-5p, and miR-942-5p mediated the regulatory effects of circ_MACF1. TGFBR2 was identified as a direct and functional target of miR-942-5p. Circ_MACF1 modulated TGFBR2 expression through miR-942-5p. CONCLUSION: Our findings demonstrated that circ_MACF1 regulated cell functional behaviors and gefitinib sensitivity of A549/GR and PC9/GR cells at least partially by targeting miR-942-5p to induce TGFBR2 expression.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Gefitinib/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , MicroARNs/metabolismo , Proteínas de Microfilamentos/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , ARN Circular
5.
J Cell Mol Med ; 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133068

RESUMEN

Ageing-related osteoporosis is becoming an emerging threat to human health along with the ageing of human population. The decreased rate of osteogenic differentiation and bone formation is the major cause of ageing-related osteoporosis. Microtubule actin cross-linking factor 1 (MACF1) is an important cytoskeletal factor that promotes osteogenic differentiation and bone formation. However, the relationship between MACF1 expression and ageing-related osteoporosis remains unclear. This study has investigated the expression pattern of MACF1 in bone tissues of ageing-related osteoporosis patients and ageing mice. The study has further elucidated the mechanism of MACF1 promoting bone formation by inhibiting HES1 expression and activity. Moreover, the therapeutic effect of MACF1 on ageing-related osteoporosis and post-menopausal osteoporosis was evaluated through in situ injection of the MACF1 overexpression plasmid. The study supplemented the molecular mechanisms between ageing and bone formation, and provided novel targets and potential therapeutic strategy for ageing-related osteoporosis.

6.
Am J Hum Genet ; 103(6): 1009-1021, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30471716

RESUMEN

To date, mutations in 15 actin- or microtubule-associated genes have been associated with the cortical malformation lissencephaly and variable brainstem hypoplasia. During a multicenter review, we recognized a rare lissencephaly variant with a complex brainstem malformation in three unrelated children. We searched our large brain-malformation databases and found another five children with this malformation (as well as one with a less severe variant), analyzed available whole-exome or -genome sequencing data, and tested ciliogenesis in two affected individuals. The brain malformation comprised posterior predominant lissencephaly and midline crossing defects consisting of absent anterior commissure and a striking W-shaped brainstem malformation caused by small or absent pontine crossing fibers. We discovered heterozygous de novo missense variants or an in-frame deletion involving highly conserved zinc-binding residues within the GAR domain of MACF1 in the first eight subjects. We studied cilium formation and found a higher proportion of mutant cells with short cilia than of control cells with short cilia. A ninth child had similar lissencephaly but only subtle brainstem dysplasia associated with a heterozygous de novo missense variant in the spectrin repeat domain of MACF1. Thus, we report variants of the microtubule-binding GAR domain of MACF1 as the cause of a distinctive and most likely pathognomonic brain malformation. A gain-of-function or dominant-negative mechanism appears likely given that many heterozygous mutations leading to protein truncation are included in the ExAC Browser. However, three de novo variants in MACF1 have been observed in large schizophrenia cohorts.


Asunto(s)
Orientación del Axón/genética , Movimiento Celular/genética , Secuencia Conservada/genética , Proteínas de Microfilamentos/genética , Mutación/genética , Neuronas/patología , Zinc/metabolismo , Adolescente , Tronco Encefálico/patología , Niño , Preescolar , Cilios/genética , Femenino , Humanos , Lisencefalia/genética , Masculino , Microtúbulos/genética , Malformaciones del Sistema Nervioso/genética
7.
J Cell Mol Med ; 24(1): 317-327, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31709715

RESUMEN

Microtubule actin cross-linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3-E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast-specific Osterix (Osx) promoter-driven Macf1 conditional knockout mice (Macf1f/f Osx-Cre). The Macf1f/f Osx-Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/f Osx-Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/f Osx-Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/f Osx-Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Microfilamentos/deficiencia , Osteoblastos/metabolismo , Osteogénesis , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Transcripción Sp7/metabolismo , Animales , Fenómenos Biomecánicos , Huesos/anatomía & histología , Huesos/fisiología , Diferenciación Celular , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Tamaño de los Órganos , Osteoblastos/citología
8.
Semin Cell Dev Biol ; 69: 9-17, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28579452

RESUMEN

Microtubule-actin crosslinking factor 1 (MACF1), also known as actin crosslinking factor 7 (ACF7), is essential for proper modulation of actin and microtubule cytoskeletal networks. Most MACF1 isoforms are expressed broadly in the body, but some are exclusively found in the nervous system. Consequentially, MACF1 is integrally involved in multiple neural processes during development and in adulthood, including neurite outgrowth and neuronal migration. Furthermore, MACF1 participates in several signaling pathways, including the Wnt/ß-catenin and GSK-3 signaling pathways, which regulate key cellular processes, such as proliferation and cell migration. Genetic mutation or dysregulation of the MACF1 gene has been associated with neurodevelopmental and neurodegenerative diseases, specifically schizophrenia and Parkinson's disease. MACF1 may also play a part in neuromuscular disorders and have a neuroprotective role in the optic nerve. In this review, the authors seek to synthesize recent findings relating to the roles of MACF1 within the nervous system and explore potential novel functions of MACF1 not yet examined.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Animales , Movimiento Celular , Humanos , Proteínas de Microfilamentos/química , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuritas/metabolismo , Transducción de Señal
9.
Semin Cell Dev Biol ; 69: 3-8, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28577926

RESUMEN

Spectraplakins are a family of evolutionarily conserved gigantic proteins and play critical roles in many cytoskeleton-related processes. Microtubule actin crosslinking factor 1 (MACF1) is one of the most versatile spectraplakin with multiple isoforms. As a broadly expressed mammalian spectraplakin, MACF1 is important in maintaining normal functions of many tissues. The loss-of-function studies using knockout mouse models reveal the pivotal roles of MACF1 in embryo development, skin integrity maintenance, neural development, bone formation, and colonic paracellular permeability. Mutation in the human MACF1 gene causes a novel myopathy genetic disease. In addition, abnormal expression of MACF1 is associated with schizophrenia, Parkinson's disease, cancer and osteoporosis. This demonstrates the crucial roles of MACF1 in physiology and pathology. Here, we review the research advances of MACF1's roles in specific tissue and in human diseases, providing the perspectives of MACF1 for future studies.


Asunto(s)
Enfermedad , Proteínas de Microfilamentos/metabolismo , Especificidad de Órganos , Humanos , Proteínas de Microfilamentos/química , Cicatrización de Heridas
10.
J Cell Physiol ; 233(7): 5405-5419, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29219183

RESUMEN

Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/ß-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear. This study investigated effects of mechanical unloading on MACF1 expression levels in cultured MC3T3-E1 osteoblastic cells and in femurs of mice with hind limb unloading; and it also examined the role and potential action mechanisms of MACF1 in osteoblast proliferation in MACF1-knockdown, overexpressed or control MC3T3-E1 cells treated with or without the mechanical unloading condition. Results showed that the mechanical unloading condition inhibited osteoblast proliferation and MACF1 expression in MC3T3-E1 osteoblastic cells and mouse femurs. MACF1 knockdown decreased osteoblast proliferation, while MACF1 overexpression increased it. The inhibitory effect of mechanical unloading on osteoblast proliferation also changed with MACF1 expression levels. Furthermore, MACF1 was found to enhance ß-catenin expression and activity, and mechanical unloading decreased ß-catenin expression through MACF1. Moreover, ß-catenin was found an important regulator of osteoblast proliferation, as its preservation by treatment with its agonist lithium attenuated the inhibitory effects of MACF1-knockdown or mechanical unloading on osteoblast proliferation. Taken together, mechanical unloading decreases MACF1 expression, and MACF1 up-regulates osteoblast proliferation through enhancing ß-catenin signaling. This study has thus provided a mechanism for mechanical unloading-induced inhibited osteoblast proliferation.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Microfilamentos/genética , Osteogénesis/genética , beta Catenina/genética , Células 3T3 , Animales , Proliferación Celular/efectos de los fármacos , Fémur/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Litio/administración & dosificación , Ratones , Osteoblastos/citología , Osteoblastos/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/antagonistas & inhibidores
11.
J Cell Physiol ; 233(2): 1574-1584, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28621459

RESUMEN

Osteoblast differentiation is a multistep process delicately regulated by many factors, including cytoskeletal dynamics and signaling pathways. Microtubule actin crosslinking factor 1 (MACF1), a key cytoskeletal linker, has been shown to play key roles in signal transduction and in diverse cellular processes; however, its role in regulating osteoblast differentiation is still needed to be elucidated. To further uncover the functions and mechanisms of action of MACF1 in osteoblast differentiation, we examined effects of MACF1 knockdown (MACF1-KD) in MC3T3-E1 osteoblastic cells on their osteoblast differentiation and associated molecular mechanisms. The results showed that knockdown of MACF1 significantly suppressed mineralization of MC3T3-E1 cells, down-regulated the expression of key osteogenic genes alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and type I collagen α1 (Col Iα1). Knockdown of MACF1 dramatically reduced the nuclear translocation of ß-catenin, decreased the transcriptional activation of T cell factor 1 (TCF1), and down-regulated the expression of TCF1, lymphoid enhancer-binding factor 1 (LEF1), and Runx2, a target gene of ß-catenin/TCF1. In addition, MACF1-KD increased the active level of glycogen synthase kinase-3ß (GSK-3ß), which is a key regulator for ß-catenin signal transduction. Moreover, the reduction of nuclear ß-catenin amount and decreased expression of TCF1 and Runx2 were significantly reversed in MACF1-KD cells when treated with lithium chloride, an agonist for ß-catenin by inhibiting GSK-3ß activity. Taken together, these findings suggest that knockdown of MACF1 in osteoblastic cells inhibits osteoblast differentiation through suppressing the ß-catenin/TCF1-Runx2 axis. Thus, a novel role of MACF1 in and a new mechanistic insight of osteoblast differentiation are uncovered.


Asunto(s)
Diferenciación Celular , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Proteínas de Microfilamentos/metabolismo , Osteoblastos/metabolismo , Osteogénesis , beta Catenina/metabolismo , Células 3T3 , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Cloruro de Litio/farmacología , Ratones , Proteínas de Microfilamentos/genética , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Fenotipo , Fosforilación , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , beta Catenina/agonistas , beta Catenina/genética
12.
Cereb Cortex ; 27(12): 5525-5538, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27756764

RESUMEN

GABAergic interneurons develop in the ganglionic eminence in the ventral telencephalon and tangentially migrate into the cortical plate during development. However, key molecules controlling interneuron migration remain poorly identified. Here, we show that microtubule-actin cross-linking factor 1 (MACF1) regulates GABAergic interneuron migration and positioning in the developing mouse brain. To investigate the role of MACF1 in developing interneurons, we conditionally deleted the MACF1 gene in mouse interneuron progenitors and their progeny using Dlx5/6-Cre-IRES-EGFP and Nkx2.1-Cre drivers. We found that MACF1 deletion results in a marked reduction and defective positioning of interneurons in the mouse cerebral cortex and hippocampus, suggesting abnormal interneuron migration. Indeed, the speed and mode of interneuron migration were abnormal in the MACF1-mutant brain, compared with controls. Additionally, MACF1-deleted interneurons showed a significant reduction in the length of their leading processes and dendrites in the mouse brain. Finally, loss of MACF1 decreased microtubule stability in cortical interneurons. Our findings suggest that MACF1 plays a critical role in cortical interneuron migration and positioning in the developing mouse brain.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Movimiento Celular/fisiología , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Proteínas de Microfilamentos/metabolismo , Células-Madre Neurales/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Dendritas/metabolismo , Neuronas GABAérgicas/patología , Inmunohistoquímica , Interneuronas/patología , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Microscopía Confocal , Microtúbulos/metabolismo , Microtúbulos/patología , Células-Madre Neurales/patología , Técnicas de Cultivo de Tejidos
13.
Cancer Sci ; 108(10): 1953-1958, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28782898

RESUMEN

Cancer is a polygenic disease characterized by uncontrolled growth of normal body cells, deregulation of the cell cycle as well as resistance to apoptosis. The spectraplakin protein microtubule actin cross-linking factor 1 (MACF1) plays an essential function in various cellular processes, including cell proliferation, migration, signaling transduction and embryo development. MACF1 is also involved in processes such as metastatic invasion in which cytoskeleton organization is a critical element that contributes to tumor progression in various human cancers. Aberrant expression of MACF1 initiates the tumor cell proliferation, and migration and metastasis in numerous cancers, such as breast cancer, colon cancer, lung cancer and glioblastoma. In this review, we summarized the current knowledge of MACF1 and its critical role in different human cancers. This will be helpful for researchers to investigate the novel functional role of MACF1 in human cancers and as a potential target to enhance the efficacy of therapeutic treatment modalities.


Asunto(s)
Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neoplasias/metabolismo , Empalme Alternativo , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Humanos , Invasividad Neoplásica , Transducción de Señal
14.
J Biol Chem ; 290(13): 8154-65, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25648896

RESUMEN

Teneurins are large type II transmembrane proteins that are necessary for the normal development of the CNS. Although many studies highlight the significance of teneurins, especially during development, there is only limited information known about the molecular mechanisms of function. Previous studies have shown that the N-terminal intracellular domain (ICD) of teneurins can be cleaved at the membrane and subsequently translocates to the nucleus, where it can influence gene transcription. Because teneurin ICDs do not contain any intrinsic DNA binding sequences, interaction partners are required to affect transcription. Here, we identified histidine triad nucleotide binding protein 1 (HINT1) as a human teneurin-1 ICD interaction partner in a yeast two-hybrid screen. This interaction was confirmed in human cells, where HINT1 is known to inhibit the transcription of target genes by directly binding to transcription factors at the promoter. In a whole transcriptome analysis of BS149 glioblastoma cells overexpressing the teneurin-1 ICD, several microphthalmia-associated transcription factor (MITF) target genes were found to be up-regulated. Directly comparing the transcriptomes of MITF versus TEN1-ICD-overexpressing BS149 cells revealed 42 co-regulated genes, including glycoprotein non-metastatic b (GPNMB). Using real-time quantitative PCR to detect endogenous GPNMB expression upon overexpression of MITF and HINT1 as well as promoter reporter assays using GPNMB promoter constructs, we could demonstrate that the teneurin-1 ICD binds HINT1, thus switching on MITF-dependent transcription of GPNMB.


Asunto(s)
Factor de Transcripción Asociado a Microftalmía/fisiología , Proteínas del Tejido Nervioso/metabolismo , Tenascina/metabolismo , Animales , Células COS , Chlorocebus aethiops , Expresión Génica , Humanos , Glicoproteínas de Membrana/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Activación Transcripcional , Regulación hacia Arriba
15.
Dev Biol ; 395(1): 4-18, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25224226

RESUMEN

Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons.


Asunto(s)
Movimiento Celular , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de Microfilamentos/metabolismo , Microtúbulos/metabolismo , Células Piramidales/metabolismo , Transducción de Señal , Animales , Western Blotting , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Centrosoma/metabolismo , Citoesqueleto/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ratones Noqueados , Proteínas de Microfilamentos/genética , Microscopía Confocal , Modelos Biológicos , Cultivo Primario de Células , Células Piramidales/citología , Interferencia de ARN , Imagen de Lapso de Tiempo
16.
J Mol Histol ; 55(1): 37-50, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38165568

RESUMEN

Acute myeloid leukemia (AML) is a hematologic disease associated with genetic abnormalities. This study aimed to explore the role of leucine-rich repeat-containing protein 1 (LRRC1) in the malignant activities of AML and to reveal the molecular mechanism related to microtubule actin cross-linking factor 1 (MACF1). GEPIA database was used to analyze the expression of LRRC1 in bone marrow tissues of AML patients and the correlation between LRRC1 expression and survival analysis. LRRC1 was knocked down to assess the change of AML cell proliferation, cell cycle and apoptosis using CCK-8 assay and flow cytometry. Besides, the contents of extracellular acidification and oxygen consumption rates were measured to evaluate the glycolysis. Additionally, the interaction between LRRC1 and MACF1 predicted by MEM database and was verified by co-immunoprecipitation (Co-IP) assay. Then, MACF1 was overexpressed to conduct the rescue experiments. Expression of proteins in ß-catenin/c-Myc signaling was detected by western blot. Finally, AML xenograft mouse model was established to observe the impacts of LRRC1 silencing on the tumor development. Notably upregulated LRRC1 expression was observed in bone marrow tissues of AML patients and AML cells, and patients with the higher LRRC1 expression displayed the lower overall survival. LRRC1 depletion promoted cell cycle arrest and apoptosis and inhibited the glycolysis. Co-IP confirmed the interaction between LRRC1 and MACF1. MACF1 upregulation relieved the impacts of LRRC1 knockdown on the malignant activities of AML cells. Moreover, LRRC1 silencing inhibited the development of xenograft tumor growth of HL-60 cells in nude mice, suppressed MACF1 expression and inactivated the ß-catenin/c-Myc signaling. Collectively, LRRC1 knockdown suppressed proliferation, glycolysis and promoted apoptosis in AML cells by downregulating MACF1 expression to inactivate ß-catenin/c-Myc signaling.


Asunto(s)
Proteínas Portadoras , Leucemia Mieloide Aguda , Proteínas de la Membrana , MicroARNs , Humanos , Animales , Ratones , Transducción de Señal , Actinas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Cateninas/metabolismo , Ratones Desnudos , Apoptosis/genética , Proliferación Celular/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Microtúbulos/metabolismo , Microtúbulos/patología , Línea Celular Tumoral , MicroARNs/genética , Proteínas de Microfilamentos/metabolismo
17.
Mol Biotechnol ; 65(7): 1085-1095, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36443618

RESUMEN

Diabetes mellitus (DM) affects bone metabolism and causes osteoporosis. Musashi 1 (MSI1), a member of the Musashi family, regulates protein expression by targeting protein mRNA and has been reported to play an important role in osteogenic differentiation. Therefore, this paper attempts to explore the role of MSI1 in diabetic osteoporosis and discussing its specific mechanism. The glucose concentration for high glucose (HG) and control MC3T3-E1 cells were 30 and 5.5 mM. MC3T3-E1 cells induced by high glucose (HG) were used to simulate diabetic osteoporosis in vivo. The interaction between MSI1 and microtubule actin crosslinking factor 1 (MACF1) was confirmed by RNA Immunoprecipitation (RIP). The mRNA and protein expressions of MSI1 and MACF1 in MC3T3-E1 cells and HG-induced MC3T3-E1 cells after indicated transfection were tested by Real-time quantitative polymerase chain reaction (RT-qPCR) assay and western blot. After transfection, the proliferation, apoptosis, and osteogenic differentiation of HG-induced MC3T3-E1 cells were detected by cell counting kit (CCK)-8, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), alkaline phosphatase (ALP) activity assay, and alizarin red staining. The expression of Wnt/ß-catenin signaling pathway-related proteins in HG-induced MC3T3-E1 cells after transfection was detected by western blot. This work shows that MSI1 can combine with MACF1. The expression of MSI1 and MACF1 was increased in HG-induced MC3T3-E1 cells. Upregulation of MSI1 promoted the proliferative and differentiative capabilities, but inhibited the apoptosis of HG-insulted MC3T3-E1 cells, which could be reversed by MACF1 knockdown. MSI1 stabilizes MACF1 to suppress apoptosis and promote osteogenic differentiation in HG-induced MC3T3-E1 cells by inhibiting Wnt/ß-catenin signaling pathway.


Asunto(s)
Osteoporosis , Vía de Señalización Wnt , Animales , Ratones , Apoptosis , Diferenciación Celular , Glucosa/farmacología , Glucosa/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Osteoporosis/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
18.
J Orthop Translat ; 39: 177-190, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36969134

RESUMEN

Background: The decreased osteogenic differentiation ability of mesenchymal stem cells (MSCs) is one of the important reasons for SOP. Inhibition of Wnt signaling in MSCs is closely related to SOP. Microtubule actin crosslinking factor 1 (MACF1) is an important regulator in Wnt/ß-catenin signal transduction. However, whether the specific expression of MACF1 in MSC regulates SOP and its mechanism remains unclear. Methods: We established MSC-specific Prrx1 (Prx1) promoter-driven MACF1 conditional knock-in (MACF-KI) mice, naturally aged male mice, and ovariectomized female mice models. Micro-CT, H&E staining, double calcein labeling, and the three-point bending test were used to explore the effects of MACF1 on bone formation and bone microstructure in the SOP mice model. Bioinformatics analysis, ChIP-PCR, qPCR, and ALP staining were used to explore the effects and mechanisms of MACF1 on MSCs' osteogenic differentiation. Results: Microarray analysis revealed that the expression of MACF1 and positive regulators of the Wnt pathway (such as TCF4, ß-catenin, Dvl) was decreased in human MSCs (hMSCs) isolated from aged osteoporotic than non-osteoporotic patients. The ALP activity and osteogenesis marker genes (Alp, Runx2, and Bglap) expression in mouse MSCs was downregulated during aging. Furthermore, Micro-CT analysis of the femur from 2-month-old MSC-specific Prrx1 (Prx1) promoter-driven MACF1 conditional knock-in (MACF-cKI) mice showed no significant trabecular bone changes compared to wild-type littermate controls, whereas 18- and 21-month-old MACF1 c-KI animals displayed increased bone mineral densities (BMD), improved bone microstructure, and increased maximum compression stress. In addition, the ovariectomy (OVX)-induced osteoporosis model of MACF1 c-KI mice had significantly higher trabecular volume and number, and increased bone formation rate than that in control mice. Mechanistically, ChIP-PCR showed that TCF4 could bind to the promoter region of the host gene miR-335-5p. Moreover, MACF1 could regulate the expression of miR-335-5p by TCF4 during the osteogenic differentiation of MSCs. Conclusion: These data indicate that MACF1 positively regulates MSCs osteogenesis and bone formation through the TCF4/miR-335-5p signaling pathway in SOP, suggesting that targeting MACF1 may be a novel therapeutic approach against SOP. The translational potential of this article: MACF1, an important switch in the Wnt signaling pathway, can alleviate SOP through the TCF4/miR-335-5p signaling pathway in mice model. It might act as a therapeutic target for the treatment of SOP to improve bone function.

19.
Thorac Cancer ; 14(33): 3348-3357, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814902

RESUMEN

BACKGROUND: Chemoresistance remains an enormous challenge in the treatment of lung adenocarcinoma (LADC). Circular RNAs (circRNAs) exhibit important regulation in tumor progression and chemoresistance. This research focused on exploring the regulatory function and mechanism of circ_MACF1 (has_circ_0011780) in paclitaxel (PTX) resistance in LADC. METHODS: Circ_MACF1, miR-421 and flavin-containing monooxygenase 2 (FMO2) were determined by RT-qPCR. MTT was applied to detect IC50 of PTX. The proliferation analysis was performed using EdU and colony formation assay. Cell apoptosis and motility were examined using flow cytometry and transwell assay, respectively. Western blot was administered for protein detection. A dual-luciferase reporter assay was performed for confirming target interaction. PTX sensitivity in vivo was researched via xenograft tumor assay. RESULTS: Expression of circ_MACF1 was decreased in PTX-resistant LADC tissues and cells. Circ_MACF1 overexpression reduced chemoresistance, proliferation, motility and accelerated apoptosis in PTX-resistant LADC cells. Circ_MACF1 targeted miR-421 and miR-421 upregulation reverted circ_MACF1-evoked effects. FMO2 served as a downstream target of miR-421 and circ_MACF1 sponged miR-421 to elevate the expression of FMO2. MiR-421 enhanced PTX resistance and LADC progression via targeting FMO2. FMO2 knockdown enhanced IC50 of PTX and cell proliferation. In vivo, circ_MACF1 elevated PTX sensitivity of LADC by mediating miR-421/FMO2 axis. CONCLUSION: These findings elucidated that circ_MACF1 inhibited PTX resistance by absorbing miR-421 to upregulate FMO2 in LADC.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Proteínas del Citoesqueleto , Proliferación Celular , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , MicroARNs/genética , Línea Celular Tumoral , Proteínas de Microfilamentos
20.
J Exp Clin Cancer Res ; 42(1): 311, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993901

RESUMEN

BACKGROUND: Liver cancer stem cells (LCSCs) play an important role in hepatocellular carcinoma (HCC), but the mechanisms that link LCSCs to HCC metastasis remain largely unknown. This study aims to reveal the contributions of NRCAM to LCSC function and HCC metastasis, and further explore its mechanism in detail. METHODS: 117 HCC and 29 non-HCC patients with focal liver lesions were collected and analyzed to assess the association between NRCAM and HCC metastasis. Single-cell RNA sequencing (scRNA-seq) was used to explore the biological characteristics of cells with high NRCAM expression in metastatic HCC. The role and mechanism of NRCAM in LCSC dissemination and metastasis was explored in vitro and in vivo using MYC-driven LCSC organoids from murine liver cells. RESULTS: Serum NRCAM is associated with HCC metastasis and poor prognosis. A scRNA-seq analysis identified that NRCAM was highly expressed in LCSCs with MYC activation in metastatic HCC. Moreover, NRCAM facilitated LCSC migration and invasion, which was confirmed in MYC-driven LCSC organoids. The in vivo tumor allografts demonstrated that NRCAM mediated intra-hepatic/lung HCC metastasis by enhancing the ability of LCSCs to escape from tumors into the bloodstream. Nrcam expression inhibition in LCSCs blocked HCC metastasis. Mechanistically, NRCAM activated epithelial-mesenchymal transition (EMT) and metastasis-related matrix metalloproteinases (MMPs) through the MACF1 mediated ß-catenin signaling pathway in LCSCs. CONCLUSIONS: LCSCs typified by high NRCAM expression have a strong ability to invade and migrate, which is an important factor leading to HCC metastasis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Movimiento Celular , Moléculas de Adhesión Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA