Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(19): e112999, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37622245

RESUMEN

Cold stress is a major abiotic stress that adversely affects plant growth and crop productivity. The C-REPEAT BINDING FACTOR/DRE BINDING FACTOR 1 (CBF/DREB1) transcriptional regulatory cascade plays a key role in regulating cold acclimation and freezing tolerance in Arabidopsis (Arabidopsis thaliana). Here, we show that max (more axillary growth) mutants deficient in strigolactone biosynthesis and signaling display hypersensitivity to freezing stress. Exogenous application of GR245DS , a strigolactone analog, enhances freezing tolerance in wild-type plants and strigolactone-deficient mutants and promotes the cold-induced expression of CBF genes. Biochemical analysis showed that the transcription factor WRKY41 serves as a substrate for the F-box E3 ligase MAX2. WRKY41 directly binds to the W-box in the promoters of CBF genes and represses their expression, negatively regulating cold acclimation and freezing tolerance. MAX2 ubiquitinates WRKY41, thus marking it for cold-induced degradation and thereby alleviating the repression of CBF expression. In addition, SL-mediated degradation of SMXLs also contributes to enhanced plant freezing tolerance by promoting anthocyanin biosynthesis. Taken together, our study reveals the molecular mechanism underlying strigolactones promote the cold stress response in Arabidopsis.

2.
Plant Cell Physiol ; 64(9): 1008-1020, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37279553

RESUMEN

Under specific conditions, the germination of Arabidopsis thaliana is dependent on the activation of the KARRIKIN INSENSITIVE 2 (KAI2) signaling pathway by the KAI2-dependent perception of karrikin or the artificial strigolactone analogue, rac-GR24. To regulate the induction of germination, the KAI2 signaling pathway relies on MORE AXILLARY BRANCHED 2- (MAX2-)dependent ubiquitination and proteasomal degradation of the repressor protein SUPPRESSOR OF MAX2 1 (SMAX1). It is not yet known how the degradation of SMAX1 proteins eventually results in the regulation of seed germination, but it has been hypothesized that SMAX1-LIKE generally functions as transcriptional repressors through the recruitment of co-repressors TOPLESS (TPL) and TPL-related, which in turn interact with histone deacetylases. In this article, we show the involvement of histone deacetylases HDA6, HDA9, HDA19 and HDT1 in MAX2-dependent germination of Arabidopsis, and more specifically, that HDA6 is required for the induction of DWARF14-LIKE2 expression in response to rac-GR24 treatment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Germinación , Proteínas de Arabidopsis/metabolismo , Lactonas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
Mol Cell Proteomics ; 20: 100040, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33372050

RESUMEN

The F-box protein MORE AXILLARY GROWTH 2 (MAX2) is a central component in the signaling cascade of strigolactones (SLs) as well as of the smoke-derived karrikins (KARs) and the so far unknown endogenous KAI2 ligand (KL). The two groups of molecules are involved in overlapping and unique developmental processes, and signal-specific outcomes are attributed to perception by the paralogous α/ß-hydrolases DWARF14 (D14) for SL and KARRIKIN INSENSITIVE 2/HYPOSENSITIVE TO LIGHT (KAI2/HTL) for KAR/KL. In addition, depending on which receptor is activated, specific members of the SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE (SMXL) family control KAR/KL and SL responses. As proteins that function in the same signal transduction pathway often occur in large protein complexes, we aimed at discovering new players of the MAX2, D14, and KAI2 protein network by tandem affinity purification in Arabidopsis cell cultures. When using MAX2 as a bait, various proteins were copurified, among which were general components of the Skp1-Cullin-F-box complex and members of the CONSTITUTIVE PHOTOMORPHOGENIC 9 signalosome. Here, we report the identification of a novel interactor of MAX2, a type 5 serine/threonine protein phosphatase, designated PHYTOCHROME-ASSOCIATED PROTEIN PHOSPHATASE 5 (PAPP5). Quantitative affinity purification pointed at PAPP5 as being more present in KAI2 rather than in D14 protein complexes. In agreement, mutant analysis suggests that PAPP5 modulates KAR/KL-dependent seed germination under suboptimal conditions and seedling development. In addition, a phosphopeptide enrichment experiment revealed that PAPP5 might dephosphorylate MAX2 in vivo independently of the synthetic SL analog, rac-GR24. Together, by analyzing the protein complexes to which MAX2, D14, and KAI2 belong, we revealed a new MAX2 interactor, PAPP5, that might act through dephosphorylation of MAX2 to control mainly KAR/KL-related phenotypes and, hence, provide another link with the light pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Germinación , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Nicotiana/genética
4.
Plant Cell Physiol ; 63(1): 104-119, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34791413

RESUMEN

The synthetic strigolactone (SL) analog, rac-GR24, has been instrumental in studying the role of SLs as well as karrikins because it activates the receptors DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2) of their signaling pathways, respectively. Treatment with rac-GR24 modifies the root architecture at different levels, such as decreasing the lateral root density (LRD), while promoting root hair elongation or flavonol accumulation. Previously, we have shown that the flavonol biosynthesis is transcriptionally activated in the root by rac-GR24 treatment, but, thus far, the molecular players involved in that response have remained unknown. To get an in-depth insight into the changes that occur after the compound is perceived by the roots, we compared the root transcriptomes of the wild type and the more axillary growth2 (max2) mutant, affected in both SL and karrikin signaling pathways, with and without rac-GR24 treatment. Quantitative reverse transcription (qRT)-PCR, reporter line analysis and mutant phenotyping indicated that the flavonol response and the root hair elongation are controlled by the ELONGATED HYPOCOTYL 5 (HY5) and MYB12 transcription factors, but HY5, in contrast to MYB12, affects the LRD as well. Furthermore, we identified the transcription factors TARGET OF MONOPTEROS 5 (TMO5) and TMO5 LIKE1 as negative and the Mediator complex as positive regulators of the rac-GR24 effect on LRD. Altogether, hereby, we get closer toward understanding the molecular mechanisms that underlay the rac-GR24 responses in the root.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoles/genética , Flavonoles/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Organogénesis de las Plantas/genética , Transducción de Señal
5.
J Exp Bot ; 73(18): 6272-6291, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35738874

RESUMEN

Although the division of the pericycle cells initiates both lateral root development and root-derived callus formation, these developmental processes are affected differently in the strigolactone and karrikin/KARRIKIN INSENSITIVE 2 (KAI2) ligand signalling mutant more axillary growth 2 (max2). Whereas max2 produces more lateral roots than the wild type, it is defective in the regeneration of shoots from root explants. We suggest that the decreased shoot regeneration of max2 originates from delayed formation of callus primordium, yielding less callus material to regenerate shoots. Indeed, when incubated on callus-inducing medium, the pericycle cell division was reduced in max2 and the early gene expression varied when compared with the wild type, as determined by a transcriptomics analysis. Furthermore, the expression of the LATERAL ORGAN BOUNDARIES DOMAIN genes and of callus-induction genes was modified in correlation with the max2 phenotype, suggesting a role for MAX2 in the regulation of the interplay between cytokinin, auxin, and light signalling in callus initiation. Additionally, we found that the in vitro shoot regeneration phenotype of max2 might be caused by a defect in KAI2, rather than in DWARF14, signalling. Nevertheless, the shoot regeneration assays revealed that the strigolactone biosynthesis mutants max3 and max4 also play a minor role.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ligandos , Raíces de Plantas/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo
6.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30021834

RESUMEN

Striga hermonthica is a root parasitic plant that infests cereals, decimating yields, particularly in sub-Saharan Africa. For germination, Striga seeds require host-released strigolactones that are perceived by the family of HYPOSENSITIVE to LIGHT (ShHTL) receptors. Inhibiting seed germination would thus be a promising approach for combating Striga However, there are currently no strigolactone antagonists that specifically block ShHTLs and do not bind to DWARF14, the homologous strigolactone receptor of the host. Here, we show that the octyl phenol ethoxylate Triton X-100 inhibits S. hermonthica seed germination without affecting host plants. High-resolution X-ray structures reveal that Triton X-100 specifically plugs the catalytic pocket of ShHTL7. ShHTL7-specific inhibition by Triton X-100 demonstrates the dominant role of this particular ShHTL receptor for Striga germination. Our structural analysis provides a rationale for the broad specificity and high sensitivity of ShHTL7, and reveals that strigolactones trigger structural changes in ShHTL7 that are required for downstream signaling. Our findings identify Triton and the related 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]acetic acid as promising lead compounds for the rational design of efficient Striga-specific herbicides.


Asunto(s)
Germinación/efectos de los fármacos , Herbicidas/química , Hidrolasas/química , Octoxinol/química , Proteínas de Plantas/química , Malezas/química , Striga/enzimología , Control de Malezas , Cristalografía por Rayos X , Herbicidas/farmacología , Hidrolasas/antagonistas & inhibidores , Octoxinol/farmacología , Proteínas de Plantas/antagonistas & inhibidores , Malezas/efectos de los fármacos , Malezas/enzimología , Unión Proteica , Conformación Proteica , Transducción de Señal , Striga/efectos de los fármacos , Striga/fisiología
7.
Biochem Biophys Res Commun ; 511(2): 300-306, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30795866

RESUMEN

Cytokinin (CK) signaling has been shown to play important roles in callus formation and various developmental processes by analyzing different CK-responsive mutants, including the ahk2 ahk3 (AHK, Arabidopsis histidine kinase) double mutant. Recently, an F-box protein, called MAX2 (more axillary growth 2) was identified as a key component regulating many growth and developmental processes through the strigolactone and/or karrikin pathways. However, the function of MAX2 signaling in callus formation, seed size and yield, as well as the effects of its crosstalk with CK signaling on plant growth and development remain elusive. Here, we constructed the triple mutant ahk2 ahk3max2 and analyzed the callus formation and various phenotypic traits of all three max2, ahk2 ahk3 and ahk2 ahk3 max2 mutants along with wild-type (WT) during plant growth and development. We showed that MAX2 acted as a negative regulator of seed size, but positive regulator of callus formation and seed yield albeit at lower degree, as the CK receptor kinases. Importantly, our comparative analyses revealed interactive effects of CK and MAX2 pathways on primary root growth, hypocotyl elongation and shoot branching. However, these two pathways might independently regulate root hair growth, leaf development, leaf senescence, plant height, seed size, seed yield and callus formation. Our findings provide not only evidence for the involvement of MAX2 in regulating callus formation, seed size and seed yield, but also a better understanding of the relationship between CK and MAX2 signaling pathways in many key developmental processes across a plant's life.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas Portadoras/metabolismo , Citocininas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo
8.
Ann Bot ; 124(5): 749-767, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31190074

RESUMEN

BACKGROUND: Strigolactones (SLs) are a diverse class of butenolide-bearing phytohormones derived from the catabolism of carotenoids. They are associated with an increasing number of emerging regulatory roles in plant growth and development, including seed germination, root and shoot architecture patterning, nutrient acquisition, symbiotic and parasitic interactions, as well as mediation of plant responses to abiotic and biotic cues. SCOPE: Here, we provide a concise overview of SL biosynthesis, signal transduction pathways and SL-mediated plant responses with a detailed discourse on the crosstalk(s) that exist between SLs/components of SL signalling and other phytohormones such as auxins, cytokinins, gibberellins, abscisic acid, ethylene, jasmonates and salicylic acid. CONCLUSION: SLs elicit their control on physiological and morphological processes via a direct or indirect influence on the activities of other hormones and/or integrants of signalling cascades of other growth regulators. These, among many others, include modulation of hormone content, transport and distribution within plant tissues, interference with or complete dependence on downstream signal components of other phytohormones, as well as acting synergistically or antagonistically with other hormones to elicit plant responses. Although much has been done to evince the effects of SL interactions with other hormones at the cell and whole plant levels, research attention must be channelled towards elucidating the precise molecular events that underlie these processes. More especially in the case of abscisic acid, cytokinins, gibberellin, jasmonates and salicylic acid for which very little has been reported about their hormonal crosstalk with SLs.


Asunto(s)
Citocininas , Reguladores del Crecimiento de las Plantas , Ácidos Indolacéticos , Lactonas , Desarrollo de la Planta , Plantas
10.
Plant Cell Environ ; 40(9): 1691-1703, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28558130

RESUMEN

The plant hormones strigolactones are synthesized from carotenoids and signal via the α/ß hydrolase DWARF 14 (D14) and the F-box protein MORE AXILLARY GROWTH 2 (MAX2). Karrikins, molecules produced upon fire, share MAX2 for signalling, but depend on the D14 paralog KARRIKIN INSENSITIVE 2 (KAI2) for perception with strong evidence that the MAX2-KAI2 protein complex might also recognize so far unknown plant-made karrikin-like molecules. Thus, the phenotypes of the max2 mutants are the complex consequence of a loss of both D14-dependent and KAI2-dependent signalling, hence, the reason why some biological roles, attributed to strigolactones based on max2 phenotypes, could never be observed in d14 or in the strigolactone-deficient max3 and max4 mutants. Moreover, the broadly used synthetic strigolactone analog rac-GR24 has been shown to mimic strigolactone as well as karrikin(-like) signals, providing an extra level of complexity in the distinction of the unique and common roles of both molecules in plant biology. Here, a critical overview is provided of the diverse biological processes regulated by strigolactones and/or karrikins. These two growth regulators are considered beyond their boundaries, and the importance of the yet unknown karrikin-like molecules is discussed as well.


Asunto(s)
Furanos/metabolismo , Lactonas/metabolismo , Furanos/química , Lactonas/química , Micorrizas/fisiología , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Estrés Fisiológico
11.
Biochem Biophys Res Commun ; 478(2): 521-6, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27425246

RESUMEN

Previous studies in Arabidopsis reported that the MAX2 (more axillary growth 2) gene is a component of the strigolactone (SL) signaling pathway, which regulates a wide range of biological processes, from plant growth and development to environmental stress responses. Orobanche aegyptiaca is a harmful parasitic plant for many economically important crops. Seed germination of O. aegyptiaca is very sensitive to SLs, suggesting that O. aegyptiaca may contain components of the SL signaling pathway. To investigate this hypothesis, we identified and cloned a MAX2 ortholog from O. aegyptiaca for complementation analyses using the Arabidopsis Atmax2 mutant. The so-called OaMAX2 gene could rescue phenotypes of the Atmax2 mutant in various tested developmental aspects, including seed germination, shoot branching, leaf senescence and growth and development of hypocotyl, root hair, primary root and lateral root. More importantly, OaMAX2 could enhance the drought tolerance of Atmax2 mutant, suggesting its ability to restore the drought-tolerant phenotype of mutant plants defected in AtMAX2 function. Thus, this study provides genetic evidence that the functions of the MAX2 orthologs, and perhaps the MAX2 signaling pathways, are conserved in parasitic and non-parasitic plants. Furthermore, the results of our study enable us to develop a strategy to fight against parasitic plants by suppressing the MAX signaling, which ultimately leads to enhanced productivity of crop plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas Portadoras/genética , Orobanche/crecimiento & desarrollo , Orobanche/genética , Aclimatación , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Sequías , Genes de Plantas , Germinación , Mutación , Orobanche/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/fisiología , Estrés Fisiológico
12.
Planta ; 243(6): 1397-406, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26754282

RESUMEN

MAIN CONCLUSION: SMAX1 and SMXL2 control seedling growth, demonstrating functional redundancy within a gene family that mediates karrikin and strigolactone responses. Strigolactones (SLs) are plant hormones with butenolide moieties that control diverse aspects of plant growth, including shoot branching. Karrikins (KARs) are butenolide molecules found in smoke that enhance seed germination and seedling photomorphogenesis. In Arabidopsis thaliana, SLs and KARs signal through the α/ß hydrolases D14 and KAI2, respectively. The F-box protein MAX2 is essential for both signaling pathways. SUPPRESSOR OF MAX2 1 (SMAX1) plays a prominent role in KAR-regulated growth downstream of MAX2, and SMAX1-LIKE genes SMXL6, SMXL7, and SMXL8 mediate SL responses. We previously found that smax1 loss-of-function mutants display constitutive KAR response phenotypes, including reduced seed dormancy and hypersensitive growth responses to light in seedlings. However, smax1 seedlings remain slightly responsive to KARs, suggesting that there is functional redundancy in karrikin signaling. SMXL2 is a strong candidate for this redundancy because it is the closest paralog of SMAX1, and because its expression is regulated by KAR signaling. Here, we present evidence that SMXL2 controls hypocotyl growth and expression of the KAR/SL transcriptional markers KUF1, IAA1, and DLK2 redundantly with SMAX1. Hypocotyl growth in the smax1 smxl2 double mutant is insensitive to KAR and SL, and etiolated smax1 smxl2 seedlings have reduced hypocotyl elongation. However, smxl2 has little or no effect on seed germination, leaf shape, or petiole orientation, which appear to be predominantly controlled by SMAX1. Neither SMAX1 nor SMXL2 affect axillary branching or inflorescence height, traits that are under SL control. These data support the model that karrikin and strigolactone responses are mediated by distinct subclades of the SMXL family, and further the case for parallel butenolide signaling pathways that evolved through ancient KAI2 and SMXL duplications.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/fisiología , Plantones/metabolismo , Transducción de Señal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Germinación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Lactonas/metabolismo , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/crecimiento & desarrollo
13.
Planta ; 243(6): 1419-27, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26919985

RESUMEN

MAIN CONCLUSION: MAX2/strigolactone signaling in the endodermis and/or quiescent center of the root is partially sufficient to exert changes in F-actin density and cellular trafficking in the root epidermis, and alter gene expression during plant response to low Pi conditions. Strigolactones (SLs) are a new group of plant hormones that regulate different developmental processes in the plant via MAX2, an F-box protein that interacts with their receptor. SLs and MAX2 are necessary for the marked increase in root-hair (RH) density in seedlings under conditions of phosphate (Pi) deprivation. This marked elevation was associated with an active reduction in actin-filament density and endosomal movement in root epidermal cells. Also, expression of MAX2 under the SCARECROW (SCR) promoter was sufficient to confer SL sensitivity in roots, suggesting that SL signaling pathways act through a root-specific, yet non-cell-autonomous regulatory mode of action. Here we show evidence for a non-cell autonomous signaling of SL/MAX2, originating from the root endodermis, and necessary for seedling response to conditions of Pi deprivation. SCR-derived expression of MAX2 in max2-1 mutant background promoted the root low Pi response, whereas supplementation of the synthetic SL GR24 to these SCR:MAX2 expressing lines further enhanced this response. Moreover, the SCR:MAX2 expression led to changes in actin density and endosome movement in epidermal cells and in TIR1 and PHO2 gene expression. These results demonstrate that MAX2 signaling in the endodermis and/or quiescent center is partially sufficient to exert changes in F-actin density and cellular trafficking in the epidermis, and alter gene expression under low Pi conditions.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas Portadoras/fisiología , Lactonas/metabolismo , Fosfatos/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal
14.
Cancer ; 121(17): 2984-92, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26033177

RESUMEN

BACKGROUND: The National Cancer Institute's Common Terminology Criteria for Adverse Events (CTCAE) and adjustment rules after severe toxicity are derived by consensus, but to the authors' knowledge little is known regarding the determinants of toxicity recurrence, especially in the elderly. METHODS: The authors prospectively accrued 200 patients (aged ≥65 years) before chemotherapy. For those with CTCAE grade 3 to 4 nonhematologic or CTCAE grade 4 hematologic toxicities (severe toxicity), the duration and functional impact, treatment modifications, and severe toxicity recurrence were recorded. The regimen's toxicity was adjusted with the MAX2 index, the average of the most frequent grade 4 hematologic toxicities and the most frequent grade 3 to 4 nonhematologic toxicities reported in publications of a regimen. RESULTS: The median patient age was 73 years (range, 65-90 years). Among 163 patients who were evaluable for toxicity after ≥1 treatment cycle (receiving on average 4.73 cycles), 82 had severe toxicity, 10 were discontinued for toxicity, 6 were discontinued for other reasons, and 5 patients had died. Sixty-one patients received further chemotherapy: 41 without dose modification (16 with secondary prevention measures) and 20 with dose modifications. Without modification, 19 patients (46%) experienced toxicity recurrence (0 deaths). With modification, 7 patients (35%) experienced a toxicity recurrence (1 death). On univariate analysis, treatment intent, hospitalization, duration-adjusted activities of daily living (ADL), quality of life impact, and fatigue were associated with dose modification. ADL remained associated on multivariate analysis (P = .02). On univariate analysis for toxicity recurrence, Eastern Cooperative Oncology Group performance status and MAX2 score demonstrated an association, with only the latter found to remain statistically significant on multivariate analysis (P = .04). CONCLUSIONS: If a severe toxicity does not have a long duration of impact on ADL, oncologists are less inclined to modify treatment. With proper supportive measures, this leads to recurrence risks similar to those shown in patients with modified treatment, with low risks of toxic deaths overall.


Asunto(s)
Antineoplásicos/efectos adversos , Neutropenia/inducido químicamente , Anciano , Anciano de 80 o más Años , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Neoplasias Gastrointestinales/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Neutropenia/prevención & control , Estudios Prospectivos , Recurrencia , Factores de Riesgo
15.
New Phytol ; 202(2): 531-541, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24483232

RESUMEN

Seed germination of Striga spp. (witchweeds), one of the world's most destructive parasitic weeds, cannot be induced by light but is specifically induced by strigolactones. It is not known whether Striga uses the same components for strigolactone signaling as host plants, whether it has endogenous strigolactone biosynthesis and whether there is post-germination strigolactone signaling in Striga. Strigolactones could not be detected in in vitro grown Striga, while for host-grown Striga, the strigolactone profile is dominated by a subset of the strigolactones present in the host. Branching of in vitro grown Striga is affected by strigolactone biosynthesis inhibitors. ShMAX2, the Striga ortholog of Arabidopsis MORE AXILLARY BRANCHING 2 (AtMAX2) - which mediates strigolactone signaling - complements several of the Arabidopsis max2-1 phenotypes, including the root and shoot phenotype, the High Irradiance Response and the response to strigolactones. Seed germination of max2-1 complemented with ShMAX2 showed no complementation of the Very Low Fluence Response phenotype of max2-1. Results provide indirect evidence for ShMAX2 functions in Striga. A putative role of ShMAX2 in strigolactone-dependent seed germination of Striga is discussed.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Portadoras/genética , Germinación/genética , Lactonas/metabolismo , Tallos de la Planta/metabolismo , Semillas/metabolismo , Striga/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Genes de Plantas , Luz , Mutación , Fenotipo , Raíces de Plantas , Brotes de la Planta , Tallos de la Planta/crecimiento & desarrollo , Malezas , Semillas/crecimiento & desarrollo , Transducción de Señal , Striga/crecimiento & desarrollo , Striga/metabolismo
16.
New Phytol ; 202(4): 1184-1196, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24571327

RESUMEN

Strigolactones (SLs) are plant hormones that regulate shoot and root development in a MAX2-dependent manner. The mechanism underlying SLs' effects on roots is unclear. We used root hair elongation to measure root response to SLs. We examined the effects of GR24 (a synthetic, biologically active SL analog) on localization of the auxin efflux transporter PIN2, endosomal trafficking, and F-actin architecture and dynamics in the plasma membrane (PM) of epidermal cells of the primary root elongation zone in wildtype (WT) Arabidopsis and the SL-insensitive mutant max2. We also recorded the response to GR24 of trafficking (tir3), actin (der1) and PIN2 (eir1) mutants. GR24 increased polar localization of PIN2 in the PM of epidermal cells and accumulation of PIN2-containing brefeldin A (BFA) bodies, increased ARA7-labeled endosomal trafficking, reduced F-actin bundling and enhanced actin dynamics, all in a MAX2-dependent manner. Most of the der1 and tir3 mutant lines also displayed reduced sensitivity to GR24 with respect to root hair elongation. We suggest that SLs increase PIN2 polar localization, PIN2 endocytosis, endosomal trafficking, actin debundling and actin dynamics in a MAX2-dependent fashion. This enhancement might underlie the WT root's response to SLs, and suggests noncell autonomous activity of SLs in roots.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Citoesqueleto de Actina/genética , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Genes Reporteros , Mutación , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión
17.
Plants (Basel) ; 12(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36679126

RESUMEN

The root system is formed by the primary root (PR), which forms lateral roots (LRs) and, in some cases, adventitious roots (ARs), which in turn may produce their own LRs. The formation of ARs is also essential for vegetative propagation in planta and in vitro and for breeding programs. Root formation and branching is coordinated by a complex developmental network, which maximizes the plant's ability to cope with abiotic stress. Rooting is also a response caused in a cutting by wounding and disconnection from the donor plant. Brassinosteroids (BRs) are steroid molecules perceived at the cell surface. They act as plant-growth-regulators (PGRs) and modulate plant development to provide stress tolerance. BRs and auxins control the formation of LRs and ARs. The auxin/BR interaction involves other PGRs and compounds, such as nitric oxide (NO), strigolactones (SLs), and sphingolipids (SPLs). The roles of these interactions in root formation and plasticity are still to be discovered. SLs are carotenoid derived PGRs. SLs enhance/reduce LR/AR formation depending on species and culture conditions. These PGRs possibly crosstalk with BRs. SPLs form domains with sterols within cellular membranes. Both SLs and SPLs participate in plant development and stress responses. SPLs are determinant for auxin cell-trafficking, which is essential for the formation of LRs/ARs in planta and in in vitro systems. Although little is known about the transport, trafficking, and signaling of SPLs, they seem to interact with BRs and SLs in regulating root-system growth. Here, we review the literature on BRs as modulators of LR and AR formation, as well as their crosstalk with SLs and SPLs through NO signaling. Knowledge on the control of rooting by these non-classical PGRs can help in improving crop productivity and enhancing AR-response from cuttings.

18.
Front Plant Sci ; 12: 747160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858455

RESUMEN

Strigolactones (SLs) are a class of important plant hormones mainly regulating plant architecture such as branching, which is crucial for crop yield. It is valuable to study SL signaling pathway and its physiological function in sugarcane, the most important sugar crop, for further molecular breeding. Here, two putative SL receptors SsD14a/b and the interacting F-box protein SsMAX2 were identified in Saccharum spontaneum. SL induced both SsD14a and SsD14b to interact with SsMAX2 in yeast. SsD14a, but not SsD14b, could bind with AtMAX2 and AtSMXL7/SsSMXL7. Overexpression of SsD14a or SsMAX2 rescued the increased branching phenotypes of Arabidopsis thaliana d14-1 or max2-3 mutants, respectively. Moreover, the crystal structure of N-terminal truncated SsD14a was solved, with an overall structure identical to AtD14 and OsD14 in the open state, consistent with its conserved branching suppression capacity in Arabidopsis. In line with the biochemical observations, SsD14b could not completely complement in d14-1 although these two SsD14 proteins have almost identical primary sequences except for very few residues. Complement with the combination of SsD14b and SsMAX2 still failed to rescue the d14-1 max2-3 double mutant multi-branching phenotype, indicating SsD14b-AtSMXL7 complex formation is required for regulating branching. Mutagenesis analyses revealed that residue R310 at α10 helix of SsD14a was crucial for the binding with SsSMXL7/AtSMXL7 but not SsMAX2. The site-equivalent single-residue P304R substitution enabled SsD14b to bind with AtMAX2 and AtSMXL7/SsSMXL7 and to rescue the phenotype of d14-1 max2-3 together with SsMAX2. Moreover, this conserved Arg residue across species including rice and Arabidopsis determined the activity of SL receptors through maintaining their interaction with SMXL repressors. Taken together, our work identified conserved and divergent strigolactone receptors in sugarcane core SL signaling pathway and revealed a key residue crucial for plant branching control.

19.
Front Plant Sci ; 12: 675981, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305975

RESUMEN

Strigolactones are plant hormones regulating cytoskeleton-mediated developmental events in roots, such as lateral root formation and elongation of root hairs and hypocotyls. The latter process was addressed herein by the exogenous application of a synthetic strigolactone, GR24, and an inhibitor of strigolactone biosynthesis, TIS108, on hypocotyls of wild-type Arabidopsis and a strigolactone signaling mutant max2-1 (more axillary growth 2-1). Owing to the interdependence between light and strigolactone signaling, the present work was extended to seedlings grown under a standard light/dark regime, or under continuous darkness. Given the essential role of the cortical microtubules in cell elongation, their organization and dynamics were characterized under the conditions of altered strigolactone signaling using fluorescence microscopy methods with different spatiotemporal capacities, such as confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM). It was found that GR24-dependent inhibition of hypocotyl elongation correlated with changes in cortical microtubule organization and dynamics, observed in living wild-type and max2-1 seedlings stably expressing genetically encoded fluorescent molecular markers for microtubules. Quantitative assessment of microscopic datasets revealed that chemical and/or genetic manipulation of strigolactone signaling affected microtubule remodeling, especially under light conditions. The application of GR24 in dark conditions partially alleviated cytoskeletal rearrangement, suggesting a new mechanistic connection between cytoskeletal behavior and the light-dependence of strigolactone signaling.

20.
Plant Direct ; 4(2): e00206, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32128474

RESUMEN

Strigolactones are a group of phytohormones that control developmental processes including shoot branching and various plant-environment interactions in plants. We previously showed that the strigolactone perception mutant more axillary branches 2 (max2) has increased susceptibility to plant pathogenic bacteria. Here we show that both strigolactone biosynthesis (max3 and max4) and perception mutants (max2 and dwarf14) are significantly more sensitive to Pseudomonas syringae DC3000. Moreover, in response to P. syringae infection, high levels of SA accumulated in max2 and this mutant was ozone sensitive. Further analysis of gene expression revealed no major role for strigolactone in regulation of defense gene expression. In contrast, guard cell function was clearly impaired in max2 and depending on the assay used, also in max3, max4, and d14 mutants. We analyzed stomatal responses to stimuli that cause stomatal closure. While the response to abscisic acid (ABA) was not impaired in any of the mutants, the response to darkness and high CO2 was impaired in max2 and d14-1 mutants, and to CO2 also in strigolactone synthesis (max3, max4) mutants. To position the role of MAX2 in the guard cell signaling network, max2 was crossed with mutants defective in ABA biosynthesis or signaling. This revealed that MAX2 acts in a signaling pathway that functions in parallel to the guard cell ABA signaling pathway. We propose that the impaired defense responses of max2 are related to higher stomatal conductance that allows increased entry of bacteria or air pollutants like ozone. Furthermore, as MAX2 appears to act in a specific branch of guard cell signaling (related to CO2 signaling), this protein could be one of the components that allow guard cells to distinguish between different environmental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA