Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 295(31): 10726-10740, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32532820

RESUMEN

Mediator complex subunit 16 (MED16) is a component of the mediator complex and functions as a coactivator in transcriptional events at almost all RNA polymerase II-dependent genes. In this study, we report that the expression of MED16 is markedly decreased in papillary thyroid cancer (PTC) tumors compared with normal thyroid tissues. In vitro, MED16 overexpression in PTC cells significantly inhibited cell migration, enhanced sodium/iodide symporter expression and iodine uptake, and decreased resistance to radioactive 131I (RAI). Conversely, PTC cells in which MED16 had been further knocked down (MED16KD) exhibited enhanced cell migration, epithelial-mesenchymal transition, and RAI resistance, accompanied by decreased sodium/iodide symporter levels. Moreover, cell signaling through transforming growth factor ß (TGF-ß) was highly activated after the MED16 knockdown. Similar results were obtained in MED12KD PTC cells, and a co-immunoprecipitation experiment verified interactions between MED16 and MED12 and between MED16 and TGF-ßR2. Of note, the application of LY2157299, a potent inhibitor of TGF-ß signaling, significantly attenuated MED16KD-induced RAI resistance both in vitro and in vivo In conclusion, our findings indicate that MED16 reduction in PTC contributes to tumor progression and RAI resistance via the activation of the TGF-ß pathway.


Asunto(s)
Radioisótopos de Yodo/farmacología , Complejo Mediador/metabolismo , Proteínas de Neoplasias/metabolismo , Tolerancia a Radiación , Transducción de Señal , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Complejo Mediador/genética , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/radioterapia , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/radioterapia
2.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298953

RESUMEN

A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using Pantoea agglomerans strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative sequence analysis revealed that 26 of these ORFs code for unique proteins that have no reliable identity when compared to database entries. Based on phylogenetic analysis, MED16 represents a new genus with siphovirus morphology. In total, 35 MED16 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a gene encoding a preQ0 DNA deoxyribosyltransferase (DpdA) is present in the genome of MED16 and the LC-MS/MS analysis indicates 2'-deoxy-7-amido-7-deazaguanosine (dADG)-modified phage DNA, which, to our knowledge, has never been experimentally validated in genomes of Pantoea phages. Thus, the data presented in this study provide new information on Pantoea-infecting viruses and offer novel insights into the diversity of DNA modifications in bacteriophages.


Asunto(s)
ADN Viral , Genoma Viral , Guanosina , Sistemas de Lectura Abierta , Pantoea/virología , Siphoviridae , Proteínas Virales , ADN Viral/genética , ADN Viral/metabolismo , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
J Integr Plant Biol ; 63(4): 802-815, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33369119

RESUMEN

MED25 has been implicated as a negative regulator of the abscisic acid (ABA) signaling pathway. However, it is unclear whether other Mediator subunits could associate with MED25 to participate in the ABA response. Here, we used affinity purification followed by mass spectrometry to uncover Mediator subunits that associate with MED25 in transgenic plants. We found that at least 26 Mediator subunits, belonging to the head, middle, tail, and CDK8 kinase modules, were co-purified with MED25 in vivo. Interestingly, the tail module subunit MED16 was identified to associate with MED25 under both mock and ABA treatments. We further showed that the disruption of MED16 led to reduced ABA sensitivity compared to the wild type. Transcriptomic analysis revealed that the expression of several ABA-responsive genes was significantly lower in med16 than those in wild type. Furthermore, we discovered that MED16 may possibly compete with MED25 to interact with the key transcription factor ABA INSENSITIVE 5 (ABI5) to positively regulate ABA signaling. Consistently, med16 and med25 mutants displayed opposite phenotypes in ABA response, cuticle permeability, and differential ABI5-mediated EM1 and EM6 expression. Together, our data indicate that MED16 and MED25 differentially regulate ABA signaling by antagonistically affecting ABI5-mediated transcription in Arabidopsis.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Transactivadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Fenotipo , Transducción de Señal/efectos de los fármacos , Transactivadores/genética
4.
Plant J ; 77(6): 838-51, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24456400

RESUMEN

Iron is an essential micronutrient for plants and animals, and plants are a major source of iron for humans. Therefore, understanding the regulation of iron homeostasis in plants is critical. We identified a T-DNA insertion mutant, yellow and sensitive to iron-deficiency 1 (yid1), that was hypersensitive to iron deficiency, containing a reduced amount of iron. YID1 encodes the Arabidopsis Mediator complex subunit MED16. We demonstrated that YID1/MED16 interacted with another subunit, MED25. MED25 played an important role in regulation of iron homeostasis by interacting with EIN3 and EIL1, two transcription factors in ethylene signaling associated with regulation of iron homeostasis. We found that the transcriptome in yid1 and med25 mutants was significantly affected by iron deficiency. In particular, the transcription levels of FIT, IRT1 and FRO2 were reduced in the yid1 and med25 mutants under iron-deficient conditions. The finding that YID1/MED16 and MED25 positively regulate iron homeostasis in Arabidopsis increases our understanding of the complex transcriptional regulation of iron homeostasis in plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN , Homeostasis , Hierro/análisis , Modelos Biológicos , Mutagénesis Insercional , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Técnicas del Sistema de Dos Híbridos
5.
Life (Basel) ; 12(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36294896

RESUMEN

Recent studies have shown that the mediator complex (MED) plays a vital role in tumorigenesis and development, but the role of MED16 (mediator complex subunit 16) in breast cancer (BC) is not clear. Increasing evidence has shown that the mTOR pathway is important for tumour progression and therapy. In this study, we demonstrated that the mTOR signalling pathway is regulated by the expression level of MED16 in ER+ breast cancer. With the analysis of bioinformatics data and clinical specimens, we revealed an elevated expression of MED16 in luminal subtype tumours. We found that MED16 knockdown significantly inhibited cell proliferation and promoted G1 phase cell cycle arrest in ER+ BC cell lines. Downregulation of MED16 markedly reduced the sensitivity of ER+ BC cells to tamoxifen and increased the stemness and autophagy of ER+ BC cells. Bioinformatic analysis of similar genes to MED16 were mainly enriched in autophagy, endocrine therapy and mTOR signalling pathways, and the inhibition of mTOR-mediated autophagy restored sensitivity to tamoxifen by MED16 downregulation in ER+ BC cells. These results suggest an important role of MED16 in the regulation of tamoxifen sensitivity in ER+ BC cells, crosstalk between the mTOR signalling pathway-induced autophagy, and together, with the exploration of tamoxifen resistance, may indicate a new therapy option for endocrine therapy-resistant patients.

6.
Front Plant Sci ; 12: 649720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777083

RESUMEN

The Mediator complex controls transcription of most eukaryotic genes with individual subunits required for the control of particular gene regulons in response to various perturbations. In this study, we reveal the roles of the plant Mediator subunits MED16, MED14, and MED2 in regulating transcription in response to the phytohormone abscisic acid (ABA) and we determine which cis elements are under their control. Using synthetic promoter reporters we established an effective system for testing relationships between subunits and specific cis-acting motifs in protoplasts. Our results demonstrate that MED16, MED14, and MED2 are required for the full transcriptional activation by ABA of promoters containing both the ABRE (ABA-responsive element) and DRE (drought-responsive element). Using synthetic promoter motif concatamers, we showed that ABA-responsive activation of the ABRE but not the DRE motif was dependent on these three Mediator subunits. Furthermore, the three subunits were required for the control of water loss from leaves but played no role in ABA-dependent growth inhibition, highlighting specificity in their functions. Our results identify new roles for three Mediator subunits, provide a direct demonstration of their function and highlight that our experimental approach can be utilized to identify the function of subunits of plant transcriptional regulators.

7.
Front Plant Sci ; 7: 1947, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066497

RESUMEN

Mediator is a highly conserved protein complex that functions as a transcriptional coactivator in RNA polymerase II (RNAPII)-mediated transcription. The Arabidopsis Mediator complex has recently been implicated in plant immune responses. Here, we compared salicylic acid (SA)-, methyl jasmonate (MeJA)-, and the ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-induced defense and/or wound-responsive gene expression in 14 Arabidopsis Mediator subunit mutants. Our results show that MED14, MED15, and MED16 are required for SA-activated expression of the defense marker gene PATHOEGNESIS-RELATED GENE1, MED25 is required for MeJA-induced expression of the wound-responsive marker gene VEGATATIVE STORAGE PROTEIN1 (VSP1), MED8, MED14, MED15, MED16, MED18, MED20a, MED25, MED31, and MED33A/B (MED33a and MED33B) are required for MeJA-induced expression of the defense maker gene PLANT DEFENSIN1.2 (PDF1.2), and MED8, MED14, MED15, MED16, MED25, and MED33A/B are also required for ACC-triggered expression of PDF1.2. Furthermore, we investigated the involvement of MED14, MED15, and MED16 in plant defense signaling crosstalk and found that MED14, MED15, and MED16 are required for SA- and ET-mediated suppression of MeJA-induced VSP1 expression. This result suggests that MED14, MED15, and MED16 not only relay defense signaling from the SA and JA/ET defense pathways to the RNAPII transcription machinery, but also fine-tune defense signaling crosstalk. Finally, we show that MED33A/B contributes to the necrotrophic fungal pathogen Botrytis cinerea-induced expression of the defense genes PDF1.2, HEVEIN-LIKE, and BASIC CHITINASE and is required for full-scale basal resistance to B. cinerea, demonstrating a positive role for MED33 in plant immunity against necrotrophic fungal pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA