Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biogerontology ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748336

RESUMEN

An over-activation of the mechanistic target of rapamycin (mTOR) pathway promotes senescence and age-related diseases like type 2 diabetes. Besides, the regenerative potential of pancreatic islets deteriorates with aging. Nevertheless, the role of mTOR on senescence promoted by metabolic stress in islet cells as well as its relevance for electrophysiological aspects is not yet known. Here, we investigated whether parameters suggested to be indicative for senescence are induced in vitro in mouse islet cells by glucotoxicity and if mTOR inhibition plays a protective role against this. Islet cells exhibit a significant increase (~ 76%) in senescence-associated beta-galactosidase (SA-beta-gal) activity after exposure to glucotoxicity for 72 h. Glucotoxicity does not markedly influence p16INK4a protein within 72 h, but p16INK4a levels increase significantly after a 7-days incubation period. mTOR inhibition with a low rapamycin concentration (1 nM) entirely prevents the glucotoxicity-mediated increase of SA-beta-gal and p16INK4a. At the functional level, reactive oxygen species, calcium homeostasis, and electrical activity are disturbed by glucotoxicity, and rapamycin fails to prevent this. In contrast, rapamycin significantly attenuates the insulin hypersecretion promoted by glucotoxicity by modifying the mRNA levels of Vamp2 and Snap25 genes, related to insulin exocytosis. Our data indicate an influence of glucotoxicity on pancreatic islet-cell senescence and a reduction of the senescence markers by mTOR inhibition, which is relevant to preserve the regenerative potential of the islets. Decreasing the influence of mTOR on islet cells exposed to glucotoxicity attenuates insulin hypersecretion, but is not sufficient to prevent electrophysiological disturbances, indicating the involvement of mTOR-independent mechanisms.

2.
FASEB J ; 36(3): e22206, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35199385

RESUMEN

Previous work demonstrated that arginine is one of the strongest insulin secretagogues. However, knowledge of the mechanisms linking chronic arginine metabolism with ß-cell function and insulin secretion is relatively limited. After preliminary selection of concentration according to the cell proliferation, the MIN6 pancreatic ß-cells were randomly assigned to culture in 0.04 mM (low-arginine, LA), 0.4 mM (standard-arginine, SA), or 8 mM arginine (high-arginine, HA) for 24 h. Following the treatment, a combination of transcriptomics and metabolomics, together with a series of molecular biological tests were performed to investigate the responses of ß-cells to varied arginine availability. Our results showed that HA treatment reduced the chronic insulin releases, and LA and HA treatments decreased the glucose-stimulated insulin secretions (GSIS) of ß-cells relative to the SA group (p < .05). Transcriptomics analysis indicated that LA administration significantly inhibited oxidative phosphorylation and ATP metabolic process but promoted DNA repair and mRNA processing in ß-cells, while HA administration affected ammonium ion metabolic process and mRNA export (p < .05). Both LA and HA regulated the expressions of genes involved in DNA replication, cell-cycle phase transition, and response to oxidative stress (p < .05). Protein-protein interaction and transcription factor analyses suggested that Trp53 and Nr4a2 genes may play key roles during arginine stimulation. On the contrary, metabolomics analysis demonstrated that the differentially expressed metabolites (DEM) of MIN6 ß-cells induced by LA were mainly enriched in glycerophospholipid metabolism, linoleic acid metabolism, and purine metabolism, while most DEMs between LA vs. SA comparison belonged to amino acid metabolism. When combined the three groups, co-expression analysis suggested that insulin secretions had strong associations with L-pyroglutamic acid, L-glutamate, and creatine concentrations, while intracellular insulin contents were mainly correlated to L-arginine, argininosuccinic acid, and phosphorylcholine. At last, integrated analysis of transcriptomics and metabolomics showed that glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids, and amino acid metabolism were the most relevant pathways in ß-cells exposed to abnormal arginine supply. This descriptive bioinformatics analysis suggested that the disturbed carbohydrate, lipid, and amino acid metabolisms, as well as the increased apoptosis and elevated oxidative stress, contributed to the reduced insulin secretion and lower GSIS in ß-cells induced by LA or HA treatments, while some underlying mechanisms need to be further explored.


Asunto(s)
Arginina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Metaboloma , Transcriptoma , Animales , Arginina/deficiencia , Arginina/farmacología , Línea Celular Tumoral , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Ratones
3.
Cells Tissues Organs ; 212(3): 220-231, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35073554

RESUMEN

Despite various efficient pharmaceuticals which are already used to manage diabetes, new drugs are needed to preserve and restore the function of pancreatic ß-cells (pßCs) including cell-specific gene expression and insulin production and secretion. Newly developed small molecules (SMs) with potential anti-diabetic activity need to be preliminarily tested. Mice insulinoma MIN6 cells can be utilized as an in vitro screening model. These cells have pßC characteristics and can secrete insulin in response to glucose level changes. As well, the ß-cell-specific gene expression pattern of these cells is similar to that of mouse pancreatic islet cells. It is possible to use this cell line as a research tool to study the function of pßCs. To date, approximately 60 genes have been identified which are effective in the pßC embryonic development and insulin production and secretion during puberty, including pancreas/duodenum homeobox protein 1 (Pdx1), neuronal differentiation 1 (Neurod1), neurogenin3 (Ngn3), and insulin-1 precursor (Ins1). In this study, a family of new SMs that are structurally similar to glinides was synthesized through 3 different synthetic methods and categorized into 3 categories (C1-C3). Then, these novel SMs were characterized by testing their effects on cell viability, pßC-specific gene expression, and insulin secretion in MIN6 in 4 different concentrations and at 3 time points (24, 48, and 72 h). According to our results, SMs of C1 (1j, 1k, and 1l) and 2 SMs of C3 (1f, 1i), at 200 µM concentration, were able to increase the expression levels of Pdx1, Neurod1, Ngn3, and Ins1 as well as the insulin secretion after 24 h. However, C2 (1a, 1b, 1c, and 1d) did not show significant bioactivity of MIN6 cells. These investigated molecules can provide a tool for exploring pseudo-islet functionality in MIN6 cells or provide a possible basis for future therapeutic interventions for diabetes.


Asunto(s)
Células Secretoras de Insulina , Ratones , Animales , Secreción de Insulina , Insulina/genética , Insulina/metabolismo , Línea Celular , Expresión Génica , Glucosa/metabolismo , Glucosa/farmacología
4.
Cell Biol Int ; 47(4): 768-775, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36718083

RESUMEN

Ghrelin may have therapeutic value in mitigating insulin resistance and type 2 diabetes, based on which we further explore the action mechanism of ghrelin on islet cells in this research. In the course of experiments, MIN6 cells were induced by glucose and then treated with acylated or unacylated ghrelin. The effects of ghrelin on the viability, proliferation, apoptosis, and insulin release of high glucose-induced islet cells were detected by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, flow cytometry, and enzyme-linked immunosorbent assays, respectively. Meanwhile, cells were treated with LY294002 to explore whether and how the inhibited phosphoinositide 3-kinase-protein kinase B (PI3K-AKT) signaling pathway participated in the internal mechanism of ghrelin-regulating islet cells. Western blotting was performed to quantify the expression levels of Bcl-2, Bax, Cleaved caspase-3, PI3K, and AKT. As a result, ghrelin alleviated high glucose-induced suppression of viability and proliferation and promotion on apoptosis of MIN6 cells. Ghrelin also attenuated the inhibitory effects of high glucose on expression levels of PI3K-Akt signaling axis-related proteins and insulin release in MIN6 cells. Besides, ghrelin weakened the impacts of high glucose on boosting MIN6 cell apoptosis and hindering proliferation through the PI3K-Akt signaling axis. Collectively, ghrelin regulates the proliferation and apoptosis of high glucose-induced islet cells through the PI3K-Akt signaling pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ghrelina/metabolismo , Ghrelina/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Fosforilación , Transducción de Señal , Islotes Pancreáticos/metabolismo , Apoptosis , Insulina/metabolismo , Glucosa/metabolismo , Proliferación Celular
5.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901708

RESUMEN

Compared with diabetic patients with normal blood lipid, diabetic patients with dyslipidemia such as high triglycerides have a higher risk of clinical complications, and the disease is also more serious. For the subjects with hypertriglyceridemia, the lncRNAs affecting type 2 diabetes mellitus (T2DM) and the specific mechanisms remain unclear. Transcriptome sequencing was performed on peripheral blood samples of new-onset T2DM (six subjects) and normal blood control (six subjects) in hypertriglyceridemia patients using gene chip technology, and differentially expressed lncRNA profiles were constructed. Validated by the GEO database and RT-qPCR, lncRNA ENST00000462455.1 was selected. Subsequently, fluorescence in situ hybridization (FISH), real-time quantitative polymerase chain reaction (RT-qPCR), CCK-8 assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA) were used to observe the effect of ENST00000462455.1 on MIN6. When silencing the ENST00000462455.1 for MIN6 in high glucose and high fat, the relative cell survival rate and insulin secretion decreased, the apoptosis rate increased, and the expression of the transcription factors Ins1, Pdx-1, Glut2, FoxO1, and ETS1 that maintained the function and activity of pancreatic ß cells decreased (p < 0.05). In addition, we found that ENST00000462455.1/miR-204-3p/CACNA1C could be the core regulatory axis by using bioinformatics methods. Therefore, ENST00000462455.1 was a potential biomarker for hypertriglyceridemia patients with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertrigliceridemia , Células Secretoras de Insulina , MicroARNs , ARN Largo no Codificante , Humanos , Diabetes Mellitus Tipo 2/metabolismo , ARN Largo no Codificante/genética , Hibridación Fluorescente in Situ , Células Secretoras de Insulina/metabolismo , Hipertrigliceridemia/metabolismo , MicroARNs/genética
6.
Diabetologia ; 65(10): 1721-1733, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35802167

RESUMEN

AIMS/HYPOTHESIS: The general population is ageing, involving an enhanced incidence of chronic diseases such as type 2 diabetes. With ageing, DNA methylation of FHL2 increases, as well as expression of the four and a half LIM domains 2 (FHL2) protein in human pancreatic islets. We hypothesised that FHL2 is actively involved in glucose metabolism. METHODS: Publicly available microarray datasets from human pancreatic islets were analysed for FHL2 expression. In FHL2-deficient mice, we studied glucose clearance and insulin secretion. Gene expression analysis and glucose-stimulated insulin secretion (GSIS) were determined in isolated murine FHL2-deficient islets to evaluate insulin-secretory capacity. Moreover, knockdown and overexpression of FHL2 were accomplished in MIN6 cells to delineate the underlying mechanism of FHL2 function. RESULTS: Transcriptomics of human pancreatic islets revealed that individuals with elevated levels of HbA1c displayed increased FHL2 expression, which correlated negatively with insulin secretion pathways. In line with this observation, FHL2-deficient mice cleared glucose more efficiently than wild-type littermates through increased plasma insulin levels. Insulin sensitivity was comparable between these genotypes. Interestingly, pancreatic islets isolated from FHL2-deficient mice secreted more insulin in GSIS assays than wild-type mouse islets even though insulin content and islet size was similar. To support this observation, we demonstrated increased expression of the transcription factor crucial in insulin secretion, MAF BZIP transcription factor A (MafA), higher expression of GLUT2 and reduced expression of the adverse factor c-Jun in FHL2-deficient islets. The underlying mechanism of FHL2 was further delineated in MIN6 cells. FHL2-knockdown led to enhanced activation of forkhead box protein O1 (FOXO1) and its downstream genes such as Mafa and Pdx1 (encoding pancreatic and duodenal homeobox 1), as well as increased glucose uptake. On the other hand, FHL2 overexpression in MIN6 cells blocked GSIS, increased the formation of reactive oxygen species and increased c-Jun activity. CONCLUSIONS/INTERPRETATION: Our data demonstrate that FHL2 deficiency improves insulin secretion from beta cells and improves glucose tolerance in mice. Given that FHL2 expression in humans increases with age and that high expression levels of FHL2 are associated with beta cell dysfunction, we propose that enhanced FHL2 expression in elderly individuals contributes to glucose intolerance and the development of type 2 diabetes. DATA AVAILABILITY: The human islet microarray datasets used are publicly available and can be found on https://www.ncbi.nlm.nih.gov/geo/ .


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Anciano , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas con Homeodominio LIM/genética , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo
7.
J Biol Chem ; 296: 100159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33277360

RESUMEN

Synaptotagmin-like protein 4 (Slp-4), also known as granuphilin, is a Rab effector responsible for docking secretory vesicles to the plasma membrane before exocytosis. Slp-4 binds vesicular Rab proteins via an N-terminal Slp homology domain, interacts with plasma membrane SNARE complex proteins via a central linker region, and contains tandem C-terminal C2 domains (C2A and C2B) with affinity for phosphatidylinositol-(4,5)-bisphosphate (PIP2). The Slp-4 C2A domain binds with low nanomolar apparent affinity to PIP2 in lipid vesicles that also contain background anionic lipids such as phosphatidylserine but much weaker when either the background anionic lipids or PIP2 is removed. Through computational and experimental approaches, we show that this high-affinity membrane binding arises from concerted interaction at multiple sites on the C2A domain. In addition to a conserved PIP2-selective lysine cluster, a larger cationic surface surrounding the cluster contributes substantially to the affinity for physiologically relevant lipid compositions. Although the K398A mutation in the lysine cluster blocks PIP2 binding, this mutated protein domain retains the ability to bind physiological membranes in both a liposome-binding assay and MIN6 cells. Molecular dynamics simulations indicate several conformationally flexible loops that contribute to the nonspecific cationic surface. We also identify and characterize a covalently modified variant that arises through reactivity of the PIP2-binding lysine cluster with endogenous bacterial compounds and binds weakly to membranes. Overall, multivalent lipid binding by the Slp-4 C2A domain provides selective recognition and high-affinity docking of large dense core secretory vesicles to the plasma membrane.


Asunto(s)
Colesterol/química , Liposomas/química , Fosfatidilcolinas/química , Fosfatidilinositol 4,5-Difosfato/química , Proteínas de Transporte Vesicular/química , Animales , Sitios de Unión , Línea Celular Tumoral , Colesterol/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
8.
J Cell Physiol ; 237(1): 532-550, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34224584

RESUMEN

Fetuin-A, a hepato-adipokine, is associated with lipid-mediated islet inflammation and inflicts ß-cell death but the underlying mechanisms are still unclear. In an earlier report, it was shown that fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand of toll like receptor 4. Recently, we have also reported that ß-cells secrete fetuin-A on stimulation by palmitate causing ß-cell dysfunction. The aim of this study was twofold: (a) screening the role of fetuin-A in survival of murine ß-cells, and (b) to validate the effect of fetuin-A release and lipid induced apoptosis in mouse insulinoma cell line MIN6. Excess of lipid and fetuin-A in circulation induced significant deterioration of islet histoarchitecture and impeded insulin secretion by 2.7 ± 0.5-folds in 20 weeks high fat diet mice. Administration of fetuin-A (0.7 mg/g) along with 4 weeks of HFD produced similar results as 20 weeks of high fat feeding. Treating high doses of palmitate alone (0.50 mM) as well as in combination with fetuin-A (100 µg/ml) for 24 h inflicted apoptosis in MIN6 through the mitochondrial pathway. Knockdown of fetuin-A gene partially inhibited palmitate inflicted apoptosis in MIN6 by 1.83 ± 0.25 times, however, fetuin-A when added in the medium caused re-emergence of apoptosis. Notably, apoptosis induced by palmitate conditioned media from MIN6, 3T3L1, and HepG2, was partially inhibited in fetuin-A KD MIN6. These results confirmed the critical role of circulatory fetuin-A and ß-cell secreted fetuin-A in ß-cell dysfunction and apoptosis under hyperlipidemic conditions.


Asunto(s)
Células Secretoras de Insulina , alfa-2-Glicoproteína-HS , Animales , Apoptosis , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Palmitatos/farmacología , alfa-2-Glicoproteína-HS/genética , alfa-2-Glicoproteína-HS/metabolismo
9.
Gen Comp Endocrinol ; 326: 114068, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35671834

RESUMEN

BACKGROUND: Reports in recent years have shown that pancreatic ß-cell pyroptosis represents a critical mechanism involved with the progressive failure of pancreatic function. Previous research from our laboratory has indicated that artemether can increase the number of cells in pancreatic islets of db/db mice. In this study, we further examined whether artesunate (ART) protects pancreatic ß-cells from the damage of streptozotocin (STZ) by inhibiting pyroptosis. MATERIALS AND METHODS: In vitro, MIN6 cells exposed to 1 mM STZ were treated with ART (0.8 or 1.6 µM). The effects of ART on STZ-treated cells were evaluated through CCK-8 assay, flow cytometry and western blot, and further compared the effects of ART with the NLRP3 inhibitor, Mcc950 upon pyroptosis pathway proteins using western blot. In vivo, Male C57 mice were administered with a single intraperitoneal injection of STZ, and those with confirmed diabetes mellitus were given ART (0.5 or 1.0 mg/ml in drinking water) for 18 days. The effects of ART on STZ-induced diabetes were assessed by the observation of the general situation, glucose tolerance test, hematoxylin-eosin (HE) staining and immunohistochemistry. RESULTS: In MIN6 cells treated with STZ, we found that ART increased cell viability, decreased the number of late apoptotic cells (including pyroptosis cells) and inhibited the expression of proteins associated with the pyroptosis pathway. In STZ-induced animal model, the administration of ART reduced blood glucose levels, improved the consumption status within this diabetic mouse model and inhibited the expression of proteins include in the pyroptosis pathway in mice pancreats. CONCLUSIONS: Inhibition of pyroptosis may be a critical mechanism through which artesunate exerts protective effects upon pancreatic ß cells.


Asunto(s)
Artesunato , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animales , Artesunato/efectos adversos , Artesunato/farmacología , Caspasa 1/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Estreptozocina
10.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293194

RESUMEN

Mitochondrial dynamics and bioenergetics are central to glucose-stimulated insulin secretion by pancreatic beta cells. Previously, we demonstrated that a disturbance in glucose-invoked fission impairs insulin secretion by compromising glucose catabolism. Here, we investigated whether the overexpression of mitochondrial fission regulator Drp1 in MIN6 cells can improve or rescue insulin secretion. Although Drp1 overexpression slightly improves the triggering mechanism of insulin secretion of the Drp1-knockdown cells and has no adverse effects on mitochondrial metabolism in wildtype MIN6 cells, the constitutive presence of Drp1 unexpectedly impairs insulin content, which leads to a reduction in the absolute values of secreted insulin. Coherent with previous studies in Drp1-overexpressing muscle cells, we found that the upregulation of ER stress-related genes (BiP, Chop, and Hsp60) possibly impacts insulin production in MIN6 cells. Collectively, we confirm the important role of Drp1 for the energy-coupling of insulin secretion but unravel off-targets effects by Drp1 overexpression on insulin content that warrant caution when manipulating Drp1 in disease therapy.


Asunto(s)
Células Secretoras de Insulina , Insulina , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Dinámicas Mitocondriales/genética , Glucosa/metabolismo , Insulina Regular Humana
11.
Mol Biol Rep ; 48(2): 1659-1665, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33566227

RESUMEN

This study, using the MIN6 cell line, examines the effect of glucocorticoids (GCs) on the expression and protein levels of endoplasmic reticulum stress (ERS) related genes. Furthermore, we evaluated the protective role of 4-phenylbutyric acid (4-PBA) on the aforesaid GCs induced changes. Pancreatic islet MIN6 cells were treated with dexamethasone (DEX) at distinct concentrations (0.1 µmol/L and 0.5 µmol/L) for different periods (1 h, 4 h, 12 h, and 24 h). The mRNA and protein levels of ERS related genes were measured using real-time qPCR (qRT-PCR) and western blotting. Similar evaluations were also carried out for the cells treated with 4-PBA combined with DEX. Upon DEX intervention which induces the unfolded protein response (UPR), the expression levels of BIP, ATF6, IRE1, and PERK increased in the MIN6 cells, both in concentration and time-dependent manner. Similarly, ERS associated gene CHOP, which is involved in the apoptotic pathway, also showed increased levels both in concentration and time-dependent manner. However, treatment with 4-PBA decreased the expression levels of ERS related proteins. Quantitative analysis found that all these results were statistically significant (P < 0.05). GCs markedly activates the ERS in the MIN6 cell line in vitro, however, this effect can be significantly alleviated upon treatment with 4-PBA.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucocorticoides/farmacología , Islotes Pancreáticos/efectos de los fármacos , Fenilbutiratos/farmacología , Factor de Transcripción Activador 6/genética , Apoptosis/efectos de los fármacos , Línea Celular , Dexametasona/farmacología , Endorribonucleasas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/toxicidad , Humanos , Islotes Pancreáticos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , Transducción de Señal/efectos de los fármacos , Factor de Transcripción CHOP/genética , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , eIF-2 Quinasa/genética
12.
J Endocrinol Invest ; 44(9): 1897-1904, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33486704

RESUMEN

BACKGROUND: High-density lipoprotein (HDL) is considered a complex plasma-circulating particle with subfractions that vary in function, size, and chemical composition. We sought to test the effects of HDL, and HDL subfractions on insulin secretion and cholesterol efflux in the ß-cell line MIN-6. METHODS: We used total HDL and HDL subfractions 2a, 2b, 3a, 3b, and 3c, isolated from human plasma, to test insulin secretion under different glucose concentrations as well as insulin content and cholesterol efflux in the insulinoma MIN-6 cell line. RESULTS: Incubation of MIN-6 cells with low glucose and total HDL increased insulin release two-fold. Meanwhile, when high glucose and HDL were used, insulin release increased more than five times. HDL subfractions 2a, 2b, 3a, 3b, and 3c elicited higher insulin secretion and cholesterol efflux than their respective controls, at both low and high glucose concentrations. The insulin content of the MIN-6 cells incubated with low glucose and any of the five HDL subclasses had a modest reduction compared with their controls. However, there were no statistically significant differences between each HDL subfraction on their capacity of eliciting insulin secretion, insulin content, or cholesterol efflux. CONCLUSIONS: HDL can trigger insulin secretion under low, normal, and high glucose conditions. We found that all HDL subfractions exhibit very similar capacity to increase insulin secretion and cholesterol efflux. This is the first report demonstrating that HDL subfractions act both as insulin secretagogues (under low glucose) and insulin secretion enhancers (under high glucose) in the MIN-6 cell line.


Asunto(s)
Colesterol/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Lipoproteínas HDL/sangre , Adulto , Animales , Línea Celular Tumoral , Femenino , Glucosa/farmacología , Humanos , Masculino , Ratones , Persona de Mediana Edad
13.
Acta Biochim Biophys Sin (Shanghai) ; 53(1): 46-53, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33242093

RESUMEN

Endoplasmic reticulum (ER) stress plays a critical role in pancreatic ß cell destruction which leads to the pathogenesis of type 1 diabetes mellitus (T1DM). Vitamin D (VD) has been reported to reduce the risk of T1DM; however, it remains unknown whether VD affects ER stress in pancreatic ß cells. In this study, we investigated the role of the active form of VD, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], in ER stress-induced ß cell apoptosis and explored its potential mechanism in mouse insulinoma cell line mouse insulinoma 6 (MIN6). The results of cell counting kit-8 (CCK8) and flow cytometric analyses showed that 1,25-(OH)2D3 caused a significant increase in the viability of MIN6 cells injured by H2O2. The protein kinase like ER kinase (PERK) signal pathway, one of the most conserved branches of ER stress, was found to be involved in this process. H2O2 activated the phosphorylation of PERK, upregulated the activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, and subsequently initiated cell apoptosis, which were significantly reversed by 1,25-(OH)2D3 pretreatment. In addition, GSK2606414, a specific inhibitor of PERK, suppressed PERK phosphorylation and reduced the expressions of ATF4 and CHOP, leading to a significant decrease in ß cell apoptosis induced by H2O2. Taken together, the present findings firstly demonstrated that 1,25-(OH)2D3 could prevent MIN6 cells against ER stress-associated apoptosis by inhibiting the PERK-ATF4-CHOP pathway. Therefore, our results suggested that 1,25-(OH)2D3 might serve as a potential therapeutic target for preventing pancreatic ß cell destruction in T1DM.


Asunto(s)
Factor de Transcripción Activador 4/antagonistas & inhibidores , Calcitriol/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Sustancias Protectoras/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Transcripción CHOP/antagonistas & inhibidores , eIF-2 Quinasa/antagonistas & inhibidores , Adenina/análogos & derivados , Adenina/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Indoles/farmacología , Células Secretoras de Insulina/citología , Ratones
14.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360548

RESUMEN

Keratin (K) 7 is an intermediate filament protein expressed in ducts and glands of simple epithelial organs and in urothelial tissues. In the pancreas, K7 is expressed in exocrine ducts, and apico-laterally in acinar cells. Here, we report K7 expression with K8 and K18 in the endocrine islets of Langerhans in mice. K7 filament formation in islet and MIN6 ß-cells is dependent on the presence and levels of K18. K18-knockout (K18‒/‒) mice have undetectable islet K7 and K8 proteins, while K7 and K18 are downregulated in K8‒/‒ islets. K7, akin to F-actin, is concentrated at the apical vertex of ß-cells in wild-type mice and along the lateral membrane, in addition to forming a fine cytoplasmic network. In K8‒/‒ ß-cells, apical K7 remains, but lateral keratin bundles are displaced and cytoplasmic filaments are scarce. Islet K7, rather than K8, is increased in K18 over-expressing mice and the K18-R90C mutation disrupts K7 filaments in mouse ß-cells and in MIN6 cells. Notably, islet K7 filament networks significantly increase and expand in the perinuclear regions when examined in the streptozotocin diabetes model. Hence, K7 represents a significant component of the murine islet keratin network and becomes markedly upregulated during experimental diabetes.


Asunto(s)
Diabetes Mellitus Experimental/patología , Células Secretoras de Insulina/patología , Queratina-18/metabolismo , Queratina-7/metabolismo , Queratina-8/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Regulación de la Expresión Génica , Células Secretoras de Insulina/metabolismo , Queratina-18/genética , Queratina-7/genética , Queratina-8/genética , Ratones , Ratones Noqueados , Regulación hacia Arriba
15.
Cell Struct Funct ; 45(2): 121-130, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32581155

RESUMEN

The activity of AMPA-type glutamate receptor is involved in insulin release from pancreatic ß-cells. However, the mechanism and dynamics that underlie AMPA receptor-mediated insulin release in ß-cells is largely unknown. Here, we show that AMPA induces internalization of glutamate receptor 2/3 (GluR2/3), AMPA receptor subtype, in the mouse ß-cell line MIN6. Immunofluorescence experiments showed that GluR2/3 appeared as fine dots that were distributed throughout MIN6 cells. Intracellular GluR2/3 co-localized with AP2 and clathrin, markers for clathrin-coated pits and vesicles. Immunoelectron microscopy revealed that GluR2/3 was also localized at plasma membrane. Surface biotinylation and immunofluorescence measurements showed that addition of AMPA caused an approximate 1.8-fold increase in GluR2/3 internalization under low-glucose conditions. Furthermore, internalized GluR2 largely co-localized with EEA1, an early endosome marker. In addition, GluR2/3 co-immunoprecipitated with cortactin, a F-actin binding protein. Depletion of cortactin by RNAi in MIN6 cells altered the intracellular distribution of GluR2/3, suggesting that cortactin is involved in internalization of GluR2/3 in MIN6 cells. Taken together, our results suggest that pancreatic ß-cells adjust the amount of AMPA-type GluR2/3 on the cell surface to regulate the receptive capability of the cell for glutamate.Key words: endocytosis, GluR2, AMPA, cortactin, MIN6.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Receptores AMPA/metabolismo , Línea Celular , Clatrina/genética , Clatrina/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Receptores AMPA/genética
16.
J Cell Biochem ; 121(1): 840-855, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31452250

RESUMEN

Pancreatic stellate cells (PSCs) secrete various factors, which can influence the ß-cell function. The identification of stellate cell infiltration into the islets in pancreatic diseases suggests possible existence of cross-talk between these cells. To elucidate the influence of PSCs on ß-cell function, mouse PSCs were cocultured with Min6 cells using the Transwell inserts. Glucose-stimulated insulin secretion from Min6 cells in response to PSCs was quantified by enzyme-linked immunosorbent assay and insulin gene expression was measured by quantitative polymerase chain reaction. Upon cytometric identification of IL6 in PSC culture supernatants, Min6 cells were cultured with IL6 to assess its influence on the insulin secretion and gene expression. PLC-IP3 pathway inhibitors were added in the cocultures, to determine the influence of PSC-secreted IL6 on Glucose-stimulated insulin secretion from Min6 cells. Increased insulin secretion with a concomitant decrease in total insulin content was noticed in PSC-cocultured Min6 cells. Although increased GSIS was noted from IL6-treated Min6 cells, no change in the total insulin content was noted. Coculture of Min6 cells with PSCs or their exposure to IL6 did not alter either the expression of ß-cell-specific genes or that of miRNA-375. PSC-cocultured Min6 cells, in the presence of PLC-IP3 pathway inhibitors (U73122, Neomycin, and Xestospongin C), did not revoke the observed increase in GSIS. In conclusion, the obtained results indicate that augmented insulin secretion from Min6 cells in response to PSC secretions is independent of IL6-mediated PLC-IP3 pathway.


Asunto(s)
Glucosa/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Interleucina-6/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Animales , Células Cultivadas , Técnicas de Cocultivo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Insulinoma/patología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células Estrelladas Pancreáticas/citología , Células Estrelladas Pancreáticas/efectos de los fármacos , Edulcorantes/farmacología
17.
Histochem Cell Biol ; 153(4): 279-285, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31901974

RESUMEN

Swelling of secretory vesicles is critical for the regulated release of intra-vesicular contents from cells during secretion. At the secretory vesicle membrane of the exocrine pancreas and neurons, GTP-binding G proteins, vH+-ATPase, potassium channels and AQP water channels, are among the players implicated in vesicle volume regulation. Here we report in the endocrine insulin-secreting MIN6 cells, the similar requirement of vH+-ATPase-mediated intracellular acidification on glucose-stimulated insulin release. MIN6 cells exposed to the vH+-ATPase inhibitor Bafilomycin A show decreased acidification of the cytosolic compartment that include insulin-carrying granules. Additionally, a loss of insulin granules near the cell plasma membrane following Bafilomycin A treatment, suggests impaired transport of insulin granules and consequent decrease in glucose-stimulated insulin secretion and accumulation of intracellular insulin. These results suggest that vH+-ATPase-mediated intracellular acidification is required for insulin secretion in beta cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Animales , Células Cultivadas , Glucosa/antagonistas & inhibidores , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Macrólidos/farmacología , Ratones
18.
J Appl Biomed ; 18(2-3): 70-79, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-34907728

RESUMEN

The aqueous extract of Cichorium intybus (CIE) leaves have shown the properties of protecting against pancreatic ß-cell damage by streptozotocin (STZ), but the molecular mechanisms of its protection are not completely elucidated yet. Our current study focuses on elucidating the mechanisms of these preventive effects of CIE in MIN6 cells and an in-vivo model of Wistar rats. CIE offers protection against STZ in MIN6 cells by reducing the pro-oxidants and increasing the activity of the antioxidant enzymes. In vitro results also indicated that CIE inhibited cytotoxicity, reduced Reactive oxygen species (ROS), maintained glucose-stimulated insulin secretion and reduced NF-κB p65 translocation into the nucleus. The group administered with a 250 mg/kg dose of CIE in vivo has shown an ability to maintain blood glucose level and also to preserve the number and morphology of pancreatic islets when compared to the diabetic group treated with STZ. Probably, active compounds like quercetin, rutin, and catechin present in CIE, preserve the integrity of pancreatic islets thereby protecting ß-cells from the adverse effects of STZ.


Asunto(s)
Cichorium intybus , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animales , Cichorium intybus/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/farmacología , Estreptozocina/toxicidad
19.
J Cell Physiol ; 234(11): 19852-19865, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30963563

RESUMEN

Wnt proteins act mainly as paracrine signals regulating cell proliferation and differentiation. The canonical Wnt pathway has recently been associated with pancreas development and the onset of type 2 diabetes in rodent and human but the underlying mechanisms are still unclear. The aim of this work was threefold: (a) to screen for Wnt expressed by murine pancreas/islet cells, (b) to investigate whether the Wnt gene expression profile can be changed in hyperplastic islets from type 2 prediabetic mice (fed a high-fat diet), and (c) to verify whether soluble factors (namely Wnts) released by pancreatic islets affect insulin secretion and proliferation of a beta-cell line in vitro condition. The majority of the Wnt subtypes are expressed by islet cells, such as Wnts 2, 2b, 3, 3a, 4, 5a, 5b, 6, 7a, 7b, 8a, 8b, 9a, 9b, and 11, while in the whole pancreas homogenates were found the same subtypes, except Wnts 3, 6, 7a, and 7b. Among all the Wnts, the Wnts 3a and 5b showed a significantly increased gene expression in hyperplastic islets from prediabetic mice compared with those from control mice. Furthermore, we observed that coculture with hyperplastic or nonhyperplastic islets did not change the secretory function of the mouse insulinoma clone 6 (MIN6) beta cells but induced a significant increase in cell proliferation in this lineage, which was partially blocked by the IWR-1 and IWP-2 Wnt inhibitors. In conclusion, we demonstrated that murine pancreas/islet cells can secrete Wnts, and that islet-released Wnts may participate in the regulation of beta-cell mass under normal and prediabetic conditions.


Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Proteínas Wnt/metabolismo , Tejido Adiposo/metabolismo , Animales , Línea Celular , Proliferación Celular , Dieta Alta en Grasa , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secreción de Insulina , Masculino , Ratones Endogámicos C57BL , Estado Prediabético/genética , Estado Prediabético/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Wnt/genética , Vía de Señalización Wnt
20.
J Cell Physiol ; 234(7): 10500-10511, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30417358

RESUMEN

Endoplasmic reticulum (ER) stress is one of the main molecular events underlying pancreatic beta cell (PBC) failure, apoptosis, and a decrease in insulin secretion. Recent studies have highlighted the fundamental role of A2a adenosine receptor (A2aR) in potentiation of insulin secretion and proliferation of PBCs. However, possible protective effects of A2aR signaling against ER stress have not been elucidated yet. Thus, in the present study, we aimed to investigate the effects of A2aR activation in MIN6 beta cells undergoing tunicamycin (TM)-mediated ER stress. A2aR expression and activity were evaluated using real-time polymerase chain reaction and measurement of the cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), phospho-protein kinase B or Akt (p-Akt)/Akt, and phospho-Cyclic adenosine monophosphate response element-binding protein/CREB levels in response to a specific agonist (CGS 21680). Survival and proliferation in TM and CGS 21680 cotreated cells were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), annexin V-fluorescein isothiocyanate (FITC)/propidium iodide staining, colony formation, and 5-bromo-2'-deoxyuridine (Brdu) assays. In addition, the effects of A2aR stimulation on insulin secretion were evaluated using the enzyme-linked immunosorbent assay. B-cell lymphoma 2 (Bcl-2), phospho-eukaryotic Initiation Factor 2α (p-eIF2α)/eIF2α, growth arrest and DNA-damage-inducible 34 (GADD34), X-box binding protein 1 (XBP-1), spliced X-box binding protein 1 (XBP-1s), immunoglobulin heavy-chain-binding protein (BIP), and CCAAT-enhancer-binding protein homologous protein (CHOP) levels were evaluated using western blotting. Our results showed a decrease in A2aR expression and p-Akt/Akt and p-CREB/CREB levels in TM-pretreated cells. We also mentioned that CGS 21680 effectively increased cell survival, proliferation, and insulin secretion in TM-treated cells. The antiapoptotic effects were possibly mediated through Bcl-2 upregulation. Our western blotting results indicated that A2aR effectively downregulated p-eIF2α/eIF2α, XBP-1, XBP-1s, BIP, and CHOP levels, whereas GADD34 was upregulated. Altogether, the present study revealed that A2aR signaling through PKA/Akt/CREB mediators alleviated TM cytotoxicity effects in MIN6 beta cells. Thus, the stimulation of this receptor was seen as a new approach to control ER stress in the PBC cells.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Agonistas del Receptor Purinérgico P1/farmacología , Receptor de Adenosina A2A/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA