RESUMEN
The notion that neutrophils exist as a homogeneous population is being replaced with the knowledge that neutrophils adopt different functional states. Neutrophils can have a pro-inflammatory phenotype or an anti-inflammatory state, but how these states are regulated remains unclear. Here, we demonstrated that the neutrophil-expressed G-protein-coupled receptor (GPCR) Mrgpra1 is a negative regulator of neutrophil bactericidal functions. Mrgpra1-mediated signaling was driven by its ligand, neuropeptide FF (NPFF), which dictated the balance between pro- and anti-inflammatory programming. Specifically, the Mrgpra1-NPFF axis counter-regulated interferon (IFN) γ-mediated neutrophil polarization during acute lung infection by favoring an alternative-like polarization, suggesting that it may act to balance overzealous neutrophilic responses. Distinct, cross-regulated populations of neutrophils were the primary source of NPFF and IFNγ during infection. As a subset of neutrophils at steady state expressed NPFF, these findings could have broad implications in various infectious and inflammatory diseases. Therefore, a neutrophil-intrinsic pathway determines their cellular fate, function, and magnitude of infection.
Asunto(s)
Infecciones Bacterianas , Neuropéptidos , Humanos , Receptores de Neuropéptido/metabolismo , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , AntiinflamatoriosRESUMEN
Dendritic cells (DCs) of the cDC2 lineage initiate allergic immunity and in the dermis are marked by their expression of CD301b. CD301b+ dermal DCs respond to allergens encountered in vivo, but not in vitro. This suggests that another cell in the dermis may sense allergens and relay that information to activate and induce the migration of CD301b+ DCs to the draining lymph node (dLN). Using a model of cutaneous allergen exposure, we show that allergens directly activated TRPV1+ sensory neurons leading to itch and pain behaviors. Allergen-activated sensory neurons released the neuropeptide Substance P, which stimulated proximally located CD301b+ DCs through the Mas-related G-protein coupled receptor member A1 (MRGPRA1). Substance P induced CD301b+ DC migration to the dLN where they initiated T helper-2 cell differentiation. Thus, sensory neurons act as primary sensors of allergens, linking exposure to activation of allergic-skewing DCs and the initiation of an allergic immune response.
Asunto(s)
Alérgenos/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Células Receptoras Sensoriales/metabolismo , Sustancia P/biosíntesis , Animales , Biomarcadores , Movimiento Celular/inmunología , Femenino , Ganglios Espinales/citología , Hipersensibilidad/diagnóstico , Masculino , Ratones , Células Receptoras Sensoriales/inmunologíaRESUMEN
Neuropathic pain remains a therapeutic challenge because of its complicated mechanisms. Mas-related GPCR D (MrgprD) is specifically expressed in small-diameter, nociceptive neurons of dorsal root ganglia (DRGs) and is implicated in pain modulation. However, the underlying mechanism of MrgprD involved in neuropathic pain remains elusive. In this study, we used behavioral experiments and physiologic examination methods to investigate the role of MrgprD in chronic constriction injury (CCI)-induced neuropathic pain. We found that MrgprD is necessary for the initiation of mechanical hypersensitivity and cold allodynia, but not for heat allodynia. Moreover, we demonstrated that transient receptor potential cation channel (TRP)-A1 was the ion channel downstream of MrgprD, and the ß-alanine-induced calcium signal was attributed mostly to TRP-A1 function. We further showed that PKA serves as a downstream mediator of ß-alanine-activated MrgprD signaling to activate TRP-A1 in DRG neurons and in human embryonic kidney 293 cells, to coexpress MrgprD and TRP-A1 plasmids. Finally, we found that the ß-alanine-induced pain behavior was increased, whereas the itching behavior was unchanged in CCI models compared with sham-injured animals. Knockout of TRPA1 also attenuated the ß-alanine-induced pain behavior in CCI models. In conclusion, MrgprD is essential in cold allodynia in CCI-induced neuropathic pain through the PKA-TRP-A1 pathway. TRP-A1 facilitates MrgprD to development of neuropathic pain. Our findings reveal a novel mechanism of neuropathic pain formation and highlight MrgprD as a promising drug target for the treatment of neuropathic pain.-Wang, C., Gu, L., Ruan, Y., Geng, X., Xu, M., Yang, N., Yu, L., Jiang, Y., Zhu, C., Yang, Y., Zhou, Y., Guan, X., Luo, W., Liu, Q., Dong, X., Yu, G., Lan, L., Tang, Z. Facilitation of MrgprD by TRP-A1 promotes neuropathic pain.
Asunto(s)
Neuralgia/fisiopatología , Receptores Acoplados a Proteínas G/fisiología , Canal Catiónico TRPA1/fisiología , Animales , Señalización del Calcio , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Canal Catiónico TRPA1/genética , Regulación hacia Arriba , beta-Alanina/farmacologíaRESUMEN
The present study focused on lithocholic acid (LCA), a secondary bile acid that contributes to cholestatic pruritus. Although recent studies have found that LCA acts on MAS-related G protein-coupled receptor family member X4 (MRGPRX4) in humans, it is unclear which subtypes of MRGPRs are activated by LCA in mice since there is no precise ortholog of human MRGPRX4 in the mouse genome. Using calcium imaging, we found that LCA could activate mouse Mrgpra1 when transiently expressed in HEK293T cells. Moreover, LCA similarly activates mouse Mrgprb2. Importantly, LCA-induced responses showed dose-dependent effects through Mrgpra1 and Mrgprb2. Moreover, treatment with QWF (an antagonist of Mrgpra1 and Mrgprb2), YM254890 (Gαq inhibitor), and U73122 (an inhibitor of phospholipase C) significantly suppressed the LCA-induced responses, implying that the LCA-induced responses are indeed mediated by Mrgpra1 and Mrgprb2. Furthermore, LCA activated primary cultures of mouse sensory neurons and peritoneal mast cells, suggesting that Mrgpra1 and Mrgprb2 contribute to LCA-induced pruritus. However, acute injection of LCA did not induce noticeable differences in scratching behavior, implying that the pruritogenic role of LCA may be marginal in non-cholestatic conditions. In summary, the present study identified for the first time that LCA can activate Mrgpra1 and Mrgprb2. The current findings provide further insight into the similarities and differences between human and mouse MRGPR families, paving a way to understand the complex roles of these pruriceptors.