Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Sci ; 115(6): 1778-1790, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566304

RESUMEN

ABCC3 (also known as MRP3) is an ATP binding cassette transporter for bile acids, whose expression is downregulated in colorectal cancer through the Wnt/ß-catenin signaling pathway. However, it remained unclear how downregulation of ABCC3 expression contributes to colorectal carcinogenesis. We explored the role of ABCC3 in the progression of colorectal cancer-in particular, focusing on the regulation of bile acid export. Gene expression analysis of colorectal adenoma isolated from familial adenomatous polyposis patients revealed that genes related to bile acid secretion including ABCC3 were downregulated as early as at the stage of adenoma formation. Knockdown or overexpression of ABCC3 increased or decreased intracellular concentration of deoxycholic acid, a secondary bile acid, respectively, in colorectal cancer cells. Forced expression of ABCC3 suppressed deoxycholic acid-induced activation of MAPK signaling. Finally, we found that nonsteroidal anti-inflammatory drugs increased ABCC3 expression in colorectal cancer cells, suggesting that ABCC3 could be one of the targets for therapeutic intervention of familial adenomatous polyposis. Our data thus suggest that downregulation of ABCC3 expression contributes to colorectal carcinogenesis through the regulation of intracellular accumulation of bile acids and activity of MAPK signaling.


Asunto(s)
Neoplasias Colorrectales , Ácido Desoxicólico , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Humanos , Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Ácido Desoxicólico/farmacología , Ácido Desoxicólico/metabolismo , Regulación hacia Abajo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
2.
Toxicol Mech Methods ; 34(4): 398-407, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38083799

RESUMEN

Liver diseases preceding the occurrence of hepatocellular carcinoma (HCC) play a crucial role in the progression and establishment of HCC, a malignancy ranked as the third deadliest cancer worldwide. Late diagnosis, alongside ineffective treatment, leads patients to a poor survival rate. This scenario argues for seeking novel alternatives for detecting liver alterations preceding the early occurrence of HCC. Experimental studies have reported that ABCC3 protein increases within HCC tumors but not in adjacent tissue. Therefore, we analyzed ABCC3 expression in public databases and investigated the presence of ABCC3 and its isoforms in plasma, urine and its release in extracellular vesicles (EVs) cargo from patients bearing cirrhosis and HCC. The UALCAN and GEPIA databases were used to analyze the expression of ABCC3 in HCC. The results were validated in a case-control study including 41 individuals bearing cirrhosis and HCC, and the levels of ABCC3 in plasma and urine samples, as well as EVs, were analyzed by ELISA and western blot. Our data showed that ABCC3 expression was higher in HCC tissues than in normal tissues and correlated with HCC grade and stage. ABCC3 protein levels were highly increased in both plasma and urine and correlated with liver disease progression and severity. The isoforms MRP3A and MRP3B of ABCC3 were significantly increased in both EVs and plasma/urine of patients bearing HCC. ABCC3 expression gradually increases in HCC tissues, and its protein levels are increased in both plasma and urine of patients with cirrhosis and HCC. MRP3A and MRP3B isoforms have the potential to be prognostic biomarkers of HCC.

3.
Cytokine ; 158: 155979, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35914403

RESUMEN

Cholestasis caused by bile secretion and excretion disorders is a serious manifestation of hepatopathy. Interleukin (IL)-25 is a member of the IL-17 cytokine family, which involves in mucosal immunity and type 2 immunity via its receptor-IL-17RB. Our previous studies have shown that IL-25 improves non-alcoholic fatty liver via stimulating M2 macrophage polarization and promotes development of hepatocellular carcinoma via alternative activation of macrophages. These hepatopathy are closely associated with cholestasis. However, whether IL-25 play an important role in cholestasis remains unclear. IL-25 treatment and IL-25 knockout (Il25-/-) mice were injected intragastrically with α-naphthyl isothiocyanate (ANIT) to determine the biological association between IL-25 and cholestasis. Here, we found that IL-25 and IL-17RB decreased in ANIT-induced cholestatic mice. Il25-/- mice showed exacerbated ANIT-induced parenchymal injury and IL-25 treatment significantly alleviated cholestatic liver injury induced by ANIT. We found that IL-25 reduced the level of hepatic total bile acids and increased the expression of multidrug resistance-associated protein 2 (MRP2) and multidrug resistance-associated protein 3 (MRP3) in liver. In conclusion, IL-25 exhibited a protective effect against ANIT-induced cholestatic liver injury in mice, which may be related to the regulation on bile acids secretion. These results provide a theoretical basis for the use of IL-25 in the treatment of cholestatic hepatopathy.


Asunto(s)
Colestasis , Hepatopatías , 1-Naftilisotiocianato/efectos adversos , 1-Naftilisotiocianato/metabolismo , Animales , Ácidos y Sales Biliares/farmacología , Colestasis/metabolismo , Interleucina-17/metabolismo , Hígado/metabolismo , Hepatopatías/metabolismo , Ratones , Ratones Endogámicos C57BL
4.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012307

RESUMEN

Glioblastoma is the most common and aggressive primary brain tumor, characterized by its high chemoresistance and the presence of a cell subpopulation that persists under hypoxic niches, called glioblastoma stem-like cells (GSCs). The chemoresistance of GSCs is mediated in part by adenosine signaling and ABC transporters, which extrude drugs outside the cell, such as the multidrug resistance-associated proteins (MRPs) subfamily. Adenosine promotes MRP1-dependent chemoresistance under normoxia. However, adenosine/MRPs-dependent chemoresistance under hypoxia has not been studied until now. Transcript and protein levels were determined by RT-qPCR and Western blot, respectively. MRP extrusion capacity was determined by intracellular 5 (6)-Carboxyfluorescein diacetate (CFDA) accumulation. Cell viability was measured by MTS assays. Cell cycle and apoptosis were determined by flow cytometry. Here, we show for the first time that MRP3 expression is induced under hypoxia through the A2B adenosine receptor. Hypoxia enhances MRP-dependent extrusion capacity and the chemoresistance of GSCs. Meanwhile, MRP3 knockdown decreases GSC viability under hypoxia. Downregulation of the A2B receptor decreases MRP3 expression and chemosensibilizes GSCs treated with teniposide under hypoxia. These data suggest that hypoxia-dependent activation of A2B adenosine receptor promotes survival of GSCs through MRP3 induction.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Adenosina/metabolismo , Neoplasias Encefálicas/metabolismo , Resistencia a Antineoplásicos , Glioblastoma/metabolismo , Humanos , Hipoxia/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Células Madre Neoplásicas/metabolismo , Receptor de Adenosina A2B/metabolismo , Receptores Purinérgicos P1/metabolismo
5.
Ann Hepatol ; 24: 100325, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33582321

RESUMEN

INTRODUCTION AND OBJECTIVES: Free and conjugated bile acids (BA's) cannot cross cell membranes; therefore, a particular transport system is required by the cell. Members of the family of ABC (ATP-binding proteins) transporters transfer bile acids in and out of the cell, preventing their accumulation. High intracellular concentrations of bile acids, such as those observed in cholestasis, have been related to oxidative stress and apoptosis, which in many cases are the leading causes of hepatocyte damage. MRP3 and MRP4 (multidrug resistance-associated protein 3 and 4) proteins belong to the ABC subfamily C, and are transporters of the hepatocyte's basolateral membrane with a compensatory role. Both transporters' increased expression constitutes an essential role in the protective and adaptive responses of bile acid overload, such as cholestasis. This work aimed to analyze both transporters' mRNA and protein expression in an in vitro model of cholestasis using HepG2 cell line treated with main bile acids. METHODS: The expression of transporters was investigated through confocal microscopy immunofluorescence, Western Blot, and RT-qPCR after the main bile acids in HepG2 line cells. RESULTS: The results showed the relation between confluence and expression of both transporters in the plasma membrane. MRP3 showed atypical and heterogeneous distribution in this cell line. CDCA (chenodeoxycholic acid) at low concentrations induced the expression of mRNA of both transporters. In contrast, protein expression was induced by CA (cholic acid) at high concentrations. CONCLUSION: Primary bile acids (CDCA and CA) induce overexpression of the MRP4 and MRP3 transporters in the HepG2 cell line.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Colestasis/genética , Colestasis/patología , Fármacos Gastrointestinales/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Técnicas de Cultivo de Célula , Colestasis/metabolismo , Células Hep G2 , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , ARN Mensajero/metabolismo
6.
J Surg Res ; 235: 73-82, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30691853

RESUMEN

BACKGROUND: The effect of hepatic ischemia-reperfusion injury (IRI) on bile transporter (BT) gene expression is unknown. We hypothesized that abnormal expression of BTs during hepatic IRI is dependent on nuclear factor erythroid 2-related factor 2 (NRF2), which contributes to the cholestasis after reperfusion. METHODS: Sham surgery and short (60 min) or long (90 min) periods of warm ischemia time (WIT) with or without reperfusion for 24 h were applied to wild-type Sprague-Dawley rats and Nrf2 knockout rats (n = 5 per group). At each stage of IRI, the serum levels of aminotransferase, total bilirubin, and bile acids were measured. In addition, hepatic tissue was sampled to determine the histologic score of IRI (Suzuki score), measure adenosine triphosphate (ATP), and identify the quantitative real-time polymerase chain reactions of BTs (Oatp1, Ntcp, Mrp2, Bsep, and Mrp3). RESULTS: In short periods of WIT, BT expression increased during the ischemia stage and returned to the baseline after reperfusion. However, in long periods of WIT, BT expression did not increase after ischemia and decreased further after reperfusion. Short WIT did not increase BT expression in Nrf2 knockout animals. The level of BT expression was correlated with the Suzuki score, the serum levels of aminotransferase, bilirubin, and bile acids, and tissue ATP level. Stepwise multiple regression analysis derived equations to predict the Suzuki score (R2 = 76.8, P < 0.001), serum total bilirubin (R2 = 61.2, P < 0.001), and tissue ATP (R2 = 61.1, P < 0.001). CONCLUSIONS: Short WIT induces the transcriptional activities of BT, whereas long WIT depresses them, and the effect was blunted by Nrf2 knockout status. BT expression can be considered a surrogate marker for hepatic IRI.


Asunto(s)
Bilis/metabolismo , Hígado/irrigación sanguínea , Proteínas de Transporte de Membrana/genética , Factor 2 Relacionado con NF-E2/fisiología , Daño por Reperfusión/metabolismo , Animales , Masculino , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Transcripción Genética , Isquemia Tibia
7.
Biol Pharm Bull ; 41(6): 869-876, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29618704

RESUMEN

Pinelliae Rhizoma Praeparatum (PRP) as traditional Chinese medicine had been used for hepatic diseases in combinative forms. However, the effect of PRP was not clear when used alone. So to explore the hepatoprotective/hepatotoxin of PRP is necessary. The activities of PRP were investigated in acetaminophen-induced hepatic injury mice. Liver function markers, hepatic oxidative stress markers were evaluated. Bile acids metabolic transports and nuclear factor erythroid 2-related factor 2 (Nrf2) were detected. As a drug for the treatment of liver diseases, PRP slightly restored the parameters towards normal in model mice only in low dosage, and also had no antioxidant activity and regulate Nrf2. Cholestasis was significantly elevated in model mice when pretreatment with routine or high dosage of PRP, but had no effect on normal mice. Bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) in model mice were markedly increased when pretreatment with low dose PRP, but significantly decreased when pretreatment in routine or high dosage. Mrp3 was significantly induced in model mice after pretreatment of PRP. But the adjustment effect to bile acids transporters by PRP was not significant in normal mice. These results reveal that PRP has the different effects on bile acids transporter in hepatic injury mice, and therefore, the dosage of PRP need to be paid attention to when it is used in clinical hepatic injury.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Colestasis/metabolismo , Hígado/efectos de los fármacos , Pinellia , Extractos Vegetales/farmacología , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Acetaminofén , Proteínas Angiogénicas/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colestasis/inducido químicamente , Colestasis/patología , Relación Dosis-Respuesta a Droga , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos ICR , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/administración & dosificación
8.
Mol Cancer ; 16(1): 71, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28356150

RESUMEN

BACKGROUND: Although chemotherapy represents a predominant anti-cancer therapeutic modality, drug treatment efficacy is often limited due to the development of resistant tumor cells. The pregnane X receptor (PXR) affects chemotherapeutic effects by regulating targets involved in drug metabolism and transportation, but the regulatory mechanism is poorly understood. METHODS: Oxaliplatin (L-OHP) content in tumor cells was analyzed by mass cytometry. The roles of PXR on cancer cell proliferation, apoptosis and tumor growth with L-OHP-treated were investigated by MTS, colony formation, flow cytometry and xenograft tumor assays. Luciferase reporter, Chromatin-immunoprecipitation and Site-directed mutagenesis were evaluated the mechanisms. The PXR and multidrug resistance-related protein 3 (MRP3) expressions were examined by western blot, RT-PCR or immunohistochemistry of TMA. Kaplan-Meier and Cox regression were adopted to analyze the prognostic value of PXR in colorectal cancer (CRC). RESULTS: PXR over-expression significantly increased oxaliplatin (L-OHP) transport capacity with a reduction of its content and repressed the effects of L-OHP on tumour cell proliferation and apoptosis. Conversely, PXR knockdown augments L-OHP-mediated cellular proliferation and apoptosis. Moreover, PXR significantly reduced the therapeutic effects of L-OHP on tumor growth in nude mice. Further studies indicated a positive correlation between PXR and MRP3 expression and this finding was confirmed in two independent cohorts. Significantly increased MRP3 expression was also found in PXR over-expressing cell lines. Mechanistically, PXR could directly bind to the MRP3 promoter, activating its transcription. The PXR binding sites were determined to be at -796 to -782bp (CTGAAGCAGAGGGAA) and the key binding sites were the "AGGGA" (-787 to -783bp) on the MRP3 promoter. Accordingly, blockade of MRP3 diminishes the effects on drug resistance of PXR. In addition, PXR expression is significantly associated with poor overall survival and represents an unfavorable and independent factor for male or stage I + II CRC patient prognosis. CONCLUSIONS: PXR is a potential biomarker for predicting outcome and activates MRP3 transcription by directly binding to its promoter resulting in an increased L-OHP efflux capacity, and resistance to L-OHP or platinum drugs in CRC. Our work reveals a novel and unique mechanism of drug resistance in CRC.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Resistencia a Antineoplásicos/genética , Receptores de Esteroides/genética , Activación Transcripcional , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Estadificación de Neoplasias , Compuestos Organoplatinos/farmacología , Oxaliplatino , Receptor X de Pregnano , Pronóstico , Modelos de Riesgos Proporcionales , Receptores de Esteroides/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Mol Pharm ; 14(10): 3299-3311, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28850245

RESUMEN

Xenobiotic and endobiotic glucuronides, which are generated in hepatic and intestinal epithelial cells, are excreted via efflux transporters. Multidrug resistance proteins 2-4 (MRP2-MRP4) and the breast cancer resistance protein (BCRP) are efflux transporters that are expressed in these polarized cells, on either the basolateral or apical membranes. Their localization, along with expression levels, affects the glucuronide excretion pathways. We have studied the transport of three planar cyclic glucuronides and glucuronides of the two propranolol enantiomers, by the vesicular transport assay, using vesicles from baculovirus-infected insect cells expressing human MRP2, MRP3, MRP4, or BCRP. The transport of estradiol-17ß-glucuronide by recombinant MRP2-4 and BCRP, as demonstrated by kinetic values, were within the ranges previously reported. Our results revealed high transport rates and apparent affinity of MRP4 toward the glucuronides of 4-methylumbelliferone, 1-naphthol, and 1-hydroxypyrene (Km values of 168, 13, and 3 µM, respectively) in comparison to MRP3 (Km values of 278, 98, and 8 µM, respectively). MRP3 exhibited lower rates, but stereoselective transport of propranolol glucuronides, with higher affinity toward the R-enantiomer than the S-enantiomer (Km values 154 vs 434 µM). The glucuronide of propranolol R-enantiomer was not significantly transported by either MRP2, MRP4, or BCRP. Of the tested small glucuronides in this study, BCRP transported only 1-hydroxypyrene glucuronide, at very high rates and high apparent affinity (Vmax and Km values of 4400 pmol/mg/min and 11 µM). The transport activity of MRP2 with all of the studied small glucuronides was relatively very low, even though it transported the reference compound, estradiol-17ß-glucuronide, at a high rate (Vmax = 3500 pmol/mg/min). Our results provide new information, at the molecular level, of efflux transport of the tested glucuronides, which could explain their disposition in vivo, as well as provide new tools for in vitro studies of MRP3, MRP4, and BCRP.


Asunto(s)
Glucuronatos/farmacocinética , Glucurónidos/farmacocinética , Himecromona/farmacocinética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Propranolol/análogos & derivados , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Bioensayo , Transporte Biológico Activo , Estradiol/análogos & derivados , Estradiol/farmacocinética , Glucuronatos/metabolismo , Humanos , Himecromona/análogos & derivados , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas de Neoplasias/metabolismo , Propranolol/síntesis química , Propranolol/farmacocinética , Pirenos/metabolismo , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Estereoisomerismo
10.
Cancer Sci ; 107(12): 1776-1784, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27709738

RESUMEN

We determined the gene expression profiles for 48 ATP binding cassette (ABC) transporters in matched colon cancer and normal colon tissues in order to provide insight into the mechanisms underlying expression of transporters related to colon carcinogenesis. The expression of ABCB1, ABCC1, ABCC2, ABCC3, and ABCG2 was altered in association with colon carcinogenesis. Among these transporters, the expression of ABCC3 was repressed by Wnt signaling pathway in colon cancer cell lines. Knockdown of the pathway components transcription factor 7-like 2 (TCF7L2) or ß-catenin thus increased ABCC3 expression, whereas activation of Wnt signaling with inhibitors of glycogen synthase kinase-3ß (GSK-3ß) reduced it. ChIP and luciferase reporter assays also showed that TCF7L2 binds to the ABCC3 locus and regulates its expression. Finally, overexpression of ABCC3 in colon cancer cells conferred resistance to anticancer drug-induced cytotoxicity. Our data thus suggest that Wnt signaling represses ABCC3 expression during colon carcinogenesis, and that subsequent upregulation of ABCC3 expression during drug treatment might contribute to acquired drug resistance.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Anciano , Línea Celular Tumoral , Análisis por Conglomerados , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/terapia , Femenino , Perfilación de la Expresión Génica , Sitios Genéticos , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Estadificación de Neoplasias , Unión Proteica , Proteína 2 Similar al Factor de Transcripción 7/metabolismo
11.
Am J Physiol Renal Physiol ; 308(9): F1004-11, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25143454

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by abnormal proliferation of renal tubular epithelial cells, resulting in the loss of renal function. Despite identification of the genes responsible for ADPKD, few effective drugs are currently available for the disease. Thus finding additional effective drug targets is necessary. The functions of multidrug- resistance-associated protein 3 (MRP3) have been reported only in the field of drug resistance, and the renal functions of MRP3 are mostly unknown. In this study, we found that MRP3 was significantly downregulated in kidneys of human patients with ADPKD and polycystic kidney disease (PKD) mouse models. Our results suggest that downregulated MRP3 stimulated renal epithelial cell proliferation through the B-Raf/MEK/ERK signaling pathway. In contrast, we found that restoring MRP3 reduced cell proliferation and cystogenesis in vitro. These results suggest that the renal function of MRP3 is related to renal cell proliferation and cyst formation and that restoring MRP3 may be an effective therapeutic approach for PKD.


Asunto(s)
Proliferación Celular , Riñón/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Perros , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Riñón/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Células de Riñón Canino Madin Darby , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/terapia , Proteínas Proto-Oncogénicas B-raf/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección
12.
Biopharm Drug Dispos ; 36(4): 232-44, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25597959

RESUMEN

Previous work has indicated that there is increased protein expression of multidrug resistance-associated protein 3 (MRP3) in the liver samples of patients treated with omeprazole compared with those who were not. However, evidence is still lacking to show the mechanisms underlying that induction. This study aimed to assess changes in the fold-induction of MRP3 mRNA and protein expression over controls in omeprazole-treated HepG2 cells after transient transfection of human MRP3 siRNA, or after pretreatment with actinomycin D (Act-D). Furthermore, MRP3 siRNA knock-down or MRP-specific inhibition (indomethacin) was used to determine whether the MRP3 protein induced by omeprazole possessed an enhanced efflux transport. The results demonstrated that omeprazole induced MRP3 mRNA and protein expression in a concentration- and time-dependent manner. Moreover, that induction was almost completely abolished by the addition of human MRP3 siRNA and also by pretreatment with Act-D, respectively. In addition, the decay rate of MRP3 mRNA in vehicle- and omeprazole-treated cells was similar in the presence of Act-D, suggesting transcriptional up-regulation of MRP3 mRNA expression by omeprazole. Most importantly, omeprazole induced MRP3 efflux transport activity, as measured by the 5-carboxyfluorescein assay in the absence and presence of human MRP3 siRNA or indomethacin. It is concluded that omeprazole can induce MRP3 mRNA and protein expression and enhance MRP3 efflux transport activity through transcriptional up-regulation, and that omeprazole can also induce other MRP transporters.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/biosíntesis , Omeprazol/farmacología , Dactinomicina/farmacología , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Indometacina/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , ARN Interferente Pequeño/farmacología , Regulación hacia Arriba/efectos de los fármacos
13.
Ceska Gynekol ; 80(6): 405-13, 2015 Dec.
Artículo en Checo | MEDLINE | ID: mdl-26741154

RESUMEN

OBJECTIVE: To evaluate the correlation of resistance proteins Pgp (P-glycoprotein), MRP1 (Multidrug Related Protein, Multidrug Resistance-Associated Protein) and MRP3 with clinical - pathological factors and to find the clinical outcome of these data in ovarian cancer patients. DESIGN: Prospective study. SETTING: Department of Gynecology and Obstetrics, Charles University in Prague, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové. METHODS: 133 patients with epithelial ovarian cancer who underwent primary surgery from 2006-2010 had specimens stained with imunohistochemistry for Pgp, MRP1, MRP3. RESULTS: The histological subtype of epithelial ovarian cancer correlated with the expression of PgP, MRP1, and MRP3. The lowest incidence of Pgp and MRP1 expression was documented in endometrioid ovarian cancers (P = 0.151, P = 0.013). Patients with advanced ovarian cancer (FIGO III+IV) had higher MRP1 expression than those with early stage ovarian cancer (Med MRP1 FIGO I+II 80%; CI: 60-100; FIGO III+IV 100%; CI: 90-100; P = 0.100). An association was observed between MRP1 and tumor grade (Med MRP1 G1 80% (CI: 0-100), G2 80% (CI: 30-100), G3 100% (CI: 90-100); P < 0.001). There was no relationship between the size of the residual tumor after primary surgery and any resistance proteins. Patients with complete response after primary treatment had lower levels of LRP, Pgp, and MRP1 expression than other patients. Patients with higher Pgp and MRP1 expression had relapse of disease during the following 24 months more often than patients with lower Pgp and MRP1 expression. FIGO stage, histological type, debulking efficiency, and Pgp and MRP1 expression correlated with poor patient survival (P < 0.001, P < 0.001, P < 0.001, P = 0.040, P = 0.026). CONCLUSION: We found prognostic significance of Pgp, MRP1 and MRP3 expression in ovarian cancer patients. MRP1 have some additional prognostic value for the clinical outcome of patients with ovarian carcinoma.


Asunto(s)
Carcinoma Endometrioide/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adulto , Anciano , Carcinoma Endometrioide/patología , Carcinoma Epitelial de Ovario , Femenino , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Pronóstico , Estudios Prospectivos
14.
Hepatol Res ; 44(3): 327-37, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23607695

RESUMEN

AIM: We aimed to elucidate the relationship between the contrast enhancement effect of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) on magnetic resonance imaging (MRI) of hepatocellular carcinomas (HCC) and the expressions of hepatocyte transporters (i.e. organic anion-transporting polypeptide [OATP]1B3, multidrug-resistant protein [MRP]2 and MRP3) and to clarify the characteristics of HCC with an MRI high-contrast enhancement effect. METHODS: We retrospectively examined the relationship between the relative enhancement ratio (RER) of HCC, absolute and relative immunohistochemical staining scores of hepatocyte transporters, and histological differentiation of 22 HCC from 21 patients who had undergone preoperative Gd-EOB-DTPA-enhanced MRI. RESULTS: RER had a significant correlation with OATP1B3 expression according to the absolute and relative scores (P = 0.016 vs 0.0006). The RER of HCC with high OATP1B3 and MRP2 expression levels was higher than that of HCC with low OATP1B3 or MRP2 expression levels (P = 0.0003). The RER of HCC with higher OATP1B3 rates was greater than that of HCC with lower OATP1B3 rates (P = 0.0005). HCC histological differentiation showed a significant correlation with OATP1B3 expression and RER (P = 0.023 vs 0.0095). CONCLUSION: We found that coexpression of OATP1B3 and MRP2 influenced the high contrast enhancement of HCC on MRI.

15.
Curr Drug Metab ; 22(5): 353-362, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33461458

RESUMEN

BACKGROUND: The role of multidrug resistance-associated protein 3 (Mrp3) in the transport of bile acid (BA) in drug-induced cholestasis has not been well studied. OBJECTIVE: In this study, wild type and Mrp3 knockout (Mrp3-/-) mice under normal physiological and lithocholic acid (LCA)-induced cholestatic conditions were employed to investigate the role of Mrp3 in BA transport. METHODS: The levels of BA in serum, liver, gallbladder, intestine, kidney, feces and urine were quantified in both wild type and Mrp3-/- mice via ultra-high performance liquid chromatography triple quadrupole mass spectrometry (UHPLC-MS/MS). Quantitative real-time PCR (RT-PCR) analysis was used to measure the expression of genes related to the transport and synthesis of BA. RESULTS: The results showed that the liver did not suffer more serious damage as a result of cholestasis when Mrp3 was depleted. The level of some individual bile acids changed apparently in the compartments of enterohepatic circulation (EHC) between the two control and model groups, respectively, but the level of serum total bile acid was only slightly reduced for Mrp3-/- groups. In addition, the level of BA-related efflux transporters and synthases increased significantly when Mrp3 was knocked out under normal physiological conditions, but a negligible alteration appeared under cholestatic conditions. CONCLUSION: Our results indicated that Mrp3 could be responsible for the transport of some specific bile acids, and part of the Mrp3 role could be compensated for by other transporters. Moreover, Mrp3 deficiency has a direct effect on the expression of BA-related synthases and efflux transporters under normal physiological conditions, but this effect could be less prominent under cholestatic conditions. This study could provide much valuable insight into the physiological function of Mrp3 in the transport of bile acids.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colestasis/inducido químicamente , Ácido Litocólico/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/fisiología , Animales , Ácidos y Sales Biliares/sangre , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
16.
Curr Drug Metab ; 22(10): 772-783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34279197

RESUMEN

BACKGROUND: The interplay between phase II enzymes and efflux transporters leads to extensive metabolism and low systemic bioavailability of flavonoids. OBJECTIVE: In this study, the dynamic interplay between multiple UGTs and multiple efflux transporters that occur inside the cells was fully investigated. METHODS: A new HeLa-UGT1A9-MRP3 cell was established to overexpress two dominant efflux transporters MRP3 and BCRP, and two UGT isoforms UGT1A9 and UGT1A3. The metabolism and glucuronides excretion for a model flavonoid genistein were determined in HeLa-UGT1A9-MRP3 cells and HeLa-UGT1A9-Con cells that overexpressed one UGT (1A9) and one efflux transporter (BCRP). RESULTS: The excretion rate grew nearly 6-fold, cellular clearance of glucuronides increased about 3-fold, and fraction of genistein metabolized (fmet) increased (14%, p<0.01) in the new cells. Small interfering (siRNA)-mediated MRP3 functional knockdown resulted in marked decreases in the excretion rates (26%-78%), intracellular amounts (56%-93%), and cellular clearance (54%-96%) in both cells, but the magnitude of the differences in HeLa- UGT1A9-Con cells was relatively small. Reductions in fmet values were similarly moderate (11%-14%). In contrast, UGT1A9 knockdown with siRNA caused large decreases in the excretion rates (46%-88%), intracellular amounts (80%-97%), cellular clearance (80%-98%) as well as fmet value (33%-43%, p<0.01) in both UGT1A9 cells. Comparisons of the kinetic parameters and profiles of genistein glucuronidation as well as UGT mRNA expression suggest that HeLa-UGT1A9-MRP3 has increased expression of both MRP3 and UGT1A3. CONCLUSION: The newly engineered HeLa-UGT1A9-MRP3 cells is an appropriate model to study the kinetic interplay between multiple UGTs and efflux transporters, and a promising biosynthetic tool to obtain flavonoid glucuronides of high purity.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Ingeniería Celular/métodos , Genisteína/farmacología , Células HeLa , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , UDP Glucuronosiltransferasa 1A9/metabolismo , Vías Biosintéticas , Flavonoides/farmacología , Humanos , Fase II de la Desintoxicación Metabólica , Análisis de Flujos Metabólicos
17.
Eur J Pharm Sci ; 162: 105813, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33753214

RESUMEN

Multidrug resistance-associated protein (MRP; ABCC gene family) mediated efflux transport plays an important role in the systemic and tissue exposure profiles of many drugs and their metabolites, and also of endogenous compounds like bile acids and bilirubin conjugates. However, potent and isoform-selective inhibitors of the MRP subfamily are currently lacking. Therefore, the purpose of the present work was to identify novel rat Mrp3 inhibitors. Using 5(6)-carboxy-2',7'-dichlorofluorescein diacetate (CDFDA) as a model-(pro)substrate for Mrp3 in an oil-spin assay with primary rat hepatocytes, the extent of inhibition of CDF efflux was determined for 1584 compounds, yielding 59 hits (excluding the reference inhibitor) that were identified as new Mrp3 inhibitors. A naive Bayesian prediction model was constructed in Pipeline Pilot to elucidate physicochemical and structural features of compounds causing Mrp3 inhibition. The final Bayesian model generated common physicochemical properties of Mrp3 inhibitors. For instance, more than half of the hits contain a phenolic structure. The identified compounds have an AlogP between 2 and 4.5, between 5 to 8 hydrogen bond acceptor atoms, a molecular weight between 260 and 400, and 2 or more aromatic rings. Compared to the depleted dataset (i.e. 90% remaining compounds), the Mrp3 hit rate in the enriched set was 7.5-fold higher (i.e. 17.2% versus 2.3%). Several hits from this first screening approach were confirmed in an additional study using Mrp3 transfected inside-out membrane vesicles. In conclusion, several new and potent inhibitors of Mrp3 mediated efflux were identified in an optimized in vitro rat hepatocyte assay and confirmed using Mrp3 transfected inside-out membrane vesicles. A final naive Bayesian model was developed in an iterative way to reveal common physicochemical and structural features for Mrp3 inhibitors. The final Bayesian model will enable in silico screening of larger libraries and in vitro identification of more potent Mrp3 inhibitors.


Asunto(s)
Hepatocitos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Animales , Teorema de Bayes , Ácidos y Sales Biliares , Transporte Biológico , Hepatocitos/metabolismo , Ratas
18.
Chin J Nat Med ; 18(2): 123-137, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32172948

RESUMEN

Fructus Psoraleae, which is commonly consumed for the treatment of osteoporosis, bone fracture, and leucoderma, induces liver injury. This study investigated the pathogenesis of the ethanol extract of Fructus Psoraleae (EEFP)-induced liver injury in rats. EEFP (1.35, 1.80, and 2.25 g·kg-1) was administrated to Sprague Dawley (SD) rats for 30 d. We measured liver chemistries, histopathology, and quantitative isobaric tags for relative and absolute quantitation (iTRAQ)-based protein profiling. EEFP demonstrated parameters suggestive of liver injury with changes in bile secretion, bile flow rate, and liver histopathology. iTRAQ analysis showed that a total of 4042 proteins were expressed in liver tissues of EEFP-treated and untreated rats. Among these proteins, 81 were upregulated and 32 were downregulated in the treatment group. KEGG pathway analysis showed that the drug metabolic pathways of cytochrome P450, glutathione metabolism, glycerolipid metabolism, and bile secretion were enriched with differentially expressed proteins. The expression of key proteins related to the farnesoid X receptor (FXR), i.e., the peroxisome proliferators-activated receptor alpha (PPAR-α), were downregulated, and multidrug resistance-associated protein 3 (MRP3) was upregulated in the EEFP-treated rats. Our results provide evidence that EEFP may induce hepatotoxicity through various pathways. Furthermore, our study demonstrates changes in protein regulation using iTRAQ quantitative proteomics analysis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Extractos Vegetales/efectos adversos , Proteómica , Animales , Modelos Animales de Enfermedad , Fabaceae , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
19.
Basic Clin Pharmacol Toxicol ; 125(6): 490-498, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31237077

RESUMEN

Nicotine is the addiction causing alkaloid in tobacco, and it is used in smoking cessation therapies. Although the metabolic pathways of nicotine are well known and mainly occur in the liver, the transport of nicotine and its metabolites is poorly characterized. The highly hydrophilic nature and urinary excretion of nicotine glucuronide metabolites indicate that hepatic basolateral efflux transporters mediate their excretion. We aimed here to find the transporters responsible for the hepatic excretion of nicotine, cotinine and trans-3'-hydroxycotinine (OH-cotinine) glucuronides. To this end, we tested their transport by multidrug resistance-associated proteins 1 (MRP1, ABCC1) and MRP3-6 (ABCC3-6), which are located on the basolateral membranes of hepatocytes, as well as MRP2 (ABCC2), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance protein 1 (MDR1, P-gp, ABCB1) that are expressed in the apical membranes of these cells. ATP-dependent transport of these glucuronides was evaluated in inside-out membrane vesicles expressing the transporter of interest. In addition, potential interactions of both the glucuronides and parent compounds with selected transporters were tested by inhibition assays. Considerable ATP-dependent transport was observed only for OH-cotinine glucuronide by MRP3. The kinetics of this transport activity was characterized, resulting in an estimated Km value of 895 µmol/L. No significant transport was found for nicotine or cotinine glucuronides by any of the tested transporters at either 5 or 50 µmol/L substrate concentration. Furthermore, neither nicotine, cotinine nor OH-cotinine inhibited MRP2-4, BCRP or MDR1. In this study, we directly examined, for the first time, efflux transport of the three hydrophilic nicotine glucuronide metabolites by the major human hepatic efflux transporters. Despite multiple transporters studied here, our results indicate that an unknown transporter may be responsible for the hepatic excretion of nicotine and cotinine glucuronides.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Cotinina/análogos & derivados , Cotinina/metabolismo , Hepatocitos/metabolismo , Nicotina/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transporte Biológico , Glucurónidos/metabolismo , Humanos , Hígado/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo
20.
Toxicol In Vitro ; 58: 60-68, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30898553

RESUMEN

Diesel exhaust particles (DEPs) are common environmental air pollutants known to impair expression and activity of drug detoxifying proteins, including hepatic ATP-binding cassette (ABC) drug transporters. The present study was designed to determine whether organic DEP extract (DEPe) may also target ABC drug transporters in bronchial cells. DEPe (10 µg/mL) was demonstrated to induce mRNA and protein expression of the multidrug resistance-associated protein (MRP) 3 in cultured bronchial epithelial BEAS-2B cells, whereas mRNA levels of other MRPs, multidrug resistance gene 1 or breast cancer resistance protein were unchanged, reduced or not detected. DEPe also increased MRP3 mRNA expression in normal human bronchial epithelial cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway by AhR antagonist or AhR silencing, as well as the silencing of nuclear-factor-E2-related factor 2 (Nrf2) repressed DEPe-mediated MRP3 induction. This underlines the implication of the AhR and Nrf2 signaling cascades in DEPe-mediated MRP3 regulation. DEPe was additionally demonstrated to directly inhibit MRP activity in BEAS-2B cells, in a concentration-dependent manner. Taken together, these data indicate that DEPs may impair expression and activity of MRPs, notably MRP3, in human bronchial cells, which may have consequences in terms of lung barrier and toxicity for humans exposed to diesel pollution.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Células Epiteliales/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Emisiones de Vehículos/toxicidad , Bronquios/citología , Línea Celular , Células Epiteliales/metabolismo , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA