Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37827155

RESUMEN

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Asunto(s)
Proteína de Replicación A , Expansión de Repetición de Trinucleótido , Animales , Humanos , Ratones , ADN/genética , Reparación de la Incompatibilidad de ADN , Enfermedad de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelosas/genética , Proteína de Replicación A/metabolismo
2.
Am J Hum Genet ; 111(6): 1165-1183, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749429

RESUMEN

The pathological huntingtin (HTT) trinucleotide repeat underlying Huntington disease (HD) continues to expand throughout life. Repeat length correlates both with earlier age at onset (AaO) and faster progression, making slowing its expansion an attractive therapeutic approach. Genome-wide association studies have identified candidate variants associated with altered AaO and progression, with many found in DNA mismatch repair (MMR)-associated genes. We examine whether lowering expression of these genes affects the rate of repeat expansion in human ex vivo models using HD iPSCs and HD iPSC-derived striatal medium spiny neuron-enriched cultures. We have generated a stable CRISPR interference HD iPSC line in which we can specifically and efficiently lower gene expression from a donor carrying over 125 CAG repeats. Lowering expression of each member of the MMR complexes MutS (MSH2, MSH3, and MSH6), MutL (MLH1, PMS1, PMS2, and MLH3), and LIG1 resulted in characteristic MMR deficiencies. Reduced MSH2, MSH3, and MLH1 slowed repeat expansion to the largest degree, while lowering either PMS1, PMS2, or MLH3 slowed it to a lesser degree. These effects were recapitulated in iPSC-derived striatal cultures where MutL factor expression was lowered. CRISPRi-mediated lowering of key MMR factor expression to levels feasibly achievable by current therapeutic approaches was able to effectively slow the expansion of the HTT CAG tract. We highlight members of the MutL family as potential targets to slow pathogenic repeat expansion with the aim to delay onset and progression of HD and potentially other repeat expansion disorders exhibiting somatic instability.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteína Huntingtina , Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , Expansión de Repetición de Trinucleótido , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Células Madre Pluripotentes Inducidas/metabolismo , Expansión de Repetición de Trinucleótido/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Genes Modificadores , Proteína 3 Homóloga de MutS/genética , Proteína 3 Homóloga de MutS/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Sistemas CRISPR-Cas , Estudio de Asociación del Genoma Completo
3.
Brain ; 147(5): 1784-1798, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38387080

RESUMEN

The Huntington's disease mutation is a CAG repeat expansion in the huntingtin gene that results in an expanded polyglutamine tract in the huntingtin protein. The CAG repeat is unstable and expansions of hundreds of CAGs have been detected in Huntington's disease post-mortem brains. The age of disease onset can be predicted partially from the length of the CAG repeat as measured in blood. Onset age is also determined by genetic modifiers, which in six cases involve variation in DNA mismatch repair pathways genes. Knocking-out specific mismatch repair genes in mouse models of Huntington's disease prevents somatic CAG repeat expansion. Taken together, these results have led to the hypothesis that somatic CAG repeat expansion in Huntington's disease brains is required for pathogenesis. Therefore, the pathogenic repeat threshold in brain is longer than (CAG)40, as measured in blood, and is currently unknown. The mismatch repair gene MSH3 has become a major focus for therapeutic development, as unlike other mismatch repair genes, nullizygosity for MSH3 does not cause malignancies associated with mismatch repair deficiency. Potential treatments targeting MSH3 currently under development include gene therapy, biologics and small molecules, which will be assessed for efficacy in mouse models of Huntington's disease. The zQ175 knock-in model carries a mutation of approximately (CAG)185 and develops early molecular and pathological phenotypes that have been extensively characterized. Therefore, we crossed the mutant huntingtin allele onto heterozygous and homozygous Msh3 knockout backgrounds to determine the maximum benefit of targeting Msh3 in this model. Ablation of Msh3 prevented somatic expansion throughout the brain and periphery, and reduction of Msh3 by 50% decreased the rate of expansion. This had no effect on the deposition of huntingtin aggregation in the nuclei of striatal neurons, nor on the dysregulated striatal transcriptional profile. This contrasts with ablating Msh3 in knock-in models with shorter CAG repeat expansions. Therefore, further expansion of a (CAG)185 repeat in striatal neurons does not accelerate the onset of molecular and neuropathological phenotypes. It is striking that highly expanded CAG repeats of a similar size in humans cause disease onset before 2 years of age, indicating that somatic CAG repeat expansion in the brain is not required for pathogenesis. Given that the trajectory for somatic CAG expansion in the brains of Huntington's disease mutation carriers is unknown, our study underlines the importance of administering treatments targeting somatic instability as early as possible.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Expansión de Repetición de Trinucleótido , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Animales , Humanos , Expansión de Repetición de Trinucleótido/genética , Ratones , Proteína Huntingtina/genética , Proteína 3 Homóloga de MutS/genética , Modelos Animales de Enfermedad , Proteínas del Tejido Nervioso/genética , Encéfalo/patología , Encéfalo/metabolismo
4.
J Biol Chem ; 299(5): 104705, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059180

RESUMEN

The DNA mismatch repair (MMR) system is a major DNA repair system that suppresses both inherited and sporadic cancers in humans. In eukaryotes, the MutSα-dependent and MutSß-dependent MMR pathways correct DNA polymerase errors. Here, we investigated these two pathways on a whole genome level in Saccharomyces cerevisiae. We found that inactivation of MutSα-dependent MMR increases the genome-wide mutation rate by ∼17-fold and loss of MutSß-dependent MMR elevates the genome-wide mutation rate by ∼4-fold. We also found that MutSα-dependent MMR does not show a preference for protecting coding or noncoding DNA from mutations, whereas MutSß-dependent MMR preferentially protects noncoding DNA from mutations. The most frequent mutations in the msh6Δ strain are C>T transitions, whereas 1- to 6-bp deletions are the most common genetic alterations in the msh3Δ strain. Strikingly, MutSα-dependent MMR is more important than MutSß-dependent MMR for protection from 1-bp insertions, while MutSß-dependent MMR has a more critical role in the defense against 1-bp deletions and 2- to 6-bp indels. We also determined that a mutational signature of yeast MSH6 loss is similar to mutational signatures of human MMR deficiency. Furthermore, our analysis showed that compared to other 5'-NCN-3' trinucleotides, 5'-GCA-3' trinucleotides are at the highest risk of accumulating C>T transitions at the central position in the msh6Δ cells and that the presence of a G/A base at the -1 position is important for the efficient MutSα-dependent suppression of C>T transitions. Our results highlight key differences between the roles of the MutSα-dependent and MutSß-dependent MMR pathways.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo
5.
Gastroenterol Hepatol ; 47(4): 397-400, 2024 Apr.
Artículo en Inglés, Español | MEDLINE | ID: mdl-37597744

RESUMEN

Recently, biallelic MSH3 germline pathogenic/likely pathogenic variants have been recognized as a rare cause of adenomatous polyposis. We present a 49-year-old woman who was admitted to our high-risk colorectal cancer clinic after incidental detection of a biallelic MSH3 (likely) pathogenic variant when tested for the germline (likely) pathogenic variants in hereditary breast and ovarian cancer related genes. The focus of this case report is to describe the genotype and phenotype of our patient with MSH3-related adenomatous polyposis. More than half of the polyps (13/19) were located in the right colon. In addition, benign and malignant extraintestinal lesions may be common as our patient had simple liver and kidney cysts and two basal cell skin carcinomas.


Asunto(s)
Poliposis Adenomatosa del Colon , Pólipos del Colon , Neoplasias Colorrectales , Femenino , Humanos , Persona de Mediana Edad , Pólipos del Colon/genética , Poliposis Adenomatosa del Colon/complicaciones , Poliposis Adenomatosa del Colon/genética , Genotipo , Fenotipo , Neoplasias Colorrectales/genética , Proteína 3 Homóloga de MutS/genética
6.
Molecules ; 26(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202689

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide. One of its subtypes is associated with defective mismatch repair (dMMR) genes. Saffron has many potentially protective roles against colon malignancy. However, these roles in the context of dMMR tumors have not been explored. In this study, we aimed to investigate the effects of saffron and its constituents in CRC cell lines with dMMR. METHODS: Saffron crude extracts and specific compounds (safranal and crocin) were used in the human colorectal cancer cell lines HCT116, HCT116+3 (inserted MLH1), HCT116+5 (inserted MSH3), and HCT116+3+5 (inserted MLH1 and MSH3). CDC25b, p-H2AX, TPDP1, and GAPDH were analyzed by Western blot. Proliferation and cytotoxicity were analyzed by MTT. The scratch wound assay was also performed. RESULTS: Saffron crude extracts restricted (up to 70%) the proliferation in colon cells with deficient MMR (HCT116) compared to proficient MMR. The wound healing assay indicates that deficient MMR cells are doing better (up to 90%) than proficient MMR cells when treated with saffron. CDC25b and TDP1 downregulated (up to 20-fold) in proficient MMR cells compared to deficient MMR cells, while p.H2AX was significantly upregulated in both cell types, particularly at >10 mg/mL saffron in a concentration-dependent manner. The reduction in cellular proliferation was accompanied with upregulation of caspase 3 and 7. The major active saffron compounds, safranal and crocin reproduced most of the saffron crude extracts' effects. CONCLUSIONS: Saffron's anti-proliferative effect is significant in cells with deficient MMR. This novel effect may have therapeutic implications and benefits for MSI CRC patients who are generally not recommended for the 5-fluorouracil-based treatment.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Crocus/química , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Inestabilidad de Microsatélites/efectos de los fármacos , Extractos Vegetales/farmacología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Células HCT116 , Humanos , Extractos Vegetales/química
7.
Hum Mutat ; 40(11): 1910-1923, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31243857

RESUMEN

Technological advances have allowed the identification of new adenomatous and serrated polyposis genes, and of several candidate genes that require additional supporting evidence of causality. Through an exhaustive literature review and mutational screening of 177 unrelated polyposis patients, we assessed the involvement of MCM9, FOCAD, POLQ, and RNF43 in the predisposition to (nonserrated) colonic polyposis, as well as the prevalence of NTHL1 and MSH3 mutations among genetically unexplained polyposis patients. Our results, together with previously reported data and mutation frequency in controls, indicate that: MCM9 and POLQ mutations are not associated with polyposis; germline RNF43 mutations, with a prevalence of 1.5-2.5% among serrated polyposis patients, do not cause nonserrated polyposis; MSH3 biallelic mutations are highly infrequent among European polyposis patients, and the prevalence of NTHL1 biallelic mutations among unexplained polyposes is ~2%. Although nonsignificant, FOCAD predicted deleterious variants are overrepresented in polyposis patients compared to controls, warranting larger studies to provide definite evidence in favor or against their causal association with polyposis predisposition.


Asunto(s)
Poliposis Adenomatosa del Colon/epidemiología , Poliposis Adenomatosa del Colon/genética , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Predisposición Genética a la Enfermedad , Proteína 3 Homóloga de MutS/genética , Mutación , Poliposis Adenomatosa del Colon/diagnóstico , Biomarcadores , ADN Polimerasa Dirigida por ADN/genética , Estudios de Asociación Genética , Humanos , Variantes Farmacogenómicas , Prevalencia , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , ADN Polimerasa theta
8.
Mol Carcinog ; 56(7): 1816-1824, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28224663

RESUMEN

Germline mutations of MLH1 are responsible for tumor generation in nearly 50% of patients with Lynch Syndrome, and around 15% of sporadic colorectal cancers show MLH1-deficiency due to promotor hypermethylation. Although these tumors are of lower aggressiveness the benefit for these patients from standard chemotherapy is still under discussion. Recently, it was shown that the sensitivity to the DNA-PKcs inhibitor KU60648 is linked to loss of the MMR protein MSH3. However, loss of MSH3 is rather secondary, as a consequence of MMR-deficiency, and frequently detectable in MLH1-deficient tumors. Therefore, we examined the expression of MLH1, MSH2, MSH6, and MSH3 in different MMR-deficient and proficient cell lines and determined their sensitivity to KU60648 by analyzing cell viability and survival. MLH1-dependent ability of double strand break (DSB) repair was monitored after irradiation via γH2AX detection. A panel of 12 colon cancer cell lines, two pairs of cells, where MLH1 knock down was compared to controls with the same genetic background, and one MLH1-deficient cell line where MLH1 was overexpressed, were included. In summary, we found that MLH1 and/or MSH3-deficient cells exhibited a significantly higher sensitivity to KU60648 than MMR-proficient cells and that overexpression of MLH1 in MLH1-deficient cells resulted in a decrease of cell sensitivity. KU60648 efficiency seems to be associated with reduced DSB repair capacity. Since the molecular testing of colon tumors for MLH1 expression is a clinical standard we believe that MLH1 is a much better marker and a greater number of patients would benefit from KU60648 treatment.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Homólogo 1 de la Proteína MutL/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Humanos , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , ARN Interferente Pequeño/genética , Células Tumorales Cultivadas
9.
FEMS Yeast Res ; 16(6)2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27573382

RESUMEN

Mismatch repair (MMR) systems correct DNA mismatches that result from DNA polymerase misincorporation errors. Mismatches also appear in heteroduplex DNA intermediates formed during recombination between nearly identical sequences, and can be corrected by MMR or removed through an unwinding mechanism, known as anti-recombination or heteroduplex rejection. We review studies, primarily in baker's yeast, which support how specific factors can regulate the MMR/anti-recombination decision. Based on recent advances, we present models for how DNA structure, relative amounts of key repair proteins, the timely localization of repair proteins to DNA substrates and epigenetic marks can modulate this critical decision.

10.
Int J Cancer ; 137(4): 810-8, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25598504

RESUMEN

We examined the influence of MLH1 c.-93G>A, MSH2 c.211 + 9C>G, MSH3 c.3133G>A and EXO1 c.1765G>A polymorphisms, involved in DNA mismatch repair (MMR), on head and neck (HN) squamous cell carcinoma (SCC) risk and prognosis. Aiming to identify genotypes, DNA from 450 HNSCC patients and 450 controls was analyzed by PCR-RFLP or real time PCR. MSH2 GG plus MSH3 GG (31.7% vs. 18.7%, p = 0.003) genotypes were higher in laryngeal SCC (LSCC) patients than in controls. Carriers of the respective combined genotype were under a 3.69 (95% CI: 1.54-8.81)-fold increased risk of LSCC. Interactions of tobacco and tobacco plus all the above-mentioned polymorphisms on HNSCC and LSCC risk were also evident in study (p = 0.001). At 60 months of follow-up, relapse-free survival (RFS) was shorter in patients with EXO1 GG genotype (54.8% vs. 61.1%, p = 0.03) and overall survival (OS) was shorter in patients with MSH3 GG genotype (42.8% vs. 52.5%, p = 0.02) compared to those with other genotypes, respectively. After multivariate Cox analysis, patients with EXO1 GG and MSH3 GG genotypes had worst RFS (HR: 1.50, 95% CI: 1.03-2.20, p = 0.03) and OS (HR: 1.59, 95% CI: 1.19-2.13, P = 0.002) than those with the remaining genotypes, respectively. Our data present, for the first time, evidence that inherited MLH1 c.-93G>A, MSH2 c.211 + 9C>G, MSH3 c.3133G>A, and EXO1 c.1765G>A abnormalities of DNA MMR pathway are important determinants of HNSCC, particularly among smokers, and predictors of patient outcomes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma de Células Escamosas/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/genética , Neoplasias de Cabeza y Cuello/genética , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/patología , Supervivencia sin Enfermedad , Femenino , Estudios de Asociación Genética , Genotipo , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad , Homólogo 1 de la Proteína MutL , Proteína 3 Homóloga de MutS , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Polimorfismo de Nucleótido Simple , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello
11.
Sci Rep ; 14(1): 16164, 2024 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003369

RESUMEN

The present study investigated the relationship between MSH3 and MSH6 genes in lung cancer patients. Genotyping of lung cancer patients and healthy controls was performed. Odds ratio values were calculated and survival analysis performed. Patients with mutant genotype (TT) for MSH6 polymorphism have 1.5-fold risk for the development of lung cancer (p = 0.03). For non-smokers, the mutant-type genotype had a threefold increased risk of lung cancer (p = 0.01). Patients administered with docetaxel and carbo/cisplatin and carrying GT genotype for MSH6 polymorphism, patients reported a decrease in median survival time (4.9 vs 9.13 months). MSH3 and MSH6 polymorphisms are involved in modulating the risk towards lung cancer. MSH6 polymorphism is associated with high mortality rate for patients undergoing cisplatin and docetaxel chemotherapy.


Asunto(s)
Cisplatino , Proteínas de Unión al ADN , Predisposición Genética a la Enfermedad , Neoplasias Pulmonares , Proteína 3 Homóloga de MutS , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Femenino , Cisplatino/uso terapéutico , Proteína 3 Homóloga de MutS/genética , Proteínas de Unión al ADN/genética , Polimorfismo de Nucleótido Simple , Docetaxel/uso terapéutico , India/epidemiología , Anciano , Estudios de Casos y Controles , Genotipo , Adulto , Carboplatino/uso terapéutico
12.
Surg Case Rep ; 10(1): 93, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647838

RESUMEN

BACKGROUND: APC and MUTYH are both well-known colorectal polyposis causative genes. However, 30-50% of colorectal adenomatous polyposis cases are classified as colonic adenomatous polyposis of unknown etiology and lack identifiable pathogenic variants. Although guidelines recommend total proctocolectomy for colonic adenomatous polyposis of unknown etiology with over 100 adenomas, evidence is lacking. This study presents a unique case of localized colonic adenomatous polyposis of unknown etiology with multiple adenocarcinomas, treated with hemicolectomy and regional lymph node dissection. CASE PRESENTATION: The patient was a 72-year-old woman whose colonoscopy revealed numerous polyps and two adenocarcinomas localized in the right side of the colon, with no lesions in the left side. The patient had no family history of polyposis or colorectal cancer. No extracolonic lesions, enlarged lymph nodes, or distant metastases were found. Considering the patient's age and lesion localization, laparoscopic right hemicolectomy with regional lymph node dissection was performed. Histopathological diagnosis revealed three adenocarcinoma lesions with no lymph node metastasis. The most advanced pathological stage was T2N0M0 Stage I (UICC 8th edition). The patient was alive 5 years postoperatively, without recurrence of cancer or polyposis in the remaining colon and rectum. To diagnose hereditary colorectal cancer/polyposis, a germline multigene panel testing for APC, EPCAM, MBD4, MLH1, MLH3, MSH2, MSH3, MSH6, MUTYH, NTHL1, PMS2, POLD1, POLE, and TP53 was performed using DNA extracted from blood samples: however, no pathogenic variant was detected. Therefore, the patient was diagnosed with colonic adenomatous polyposis of unknown etiology. CONCLUSIONS: In this rare case, colonic adenomatous polyposis of unknown etiology, with numerous adenomatous polyps and multiple adenocarcinomas localized in the right side of the colon, was successfully treated with right hemicolectomy and regional lymph node dissection. Despite genetic analysis, no causative germline variants were identified. Segmental colectomy according to the distribution of polyps might be a curative approach.

13.
Neoplasia ; 49: 100970, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38281411

RESUMEN

The maintenance of DNA sequence integrity is critical to avoid accumulation of cancer-causing mutations. Inactivation of DNA Mismatch Repair (MMR) genes (e.g., MLH1 and MSH2) is common among many cancers, including colorectal cancer (CRC) and is the driver of classic microsatellite instability (MSI) in tumors. Somatic MSH3 alterations have been linked to a specific form of MSI called elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) that is associated with patient poor prognosis and elevated among African American (AA) rectal cancer patients. Genetic variants of MSH3 and their pathogenicity vary among different populations, such as among AA, which are not well-represented in publicly available databases. Targeted exome sequencing of MSH3 among AA CRC samples followed by computational bioinformatic pipeline and molecular dynamic simulation analysis approach confirmed six identified MSH3 variants (c.G1237A, c.C2759T, c.G1397A, c.G2926A, c.C3028T, c.G3241A) that corresponded to MSH3 amino-acid changes (p.E413K; p.S466N; p.S920F; p.E976K; p.H1010Y; p.E1081K). All identified MSH3 variants were non-synonymous, novel, pathogenic, and show loss or gain of hydrogen bonding, ionic bonding, hydrophobic bonding, and disulfide bonding and have a deleterious effect on the structure of MSH3 protein. Some variants were located within the ATPase site of MSH3, affecting ATP hydrolysis that is critical for MSH3's function. Other variants were in the MSH3-MSH2 interacting domain, important for MSH3's binding to MSH2. Overall, our data suggest that these variants among AA CRC patients affect the function of MSH3 making them pathogenic and likely contributing to the development or advancement of CRC among AA. Further clarifying functional studies will be necessary to fully understand the impact of these variants on MSH3 function and CRC development in AA patients.


Asunto(s)
Negro o Afroamericano , Neoplasias Colorrectales , Humanos , Negro o Afroamericano/genética , Neoplasias Colorrectales/etnología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Inestabilidad de Microsatélites , Repeticiones de Microsatélite , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS/genética , Proteína 3 Homóloga de MutS/metabolismo , Virulencia
14.
Cancers (Basel) ; 16(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199686

RESUMEN

Microsatellite instability (MSI) has been recognized as an important factor in colorectal cancer (CRC). It arises due to deficient mismatch repair (MMR), mostly attributed to MLH1 and MSH2 loss of function leading to a global MMR defect affecting mononucleotide and longer microsatellite loci. Recently, microsatellite instability at tetranucleotide loci, independent of the global MMR defect context, has been suggested to represent a distinct entity with possibly different consequences for tumorigenesis. It arises as a result of an isolated MSH3 loss of function due to its translocation from the nucleus to the cytoplasm under the influence of interleukin-6 (IL-6). In this study the influence of MSH3 and IL-6 signaling pathway polymorphisms (MSH3 exon 1, MSH3+3133A/G, IL-6-174G/C, IL-6R+48892A/C, and gp130+148G/C) on the occurrence of different types of microsatellite instability in sporadic CRC was examined by PCR-RFLP and real-time PCR SNP analyses. A significant difference in distribution of gp130+148G/C genotypes (p = 0.037) and alleles (p = 0.031) was observed in CRC patients with the C allele being less common in tumors with di- and tetranucleotide instability (isolated MSH3 loss of function) compared to tumors without microsatellite instability. A functional polymorphism in gp130 might modulate the IL-6 signaling pathway, directing it toward the occurrence of microsatellite instability corresponding to the IL-6-mediated MSH3 loss of function.

15.
Fam Cancer ; 22(1): 49-54, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35675019

RESUMEN

Biallelic MSH3 germline variants are a rare cause of adenomatous polyposis as yet reported in two small families only. We describe the phenotype of a third family, the largest thus far, with adenomatous polyposis related to compound heterozygous MSH3 pathogenic variants. The index patient was a 55-years old male diagnosed with rectal cancer and adenomatous polyposis (cumulatively 52 polyps), with a family history of colorectal polyposis with unknown cause. Next-generation sequencing and copy number variation analysis of a panel of genes associated with colorectal cancer and polyposis revealed compound heterozygous germline pathogenic variants in the MSH3 gene. Nine out of 11 siblings were genotyped. Three siblings carried the same compound heterozygous MSH3 variants. Colonoscopy screening showed predominantly right-sided adenomatous polyposis in all compound heterozygous siblings, with a cumulative number of adenomas ranging from 18 to 54 in an average of four colonoscopies, and age at first adenoma detection ranging from 46 to 59. Microsatellite analysis demonstrated alterations at selected tetranucleotide repeats (EMAST) in DNA retrieved from the rectal adenocarcinoma, colorectal adenomas as well as of normal colonic mucosa. Gastro-duodenoscopy did not reveal adenomas in any of the four patients. Extra-intestinal findings included a ductal adenocarcinoma in ectopic breast tissue in one female sibling at the age of 46, and liver cysts in three affected siblings. None of the three heterozygous or wild type siblings who previously underwent colonoscopy had adenomatous polyposis. We conclude that biallelic variants in MSH3 are a rare cause of attenuated adenomatous polyposis with an onset in middle age.


Asunto(s)
Adenocarcinoma , Adenoma , Poliposis Adenomatosa del Colon , Neoplasias Colorrectales , Masculino , Humanos , Femenino , Variaciones en el Número de Copia de ADN , Poliposis Adenomatosa del Colon/diagnóstico , Neoplasias Colorrectales/genética , Adenoma/genética , Proteína 3 Homóloga de MutS/genética
16.
Genes (Basel) ; 14(7)2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37510378

RESUMEN

Microsatellite instability (MSI) represents an accumulation of frameshifts in short tandem repeats, microsatellites, across the genome due to defective DNA mismatch repair (dMMR). MSI has been associated with distinct clinical, histological, and molecular features of tumors and has proven its prognostic and therapeutic value in different types of cancer. Recently, another type of microsatellite instability named elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) has been reported across many different tumors. EMAST tumors have been associated with chronic inflammation, higher tumor stage, and poor prognosis. Nevertheless, the clinical significance of EMAST and its relation to MSI remains unclear. It has been proposed that EMAST arises as a result of isolated MSH3 dysfunction or as a secondary event in MSI tumors. Even though previous studies have associated EMAST with MSI-low phenotype in tumors, recent studies show a certain degree of overlap between EMAST and MSI-high tumors. However, even in stable tumors, (MSS) frameshifts in microsatellites can be detected as a purely stochastic event, raising the question of whether EMAST truly represents a distinct type of microsatellite instability. Moreover, a significant fraction of patients with MSI tumors do not respond to immunotherapy and it can be speculated that in these tumors, EMAST might act as a modifying factor.


Asunto(s)
Neoplasias Colorrectales , Inestabilidad de Microsatélites , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Repeticiones de Microsatélite/genética , Pronóstico , Reparación de la Incompatibilidad de ADN/genética
17.
FEBS J ; 289(18): 5682-5696, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35334159

RESUMEN

The pathology of age-related cataract (ARC) mainly involves the misfolding and aggregation of proteins, especially oxidative damage repair proteins, in the lens, induced by ultraviolet-B (UVB). MSH3, as a key member of the mismatch repair family, primarily maintains genome stability. However, the function of MSH3 and the mechanism by which cells maintain MSH3 proteostasis during cataractogenesis remains unknown. In the present study, the protein expression levels of MSH3 were found to be attenuated in ARC specimens and SRA01/04 cells under UVB exposure. The ectopic expression of MSH3 notably impeded UVB-induced apoptosis, whereas the knockdown of MSH3 promoted apoptosis. Protein half-life assay revealed that UVB irradiation accelerated the decline of MSH3 by ubiquitination and degradation. Subsequently, we found that E3 ubiquitin ligase synoviolin (SYVN1) interacted with MSH3 and promoted its ubiquitination and degradation. Of note, the expression and function of SYVN1 were contrary to those of MSH3 and SYVN1 regulated MSH3 protein degradation via the ubiquitin-proteasome pathway and the autophagy-lysosome pathway. Based on these findings, we propose a mechanism for ARC pathogenesis that involves SYVN1-mediated degradation of MSH3 via the ubiquitin-proteasome pathway and the autophagy-lysosome pathway, and suggest that interventions targeting SYVN1 might be a potential therapeutic strategy for ARC.


Asunto(s)
Catarata , Complejo de la Endopetidasa Proteasomal , Apoptosis/genética , Catarata/metabolismo , Células Epiteliales/metabolismo , Humanos , Proteína 3 Homóloga de MutS/genética , Proteína 3 Homóloga de MutS/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo
18.
Brain Commun ; 4(6): fcac279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36519153

RESUMEN

An important step towards the development of treatments for cognitive impairment in ageing and neurodegenerative diseases is to identify genetic and environmental modifiers of cognitive function and understand the mechanism by which they exert an effect. In Huntington's disease, the most common autosomal dominant dementia, a small number of studies have identified intellectual enrichment, i.e. a cognitively stimulating lifestyle and genetic polymorphisms as potential modifiers of cognitive function. The aim of our study was to further investigate the relationship and interaction between genetic factors and intellectual enrichment on cognitive function and brain atrophy in Huntington's disease. For this purpose, we analysed data from Track-HD, a multi-centre longitudinal study in Huntington's disease gene carriers and focused on the role of intellectual enrichment (estimated at baseline) and the genes FAN1, MSH3, BDNF, COMT and MAPT in predicting cognitive decline and brain atrophy. We found that carrying the 3a allele in the MSH3 gene had a positive effect on global cognitive function and brain atrophy in multiple cortical regions, such that 3a allele carriers had a slower rate of cognitive decline and atrophy compared with non-carriers, in agreement with its role in somatic instability. No other genetic predictor had a significant effect on cognitive function and the effect of MSH3 was independent of intellectual enrichment. Intellectual enrichment also had a positive effect on cognitive function; participants with higher intellectual enrichment, i.e. those who were better educated, had higher verbal intelligence and performed an occupation that was intellectually engaging, had better cognitive function overall, in agreement with previous studies in Huntington's disease and other dementias. We also found that intellectual enrichment interacted with the BDNF gene, such that the positive effect of intellectual enrichment was greater in Met66 allele carriers than non-carriers. A similar relationship was also identified for changes in whole brain and caudate volume; the positive effect of intellectual enrichment was greater for Met66 allele carriers, rather than for non-carriers. In summary, our study provides additional evidence for the beneficial role of intellectual enrichment and carrying the 3a allele in MSH3 in cognitive function in Huntington's disease and their effect on brain structure.

19.
Front Virol ; 22022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39176223

RESUMEN

Among numerous point mutation differences between the SARS-CoV-2 and the bat RaTG13 coronavirus, only the 12-nucleotide furin cleavage site (FCS) exceeds 3 nucleotides. A BLAST search revealed that a 19 nucleotide portion of the SARS.Cov2 genome encompassing the furing cleavage site is a 100% complementary match to a codon-optimized proprietary sequence that is the reverse complement of the human mutS homolog (MSH3). The reverse complement sequence present in SARS-CoV-2 may occur randomly but other possibilities must be considered. Recombination in an intermediate host is an unlikely explanation. Single stranded RNA viruses such as SARS-CoV-2 utilize negative strand RNA templates in infected cells, which might lead through copy choice recombination with a negative sense SARS-CoV-2 RNA to the integration of the MSH3 negative strand, including the FCS, into the viral genome. In any case, the presence of the 19-nucleotide long RNA sequence including the FCS with 100% identity to the reverse complement of the MSH3 mRNA is highly unusual and requires further investigations.

20.
Hum Pathol ; 118: 9-17, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34537247

RESUMEN

Immunohistochemical evaluation of mismatch repair protein (MMR) expression is an important screening tool in diagnostic pathology, where it is routinely used to identify subsets of colorectal cancers (CRCs) with either inherited or sporadic forms of microsatellite instability (MSI). MSH3 is not included in current MMR panels, although aberrant MSH3 expression is reported to occur in 40-60% of CRCs and is associated with elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) and a worse prognosis. In this study, we applied MSH3 immunohistochemistry and tetranucleotide MSI analysis to a cohort of 250 unselected CRCs to evaluate the potential use of the methods in routine practice. Partial, complete, and focal loss of nuclear MSH3 and its cytoplasmic mislocalization were evident in 67% of tumors, whereas MSI was evident in two to six of a panel of six tetranucleotide repeats in 46% of cases. However, concordance between MSH3 immunohistochemistry and tetranucleotide MSI results was only 61%, indicating the unsuitability of this combination of tests in routine pathology practice. MSH3 immunostaining was compromised in areas of tissue crush and autolysis, which are common in biopsy and surgical samples, potentially mitigating against its routine use. Although tetranucleotide MSI is clearly evident in a subset of CRCs, further development of validated sets of tetranucleotide repeats and either MSH3 or other immunohistochemical markers will be required to include EMAST testing in the routine evaluation of CRCs in clinical practice.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Colorrectales , Inmunohistoquímica/métodos , Inestabilidad de Microsatélites , Proteína 3 Homóloga de MutS/análisis , Reacción en Cadena de la Polimerasa/métodos , Artefactos , Humanos , Repeticiones de Microsatélite
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA