Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Biol Evol ; 38(7): 2986-3003, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33591322

RESUMEN

Current procedures for inferring population history generally assume complete neutrality-that is, they neglect both direct selection and the effects of selection on linked sites. We here examine how the presence of direct purifying selection and background selection may bias demographic inference by evaluating two commonly-used methods (MSMC and fastsimcoal2), specifically studying how the underlying shape of the distribution of fitness effects and the fraction of directly selected sites interact with demographic parameter estimation. The results show that, even after masking functional genomic regions, background selection may cause the mis-inference of population growth under models of both constant population size and decline. This effect is amplified as the strength of purifying selection and the density of directly selected sites increases, as indicated by the distortion of the site frequency spectrum and levels of nucleotide diversity at linked neutral sites. We also show how simulated changes in background selection effects caused by population size changes can be predicted analytically. We propose a potential method for correcting for the mis-inference of population growth caused by selection. By treating the distribution of fitness effect as a nuisance parameter and averaging across all potential realizations, we demonstrate that even directly selected sites can be used to infer demographic histories with reasonable accuracy.


Asunto(s)
Demografía/métodos , Aptitud Genética , Técnicas Genéticas , Modelos Genéticos , Selección Genética , Teorema de Bayes , Tamaño del Genoma , Cadenas de Markov , Polimorfismo de Nucleótido Simple
2.
Mol Ecol ; 30(23): 6309-6324, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34390519

RESUMEN

Population and conservation genetics studies have greatly benefited from the development of new techniques and bioinformatic tools associated with next-generation sequencing. Analysis of extensive data sets from whole-genome sequencing of even a few individuals allows the detection of patterns of fine-scale population structure and detailed reconstruction of demographic dynamics through time. In this study, we investigated the population structure, genomic diversity and demographic history of the Komodo dragon (Varanus komodoensis), the world's largest lizard, by sequencing the whole genomes of 24 individuals from the five main Indonesian islands comprising the entire range of the species. Three main genomic groups were observed. The populations of the Island of Komodo and the northern coast of Flores, in particular, were identified as two distinct conservation units. Degrees of genomic divergence among island populations were interpreted as a result of changes in sea level affecting connectivity across islands. Demographic inference suggested that Komodo dragons probably experienced a relatively steep population decline over the last million years, reaching a relatively stable Ne during the Saalian glacial cycle (400-150 thousand years ago) followed by a rapid Ne decrease. Genomic diversity of Komodo dragons was similar to that found in endangered or already extinct reptile species. Overall, this study provides an example of how whole-genome analysis of a few individuals per population can help define population structure and intraspecific demographic dynamics. This is particularly important when applying population genomics data to conservation of rare or elusive endangered species.


Asunto(s)
Genoma , Lagartos , Animales , Demografía , Genómica , Humanos , Lagartos/genética , Secuenciación Completa del Genoma
3.
Molecules ; 24(6)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897753

RESUMEN

The Naoxinqing (NXQ) tablet is a standardised proprietary herbal product containing an extract of persimmon leaves (Diospyros kaki) for the management of cardio- and cerebrovascular diseases. Although previous reports suggested that the efficacy of NXQ is at least partly mediated by its anti-oxidative property, the anti-oxidative effect of the major components of NXQ has not been studied systematically. For quality control purposes, only analytical methods limited to 3 marker analytes have been reported, the extent to which the other components affect efficacy has not been explored. In this study, we developed an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC MS/MS) method for the identification of seven analytes (kaempferol-3-O-glucoside (astragalin), quercetin-3-O-galactoside (hypericin), quercetin-3-O-glucoside (isoquercitin), kaempferol, 3,4-dihydroxybenzoic acid (protocatechuic acid), and furan-2-carboxylic acid (pyromucic acid) and quercetin) in the NXQ. This is the first method reported and validated for the quantification of the seven major secondary metabolites in NXQ. The results for the quantified analytes were then compared in 15 different batches of NXQ. The variation observed in the seven components highlights the need to quantify key bioactive components to ensure product consistency. Radical scavenging activity and abundance was used to rank the analytes. The anti-oxidative effects of NXQ were examined using cultured human vascular endothelial cells (EA.hy926). Corrected 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) activity results revealed that quercetin and kaempferol have the strongest anti-oxidant capacity in the extract. Both quercetin and kaempferol significantly inhibited the hydrogen peroxide (H2O2)-induced EA.hy926 cell injury and intracellular reactive oxygen species (ROS) generation. In conclusion, we established and validated an UPLC-MS/MC method for the analysis of major bioactive components in the NXQ and demonstrated that its anti-oxidative property may play a critical role in cerebrovascular protection.


Asunto(s)
Diospyros/química , Medicamentos Herbarios Chinos/química , Extractos Vegetales/química , Hojas de la Planta/química , Antracenos , Línea Celular , Cromatografía Líquida de Alta Presión , Humanos , Hidroxibenzoatos/química , Quempferoles/química , Perileno/análogos & derivados , Perileno/química , Quercetina/análogos & derivados , Quercetina/química , Especies Reactivas de Oxígeno , Espectrometría de Masas en Tándem
4.
Ecol Evol ; 13(2): e9778, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36744081

RESUMEN

Understanding historical range shifts and population size variation provides an important context for interpreting contemporary genetic diversity. Methods to predict changes in species distributions and model changes in effective population size (N e) using whole genomes make it feasible to examine how temporal dynamics influence diversity across populations. We investigate N e variation and climate-associated range shifts to examine the origins of a previously observed latitudinal heterozygosity gradient in the bumble bee Bombus vancouverensis Cresson (Hymenoptera: Apidae: Bombus Latreille) in western North America. We analyze whole genomes from a latitude-elevation cline using sequentially Markovian coalescent models of N e through time to test whether relatively low diversity in southern high-elevation populations is a result of long-term differences in N e. We use Maxent models of the species range over the last 130,000 years to evaluate range shifts and stability. N e fluctuates with climate across populations, but more genetically diverse northern populations have maintained greater N e over the late Pleistocene and experienced larger expansions with climatically favorable time periods. Northern populations also experienced larger bottlenecks during the last glacial period, which matched the loss of range area near these sites; however, bottlenecks were not sufficient to erode diversity maintained during periods of large N e. A genome sampled from an island population indicated a severe postglacial bottleneck, indicating that large recent postglacial declines are detectable if they have occurred. Genetic diversity was not related to niche stability or glacial-period bottleneck size. Instead, spatial expansions and increased connectivity during favorable climates likely maintain diversity in the north while restriction to high elevations maintains relatively low diversity despite greater stability in southern regions. Results suggest genetic diversity gradients reflect long-term differences in N e dynamics and also emphasize the unique effects of isolation on insular habitats for bumble bees. Patterns are discussed in the context of conservation under climate change.

5.
G3 (Bethesda) ; 11(10)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34568914

RESUMEN

The bluefin trevally, Caranx melampygus, also known as the bluefin kingfish or bluefin jack, is known for its remarkable, bright-blue fins. This marine teleost is a widely prized sportfish, but few resources have been devoted to the genomics and conservation of this species because it is not targeted by large-scale commercial fisheries. Population declines from recreational and artisanal overfishing have been observed in Hawai'i, USA, resulting in both an interest in aquaculture and concerns about the long-term conservation of this species. Most research to-date has been performed in Hawai'i, raising questions about the status of bluefin trevally populations across its Indo-Pacific range. Genomic resources allow for expanded research on stock status, genetic diversity, and population demography. We present a high quality, 711 Mb nuclear genome assembly of a Hawaiian bluefin trevally from noisy long-reads with a contig NG50 of 1.2 Mb and longest contig length of 8.9 Mb. As measured by single-copy orthologs, the assembly was 95% complete, and the genome is comprised of 16.9% repetitive elements. The assembly was annotated with 33.1 K protein-coding genes, 71.4% of which were assigned putative functions, using RNA-seq data from eight tissues from the same individual. This is the first whole-genome assembly published for the carangoid genus Caranx. Using this assembled genome, a multiple sequentially Markovian coalescent model was implemented to assess population demography. Estimates of effective population size suggest population expansion has occurred since the Late Pleistocene. This genome will be a valuable resource for comparative phylogenomic studies of carangoid fishes and will help elucidate demographic history and delineate stock structure for bluefin trevally populations throughout the Indo-Pacific.


Asunto(s)
Conservación de los Recursos Naturales , Perciformes , Animales , Explotaciones Pesqueras , Peces/genética , Genoma , Perciformes/genética
6.
Genetics ; 205(1): 385-395, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28049708

RESUMEN

Phased haplotype sequences are a key component in many population genetic analyses since variation in haplotypes reflects the action of recombination, selection, and changes in population size. In humans, haplotypes are typically estimated from unphased sequence or genotyping data using statistical models applied to large reference panels. To assess the importance of correct haplotype phase on population history inference, we performed fosmid pool sequencing and resolved phased haplotypes of five individuals from diverse African populations (including Yoruba, Esan, Gambia, Maasai, and Mende). We physically phased 98% of heterozygous SNPs into haplotype-resolved blocks, obtaining a block N50 of 1 Mbp. We combined these data with additional phased genomes from San, Mbuti, Gujarati, and Centre de'Etude du Polymorphism Humain European populations and analyzed population size and separation history using the pairwise sequentially Markovian coalescent and multiple sequentially Markovian coalescent models. We find that statistically phased haplotypes yield a more recent split-time estimation compared with experimentally phased haplotypes. To better interpret patterns of cross-population coalescence, we implemented an approximate Bayesian computation approach to estimate population split times and migration rates by fitting the distribution of coalescent times inferred between two haplotypes, one from each population, to a standard isolation-with-migration model. We inferred that the separation between hunter-gatherer populations and other populations happened ∼120-140 KYA, with gene flow continuing until 30-40 KYA; separation between west-African and out-of-African populations happened ∼70-80 KYA; while the separation between Maasai and out-of-African populations happened ∼50 KYA.


Asunto(s)
Genética de Población/métodos , Genoma Humano , Modelos Genéticos , Teorema de Bayes , Población Negra/genética , Genotipo , Haplotipos , Humanos , Masculino , Polimorfismo de Nucleótido Simple
7.
Indian Heart J ; 67 Suppl 3: S89-91, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26995445

RESUMEN

Insulation break in a permanent pacemaker lead is a rare long-term complication. We describe an elderly male with a VVIR pacemaker, who presented with an episode of presyncope more than 3 years after the initial implantation procedure, attributed to insulation break possibly caused by lead entrapment in components of the medial subclavicular musculotendinous complex (MSMC) and repeated compressive damage over time during ipsilateral arm movement requiring lead replacement. The differential diagnosis of a clinical presentation when pacing stimuli are present with failure to capture and the role of the MSMC in causing lead damage late after implantation are discussed.


Asunto(s)
Bloqueo Cardíaco/terapia , Marcapaso Artificial/efectos adversos , Anciano , Remoción de Dispositivos , Electrocardiografía , Falla de Equipo , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA