Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.349
Filtrar
Más filtros

Intervalo de año de publicación
1.
Brain ; 147(4): 1412-1422, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37956080

RESUMEN

Cortical myoclonus is produced by abnormal neuronal discharges within the sensorimotor cortex, as demonstrated by electrophysiology. Our hypothesis is that the loss of cerebellar inhibitory control over the motor cortex, via cerebello-thalamo-cortical connections, could induce the increased sensorimotor cortical excitability that eventually causes cortical myoclonus. To explore this hypothesis, in the present study we applied anodal transcranial direct current stimulation over the cerebellum of patients affected by cortical myoclonus and healthy controls and assessed its effect on sensorimotor cortex excitability. We expected that anodal cerebellar transcranial direct current stimulation would increase the inhibitory cerebellar drive to the motor cortex and therefore reduce the sensorimotor cortex hyperexcitability observed in cortical myoclonus. Ten patients affected by cortical myoclonus of various aetiology and 10 aged-matched healthy control subjects were included in the study. All participants underwent somatosensory evoked potentials, long-latency reflexes and short-interval intracortical inhibition recording at baseline and immediately after 20 min session of cerebellar anodal transcranial direct current stimulation. In patients, myoclonus was recorded by the means of surface EMG before and after the cerebellar stimulation. Anodal cerebellar transcranial direct current stimulation did not change the above variables in healthy controls, while it significantly increased the amplitude of somatosensory evoked potential cortical components, long-latency reflexes and decreased short-interval intracortical inhibition in patients; alongside, a trend towards worsening of the myoclonus after the cerebellar stimulation was observed. Interestingly, when dividing patients in those with and without giant somatosensory evoked potentials, the increment of the somatosensory evoked potential cortical components was observed mainly in those with giant potentials. Our data showed that anodal cerebellar transcranial direct current stimulation facilitates-and does not inhibit-sensorimotor cortex excitability in cortical myoclonus syndromes. This paradoxical response might be due to an abnormal homeostatic plasticity within the sensorimotor cortex, driven by dysfunctional cerebello-thalamo-cortical input to the motor cortex. We suggest that the cerebellum is implicated in the pathophysiology of cortical myoclonus and that these results could open the way to new forms of treatment or treatment targets.


Asunto(s)
Mioclonía , Estimulación Transcraneal de Corriente Directa , Humanos , Anciano , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos , Potenciales Evocados Motores/fisiología , Cerebelo/fisiología
2.
Neurobiol Dis ; 199: 106555, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38844245

RESUMEN

Progressive myoclonus ataxia (PMA) is a rare clinical syndrome characterized by the presence of progressive myoclonus and ataxia, and can be accompanied by mild cognitive impairment and infrequent epileptic seizures. This is the first study to describe the natural history of PMA and identify clinical, electrophysiological, and genetic features explaining the variability in disease progression. A Dutch cohort of consecutive patients meeting the criteria of the refined definition of PMA was included. The current phenotype was assessed during in-person consultation by movement disorders experts, and retrospective data was collected to describe disease presentation and progression, including brain imaging and therapy efficacy. Extensive genetic and electrophysiological tests were performed. The presence of cortical hyperexcitability was determined, by either the identification of a cortical correlate of myoclonic jerks with simultaneous electromyography-electroencephalography or a giant somatosensory evoked potential. We included 34 patients with PMA with a median disease duration of 15 years and a clear progressive course in most patients (76%). A molecular etiology was identified in 82% patients: ATM, CAMTA1, DHDDS, EBF3, GOSR2, ITPR1, KCNC3, NUS1, POLR1A, PRKCG, SEMA6B, SPTBN2, TPP1, ZMYND11, and a 12p13.32 deletion. The natural history is a rather homogenous onset of ataxia in the first two years of life followed by myoclonus in the first 5 years of life. Main accompanying neurological dysfunctions included cognitive impairment (62%), epilepsy (38%), autism spectrum disorder (27%), and behavioral problems (18%). Disease progression showed large variability ranging from an epilepsy free PMA phenotype (62%) to evolution towards a progressive myoclonus epilepsy (PME) phenotype (18%): the existence of a PMA-PME spectrum. Cortical hyperexcitability could be tested in 17 patients, and was present in 11 patients and supported cortical myoclonus. Interestingly, post-hoc analysis showed that an absence of cortical hyperexcitability, suggesting non-cortical myoclonus, was associated with the PMA-end of the spectrum with no epilepsy and milder myoclonus, independent of disease duration. An association between the underlying genetic defects and progression on the PMA-PME spectrum was observed. By describing the natural history of the largest cohort of published patients with PMA so far, we see a homogeneous onset with variable disease progression, in which phenotypic evolution to PME occurs in the minority. Genetic and electrophysiological features may be of prognostic value, especially the determination of cortical hyperexcitability. Furthermore, the identification of cortical and non-cortical myoclonus in PMA helps us gain insight in the underlying pathophysiology of myoclonus.


Asunto(s)
Progresión de la Enfermedad , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Adulto Joven , Estudios Retrospectivos , Electroencefalografía/métodos , Anciano , Electromiografía , Ataxia/genética , Ataxia/fisiopatología , Adolescente , Mioclonía/fisiopatología , Mioclonía/genética
3.
Am J Hum Genet ; 108(4): 722-738, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798445

RESUMEN

Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.


Asunto(s)
Dolicoles/metabolismo , Mutación/genética , Epilepsias Mioclónicas Progresivas/genética , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Femenino , Glicosilación , Humanos , Intrones/genética , Masculino , Persona de Mediana Edad , Epilepsias Mioclónicas Progresivas/clasificación , Secuenciación del Exoma , Adulto Joven
4.
Mov Disord ; 39(4): 674-683, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385661

RESUMEN

INTRODUCTION: Negative myoclonus (NM) is an involuntary movement caused by a sudden interruption of muscular activity, resulting in gait problems and falls. OBJECTIVE: To establish frequency, clinical impact, and neurophysiology of NM in progressive myoclonus ataxia (PMA) patients. METHODS: Clinical, neurophysiological, and genetic data of 14 PMA individuals from University Medical Centre Groningen (UMCG) Expertise Center Movement Disorder Groningen were retrospectively collected. Neurophysiological examination included video-electromyography-accelerometry assessment in all patients and electroencephalography (EEG) examination in 13 individuals. Jerk-locked (or silent period-locked) back-averaging and cortico-muscular coherence (CMC) analysis aided the classification of myoclonus. RESULTS: NM was present in 6 (NM+) and absent in 8 (NM-) PMA patients. NM+ individuals have more frequent falls (100% vs. 37.5%) and higher scores on the Gross Motor Function Classification System (GMFCS) (4.3 ±0.74 vs. 2.5 ±1.2) than NM- individuals. Genetic background of NM+ included GOSR2 and SEMA6B, while that of NM- included ATM, KCNC3, NUS1, STPBN2, and GOSR2. NM was frequently preceded by positive myoclonus (PM) and silent-period length was between 88 and 194 ms. EEG epileptiform discharges were associated with NM in 2 cases. PM was classified as cortical in 5 NM+ and 2 NM- through EEG inspection, jerk-locked back-averaging, or CMC analysis. DISCUSSION: Neurophysiological examination is crucial for detecting NM that could be missed on clinical examination due to a preceding PM. Evidence points to a cortical origin of NM, an association with more severe motor phenotype, and suggests the presence of genetic disorders causing either a PMA or progressive myoclonus epilepsy, rather than pure PMA phenotype. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Electroencefalografía , Electromiografía , Mioclonía , Proteínas Qb-SNARE , Humanos , Masculino , Femenino , Persona de Mediana Edad , Electroencefalografía/métodos , Adulto , Mioclonía/fisiopatología , Mioclonía/diagnóstico , Estudios Retrospectivos , Anciano , Ataxia/fisiopatología
5.
Mov Disord ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39314082

RESUMEN

BACKGROUND: Myoclonus is characterized by involuntary, shock-like movements, of which cortical (CM) and non-cortical myoclonus (NCM) are most common. Electrophysiology can help differentiate between these subtypes; however, the diagnostic value of several features is largely unknown. OBJECTIVE: This study aims to determine the diagnostic value of the burst duration in distinguishing CM and NCM. METHODS: We manually identified the burst duration of 8 patients with CM, confirmed by electromyography-electroencephalography registration or somatosensory-evoked potentials, and 19 patients with NCM, suspected due to a myoclonus-dystonia phenotype (MYC/DYT-SGCE positive and negative). RESULTS: The sensitivity and specificity were calculated to assess the diagnostic value. The burst duration of CM (31.1 ms) was significantly shorter than that of NCM (56.7 ms), with a sensitivity of 100% and a specificity of 89.5% at a threshold of 45.0 ms. A minimum of 10 randomly selected bursts were sufficient for reliable diagnostic accuracy. CONCLUSION: The burst duration seems a valuable supportive diagnostic criterion for distinguishing CM and NCM. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

6.
Cerebellum ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287920

RESUMEN

Spinocerebellar ataxias (SCAs) are characterized by substantial phenotypic variability. Among them, SCA42 is a rare non-expansion entity presenting with slowly progressive cerebellar syndrome but whose clinical spectrum may be also wider. A 53-year-old male presented with progressive myoclonus-ataxia and intellectual disability. Genetic screening revealed a novel c.3835G > A (p. Asp1279Asn) variant in the CACNA1G gene. SCA42 is a rare non-expansion SCA caused by mutations in CACNA1G on chromosome 17q21, encoding the Ca(V)3.1, a low-threshold voltage-gated T-type calcium channel. The novel variant we identified is potentially involved in channel activity. This case expands the knowledge regarding CACNA1G-associated phenotype and highlights the importance of genetic screening in myoclonus-ataxia disorders.

7.
Cerebellum ; 23(2): 833-837, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37460907

RESUMEN

Potassium channels (KCN) are transmembrane complexes that regulate the resting membrane potential and the duration of action potentials in cells. The opening of KCN brings about an efflux of K+ ions that induces cell repolarization after depolarization, returns the transmembrane potential to its resting state, and enables for continuous spiking ability. The aim of this work was to assess the role of KCN dysfunction in the pathogenesis of hereditary ataxias and the mechanisms of action of KCN opening agents (KCO). In consequence, a review of the ad hoc medical literature was performed. Among hereditary KCN diseases causing ataxia, mutated Kv3.3, Kv4.3, and Kv1.1 channels provoke spinocerebellar ataxia (SCA) type 13, SCA19/22, and episodic ataxia type 1 (EA1), respectively. The K+ efflux was found to be reduced in experimental models of these diseases, resulting in abnormally prolonged depolarization and incomplete repolarization, thereby interfering with repetitive discharges in the cells. Hence, substances able to promote normal spiking activity in the cerebellum could provide symptomatic benefit. Although drugs used in clinical practice do not activate Kv3.3 or Kv4.3 directly, available KCO probably could ameliorate ataxic symptoms in SCA13 and SCA19/22, as verified with acetazolamide in EA1, and retigabine in a mouse model of hypokalemic periodic paralysis. To summarize, ataxia could possibly be improved by non-specific KCO in SCA13 and SCA19/22. The identification of new specific KCO agents will undoubtedly constitute a promising therapeutic strategy for these diseases.


Asunto(s)
Ataxia Cerebelosa , Canalopatías , Miocimia , Ataxias Espinocerebelosas/congénito , Degeneraciones Espinocerebelosas , Ratones , Animales , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Ataxia/tratamiento farmacológico , Ataxia/genética , Mutación
8.
Eur J Neurol ; : e16460, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254064

RESUMEN

BACKGROUND AND PURPOSE: Myoclonus dystonia due to a pathogenic variant in SGCE (MYC/DYT-SGCE) is a rare condition involving a motor phenotype associating myoclonus and dystonia. Dysfunction within the networks relying on the cortex, cerebellum, and basal ganglia was presumed to underpin the clinical manifestations. However, the microarchitectural abnormalities within these structures and related pathways are unknown. Here, we investigated the microarchitectural brain abnormalities related to the motor phenotype in MYC/DYT-SGCE. METHODS: We used neurite orientation dispersion and density imaging, a multicompartment tissue model of diffusion neuroimaging, to compare microarchitectural neurite organization in MYC/DYT-SGCE patients and healthy volunteers (HVs). Neurite density index (NDI), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF) were derived and correlated with the severity of motor symptoms. Fractional anisotropy (FA) and mean diffusivity (MD) derived from the diffusion tensor approach were also analyzed. In addition, we studied the pathways that correlated with motor symptom severity using tractography analysis. RESULTS: Eighteen MYC/DYT-SGCE patients and 24 HVs were analyzed. MYC/DYT-SGCE patients showed an increase of ODI and a decrease of FA within their motor cerebellum. More severe dystonia was associated with lower ODI and NDI and higher FA within motor cerebellar cortex, as well as with lower NDI and higher ISOVF and MD within the corticopontocerebellar and spinocerebellar pathways. No association was found between myoclonus severity and diffusion parameters. CONCLUSIONS: In MYC/DYT-SGCE, we found microstructural reorganization of the motor cerebellum. Structural change in the cerebellar afferent pathways that relay inputs from the spinal cord and the cerebral cortex were specifically associated with the severity of dystonia.

9.
Pediatr Blood Cancer ; 71(4): e30903, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38321586

RESUMEN

Opsoclonus-myoclonus-ataxia syndrome (OMAS) is an autoimmune central nervous system disorder, primarily manifesting as a paraneoplastic sequalae to neuroblastoma, and characterized by motor disorders and behavioral disturbances. OMAS is typified by aberrant B-cell and T-cell activation. Current treatment involves immunosuppression using corticosteroids, intravenous immunoglobulin, and rituximab. However, these approaches often lead to treatment-related toxicities and symptomatic recurrences with chronic neurocognitive impairment. We treated three children with refractory neuroblastoma-associated OMAS with tacrolimus, a T-cell-targeting calcineurin inhibitor, effectively controlling symptoms within a month and enabling the discontinuation of immunosuppression with minimal side effects. Tacrolimus shows promise as a therapeutic option for refractory OMAS.


Asunto(s)
Neuroblastoma , Trastornos de la Motilidad Ocular , Síndrome de Opsoclonía-Mioclonía , Niño , Humanos , Tacrolimus/uso terapéutico , Trastornos de la Motilidad Ocular/complicaciones , Síndrome de Opsoclonía-Mioclonía/tratamiento farmacológico , Síndrome de Opsoclonía-Mioclonía/etiología , Síndrome de Opsoclonía-Mioclonía/diagnóstico , Neuroblastoma/complicaciones , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/diagnóstico , Ataxia/complicaciones
10.
Pediatr Blood Cancer ; 71(7): e31039, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38689540

RESUMEN

BACKGROUND: Opsoclonus-myoclonus-ataxia syndrome (OMAS) is a rare autoimmune disorder of the nervous system presenting with abnormal eye and limb movements, altered gait, and increased irritability. Two to four percent of children diagnosed with neuroblastoma have neuroblastoma-associated OMAS (NA-OMAS). These children typically present with non-high-risk neuroblastoma that is cured with surgery, with or without chemotherapy. Despite excellent overall survival, patients with NA-OMAS can have significant persistent neurological and developmental issues. OBJECTIVE: This study aimed to describe long-term neurocognitive and adaptive functioning of patients with NA-OMAS treated with multimodal therapy, including intravenous immunoglobulin (IVIG) on Children's Oncology Group (COG) protocol ANBL00P3. METHODS: Of 53 children enrolled on ANBL00P3, 25 submitted evaluable neurocognitive data at diagnosis and at least one additional time point within 2 years and were included in the analyses. Adaptive development was assessed via the Vineland Adaptive Behavior Scale, and validated, age-appropriate measures of intellectual function were also administered. RESULTS: Twenty-one of the 25 patients in this cohort ultimately received IVIG. Descriptive spaghetti plots suggest that this cohort demonstrated stable long-term cognitive functioning and adaptive development over time. This cohort also demonstrated decreased OMAS scores over time consistent with improved OMAS symptoms. CONCLUSIONS: While statistical significance is limited by small sample size and loss to follow-up over 10 years, findings suggest stable long-term cognitive and adaptive functioning over time in this treated cohort.


Asunto(s)
Neuroblastoma , Síndrome de Opsoclonía-Mioclonía , Humanos , Síndrome de Opsoclonía-Mioclonía/terapia , Síndrome de Opsoclonía-Mioclonía/etiología , Masculino , Femenino , Neuroblastoma/complicaciones , Neuroblastoma/terapia , Neuroblastoma/mortalidad , Preescolar , Niño , Lactante , Inmunoglobulinas Intravenosas/uso terapéutico , Estudios de Seguimiento , Adolescente , Terapia Combinada , Pronóstico , Adaptación Psicológica , Cognición , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
11.
BMC Neurol ; 24(1): 169, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783211

RESUMEN

BACKGROUND: Progressive Myoclonic Epilepsy (PME) is a group of rare diseases that are difficult to differentiate from one another based on phenotypical characteristics. CASE REPORT: We report a case of PME type 7 due to a pathogenic variant in KCNC1 with myoclonus improvement after epileptic seizures. DISCUSSION: Myoclonus improvement after seizures may be a clue to the diagnosis of Progressive Myoclonic Epilepsy type 7.


Asunto(s)
Epilepsias Mioclónicas Progresivas , Convulsiones , Humanos , Epilepsias Mioclónicas Progresivas/complicaciones , Epilepsias Mioclónicas Progresivas/diagnóstico , Convulsiones/diagnóstico , Convulsiones/complicaciones , Convulsiones/etiología , Convulsiones/tratamiento farmacológico , Mioclonía/diagnóstico , Mioclonía/etiología , Mioclonía/complicaciones , Mioclonía/tratamiento farmacológico , Masculino , Canales de Potasio Shaw/genética , Femenino , Electroencefalografía/métodos
12.
BMC Neurol ; 24(1): 304, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215214

RESUMEN

BACKGROUND: Diaphragmatic myoclonus is a rare motor disorder that affects muscle tone. It is characterized by involuntary movements of the abdominal wall and rhythmic, repetitive contractions of the accessory or respiratory muscles, all of which are innervated by the cervical nerve roots. CASE DESCRIPTION: We reviewed the case of a 57-year-old male patient who underwent surgery for a left cerebellar hemorrhage. He exhibited persistent myoclonus in the palate, jaw, and thoracoabdominal region. Following treatment, there was a significant reduction in flutter amplitude in these areas. CONCLUSION: The clinical rarity and variability of presentations often make diagnosis challenging and delayed. It is believed that this condition stems from abnormal excitation within the central nervous system or neural pathways that involve the phrenic nerve. Another potential mechanism is the direct irritation of the diaphragm. Ultrasound, chest fluoroscopy, and electromyography (EMG) can support the diagnosis. Various pharmacological and surgical treatments have been tried, yet specific treatment guidelines are still lacking.


Asunto(s)
Diafragma , Mioclonía , Humanos , Masculino , Persona de Mediana Edad , Mioclonía/etiología , Mioclonía/diagnóstico , Mioclonía/fisiopatología , Diafragma/fisiopatología , Diafragma/diagnóstico por imagen , Diafragma/inervación , Electromiografía/métodos , Enfermedades Cerebelosas/diagnóstico , Enfermedades Cerebelosas/complicaciones
13.
Brain ; 146(2): 657-667, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35875984

RESUMEN

Autoimmune encephalitis can be classified into antibody-defined subtypes, which can manifest with immunotherapy-responsive movement disorders sometimes mimicking non-inflammatory aetiologies. In the elderly, anti-LGI1 and contactin associated protein like 2 (CASPR2) antibody-associated diseases compose a relevant fraction of autoimmune encephalitis. Patients with LGI1 autoantibodies are known to present with limbic encephalitis and additionally faciobrachial dystonic seizures may occur. However, the clinical spectrum of CASPR2 autoantibody-associated disorders is more diverse including limbic encephalitis, Morvan's syndrome, peripheral nerve hyperexcitability syndrome, ataxia, pain and sleep disorders. Reports on unusual, sometimes isolated and immunotherapy-responsive movement disorders in CASPR2 autoantibody-associated syndromes have caused substantial concern regarding necessity of autoantibody testing in patients with movement disorders. Therefore, we aimed to systematically assess their prevalence and manifestation in patients with CASPR2 autoimmunity. This international, retrospective cohort study included patients with CASPR2 autoimmunity from participating expert centres in Europe. Patients with ataxia and/or movement disorders were analysed in detail using questionnaires and video recordings. We recruited a comparator group with anti-LGI1 encephalitis from the GENERATE network. Characteristics were compared according to serostatus. We identified 164 patients with CASPR2 autoantibodies. Of these, 149 (90.8%) had only CASPR2 and 15 (9.1%) both CASPR2 and LGI1 autoantibodies. Compared to 105 patients with LGI1 encephalitis, patients with CASPR2 autoantibodies more often had movement disorders and/or ataxia (35.6 versus 3.8%; P < 0.001). This was evident in all subgroups: ataxia 22.6 versus 0.0%, myoclonus 14.6 versus 0.0%, tremor 11.0 versus 1.9%, or combinations thereof 9.8 versus 0.0% (all P < 0.001). The small group of patients double-positive for LGI1/CASPR2 autoantibodies (15/164) significantly more frequently had myoclonus, tremor, 'mixed movement disorders', Morvan's syndrome and underlying tumours. We observed distinct movement disorders in CASPR2 autoimmunity (14.6%): episodic ataxia (6.7%), paroxysmal orthostatic segmental myoclonus of the legs (3.7%) and continuous segmental spinal myoclonus (4.3%). These occurred together with further associated symptoms or signs suggestive of CASPR2 autoimmunity. However, 2/164 patients (1.2%) had isolated segmental spinal myoclonus. Movement disorders and ataxia are highly prevalent in CASPR2 autoimmunity. Paroxysmal orthostatic segmental myoclonus of the legs is a novel albeit rare manifestation. Further distinct movement disorders include isolated and combined segmental spinal myoclonus and autoimmune episodic ataxia.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Encefalitis Límbica , Trastornos del Movimiento , Mioclonía , Canales de Potasio con Entrada de Voltaje , Humanos , Anciano , Estudios Retrospectivos , Temblor , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ataxia , Autoanticuerpos , Trastornos del Movimiento/etiología , Contactinas/metabolismo
14.
J Intensive Care Med ; : 8850666241287154, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344464

RESUMEN

PURPOSE: Myoclonus after anoxic brain injury is a marker of significant cerebral injury. Absent cortical signal (N20) on somatosensory evoked potentials (SSEPs) after cardiac arrest is a reliable predictor of poor neurological recovery when combined with an overall clinical picture consistent with severe widespread neurological injury. We evaluated a clinical question of if SSEP result could be predicted from other clinical and neurodiagnostic testing results in patients with post-anoxic myoclonus. METHODS: Retrospective chart review of all adult patients with post-cardiac arrest myoclonus who underwent both electroencephalographic (EEG) monitoring and SSEPs for neuroprognostication. Myoclonus was categorized as "non-myoclonic movements," "myoclonus not captured on EEG," "myoclonus without EEG correlate," "myoclonus with EEG correlate," and "status myoclonus." SSEP results were categorized as all absent, all present, N18 and N20 absent bilaterally, and N20 only absent bilaterally. Cox proportional hazards with censoring was used to evaluate the association of myoclonus category, SSEP results, and confounding factors with survival. RESULTS: In 56 patients, median time from arrest to either confirmed death or last follow up was 9 days. The category of myoclonus was not associated with SSEP result or length of survival. Absence of N20 s or N18 s was associated with shorter survival (N20 hazard ratio [HR] 4.4, p = 0.0014; N18 HR 5.5, p < 0.00001). CONCLUSIONS: Category of myoclonus did not reliably predict SSEP result. SSEP result was correlated with outcome consistently, but goals of care transitioned to comfort measures only in all patients with present peripheral potentials and either absent N20 s only or absence of N18 s and N20 s. Our results suggest that SSEPs may retain prognostic value in patients with post-anoxic myoclonus.

15.
CNS Spectr ; 29(2): 87-95, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38282559

RESUMEN

Data related to psychiatric manifestations in subacute sclerosing panencephalitis (SSPE) is currently available only in the form of isolated case reports. In this systematic review, we evaluated the spectrum of psychiatric manifestations and their impact on the course and outcome of SSPE. Data were obtained from 4 databases (PubMed, Embase, Scopus, and Google Scholar), with the most recent search conducted on March 27, 2023. The PRISMA guidelines were followed, and the PROSPERO registration number for the protocol is CRD42023408227. SSPE was diagnosed using Dyken's criteria. Extracted data were recorded in an Excel spreadsheet. To evaluate the quality of the data, the Joanna Briggs Institute Critical Appraisal tool was employed. Our search resulted in 30 published reports of 32 patients. The mean age was 17.9 years. Schizophrenia, catatonia, and poorly characterized psychotic illnesses were the 3 most common psychiatric presentations that were seen in 63% (20/32) of cases. Catatonia was seen in 4 patients. Affective disorders, mania, and depression were reported among 22% (7/32) cases. In approximately 81% (26/32) cases, the course of SSPE was acute fulminant. Treatment with antipsychotic drugs had poor or no response. Out of 17 patients, who received antipsychotic drugs, 6 patients noted severe extrapyramidal adverse effects. SSPE often masquerades as a psychiatric disorder. Unresponsive psychiatric symptoms, early extrapyramidal signs, and progressive encephalopathy indicate SSPE.


Asunto(s)
Panencefalitis Esclerosante Subaguda , Panencefalitis Esclerosante Subaguda/complicaciones , Humanos , Catatonia/etiología , Catatonia/diagnóstico , Adolescente , Esquizofrenia
16.
BMC Pediatr ; 24(1): 427, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961420

RESUMEN

BACKGROUND: Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a rare and life-threatening autoimmune disease of the central nervous system. So far, only ten cases of PERM have been reported in children worldwide, including the one in this study. CASE PRESENTATION: We report a case of an 11-year-old boy with PERM with an initial presentation of abdominal pain, skin itching, dysuria, urinary retention, truncal and limb rigidity, spasms of the trunk and limbs during sleep, deep and peripheral sensory disturbances, and dysphagia. A tissue-based assay using peripheral blood was positive, demonstrated by fluorescent staining of mouse cerebellar sections. He showed gradual and persistent clinical improvement after immunotherapy with intravenous immunoglobulin, steroids, plasmapheresis and rituximab. CONCLUSIONS: We summarized the diagnosis and treatment of a patient with PERM and performed a literature review of pediatric PERM to raise awareness among pediatric neurologists. A better comprehension of this disease is required to improve its early diagnosis, treatment, and prognosis.


Asunto(s)
Encefalomielitis , Rigidez Muscular , Mioclonía , Humanos , Masculino , Niño , Rigidez Muscular/etiología , Encefalomielitis/diagnóstico , Encefalomielitis/complicaciones , Mioclonía/etiología , Mioclonía/diagnóstico
17.
Pediatr Radiol ; 54(6): 954-964, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38613691

RESUMEN

BACKGROUND: Early precision diagnosis and effective treatment of opsoclonus myoclonus ataxia syndrome (OMAS) patients presenting with neuroblastoma can prevent serious neurological outcomes. OBJECTIVE: To assess the diagnostic value of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging in pediatric OMAS with neuroblastoma. MATERIALS AND METHODS: A retrospective evaluation of 45 patients diagnosed with OMAS who underwent 18F-FDG PET/CT was performed. A univariate analysis was performed to compare clinical characteristics between OMAS with and without neuroblastoma. Univariate and multivariate logistic regression analyses were applied to identify independent risk factors for OMAS with neuroblastoma and to develop the clinical model. Finally, independent risk factors and PET/CT were fitted to build the combined model for the diagnosis of OMAS with neuroblastoma and presented as a nomogram. Receiver operating characteristic curve, decision curve, and calibration curve analyses were conducted to evaluate the performance of the models. RESULTS: Among 45 patients, 27 were PET/CT-positive, 23/27 lesions were neuroblastoma, and four were false positives. One of the false positive patients was confirmed to be adrenal reactive hyperplasia by postoperative pathology, and the symptoms of OMAS disappeared in the remaining three cases during clinical follow-up. The average maximal standardized uptake value of PET/CT-positive lesions was 2.6. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of PET/CT were 100%, 81.8%, 85.2%, 100%, and 91.1%, respectively. Age at diagnosis, lactate dehydrogenase, and neuron-specific enolase showed statistically significant differences between OMAS with and without neuroblastoma. Lactate dehydrogenase was identified as the independent risk factor to develop the clinical model, and the clinical model demonstrated an area under the curve (AUC) of 0.82 for the diagnosis of OMAS with neuroblastoma, with an AUC as high as 0.91 when combined with PET/CT. The decision curve analysis and calibration curve demonstrated that the nomogram had good consistency and clinical usefulness. CONCLUSION: In patients with OMAS, 18F-FDG PET/CT has a high diagnostic accuracy in detecting tumors of the neuroblastoma, especially when combined with the independent risk factor serum lactate dehydrogenase.


Asunto(s)
Fluorodesoxiglucosa F18 , Neuroblastoma , Síndrome de Opsoclonía-Mioclonía , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Humanos , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/complicaciones , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Femenino , Masculino , Síndrome de Opsoclonía-Mioclonía/diagnóstico por imagen , Estudios Retrospectivos , Preescolar , Niño , Lactante , Sensibilidad y Especificidad , Diagnóstico Diferencial
18.
Int J Neurosci ; : 1-5, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451541

RESUMEN

BACKGROUND: Dehydrodolichyl diphosphate synthase complex is encoded by DHDDS. De novo mutations in this gene are associated with epilepsy, movement disorders, intellectual and motor disabilities. The clinical picture is commonly identified in children and shows variations in terms of age of onset, severity, seizure types, and types of dyskinesia. CASE: we present a case with a infantile- onset epilepsy and severe global developmental delay, caused by a novel, de novo homozygous variant (c.425C > T, p.Thr142Met) in DHDDS. Clinical improvement was achieved with valproate and tetrabenazine treatments in the 2-year-old male patient with drug-resistant epilepsy, hyperkinetic movement disorder and myoclonus. CONCLUSION: Despite being rare, DHDDS-related diseases should be considered in patients with movement disorders, seizures and global developmental delay in infancy in differential diagnosis of patients resembling neuronal ceroid lipofuscinosis or progressive myoclonic epilepsies.

19.
Int J Toxicol ; 43(2): 123-133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38063479

RESUMEN

When conducting toxicology studies, the interpretation of drug-related neurological clinical signs such as convulsions, myoclonus/myoclonic jerks, tremors, ataxia, and salivation requires an understanding of the spontaneous incidence of those observations in commonly used laboratory animal species. The spontaneous incidence of central nervous system clinical signs in control animals from a single facility using cage-side observations or high definition video monitoring was retrospectively analyzed. Spontaneous convulsions were observed at low incidence in Beagle dogs and Sprague-Dawley rats but were not identified in cynomolgus monkeys and Göttingen minipigs. Spontaneous myoclonic jerks and muscle twitches were observed at low incidence in Beagle dogs, cynomolgus monkeys, and Sprague-Dawley rats but were not seen in Göttingen minipigs. Spontaneous ataxia/incoordination was identified in all species and generally with a higher incidence when using video monitoring. Salivation and tremors were the two most frequent spontaneous clinical signs and both were observed in all species. Data from the current study unveil potential limitations when using control data obtained from a single study for toxicology interpretation related to low incidence neurological clinical signs while providing historical control data from Beagle dogs, cynomolgus monkeys, Sprague-Dawley rats, and Göttingen minipigs.


Asunto(s)
Mioclonía , Ratas , Porcinos , Animales , Perros , Ratas Sprague-Dawley , Porcinos Enanos , Estudios Retrospectivos , Macaca fascicularis , Temblor/inducido químicamente , Incidencia , Convulsiones , Ataxia
20.
J Formos Med Assoc ; 123(7): 811-817, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38360490

RESUMEN

BACKGROUND: The SARS-CoV-2 virus has been a global public health threat since December 2019. This study aims to investigate the neurological characteristics and risk factors of coronavirus disease 2019 (COVID-19) in Taiwanese children, using data from a collaborative registry. METHODS: A retrospective, cross-sectional, multi-center study was done using an online network of pediatric neurological COVID-19 cohort collaborative registry. RESULTS: A total of 11160 COVID-19-associated emergency department (ED) visits and 1079 hospitalizations were analyzed. Seizures were the most common specific neurological symptom, while encephalitis and acute disseminated encephalomyelitis (ADEM) was the most prevalent severe involvement. In ED patients with neurological manifestations, severe neurological diagnosis was associated with visual hallucination, seizure with/without fever, behavior change, decreased GCS, myoclonic jerk, decreased activity/fatigue, and lethargy. In hospitalized patients with neurological manifestations, severe neurological diagnosis was associated with behavior change, visual hallucination, decreased GCS, seizure with/without fever, myoclonic jerk, fatigue, and hypoglycemia at admission. Encephalitis/ADEM was the only risk factor for poor neurological outcomes at discharge in hospitalized patients. CONCLUSION: Neurological complications are common in pediatric COVID-19. Visual hallucination, seizure, behavior change, myoclonic jerk, decreased GCS, and hypoglycemia at admission are the most important warning signs of severe neurological involvement such as encephalitis/ADEM.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Taiwán/epidemiología , COVID-19/complicaciones , COVID-19/epidemiología , Estudios Transversales , Niño , Masculino , Femenino , Estudios Retrospectivos , Preescolar , Adolescente , Lactante , Factores de Riesgo , Enfermedades del Sistema Nervioso/etiología , Hospitalización/estadística & datos numéricos , Servicio de Urgencia en Hospital/estadística & datos numéricos , Convulsiones/etiología , Convulsiones/epidemiología , Sistema de Registros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA