Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 702: 149627, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38340655

RESUMEN

Rupture of vulnerable plaque and secondary thrombosis caused by atherosclerosis are one of the main causes of acute cardiovascular and cerebrovascular events, and it is urgent to develop an in-situ, noninvasive, sensitive and targeted detection method at molecular level. We chose CD44, a specific receptor highly expressed on the surface of macrophages, as the target of the molecular probe, and modified the CD44 ligand HA onto the surface of Gd2O3@MSN, constructing the MRI imaging nanoprobe HA-Gd2O3@MSN for targeted recognition of atherosclerosis. The fundamental properties of HA-Gd2O3@MSN were initially investigated. The CCK-8, hemolysis, hematoxylin-eosin staining tests and blood biochemical assays confirmed that HA-Gd2O3@MSN possessed excellent biocompatibility. Laser confocal microscopy, cellular magnetic resonance imaging, flow cytometry and immunohistochemistry were used to verify that the nanoprobes had good targeting properties. The in vivo targeting performance of the nanoprobes was further validated by employing a rabbit atherosclerosis animal model. In summary, the synthesized HA-Gd2O3@MSN nanoprobes have excellent biocompatibility properties as well as good targeting properties. It could provide a new technical tool for early identification of atherosclerosis.


Asunto(s)
Aterosclerosis , Nanopartículas , Animales , Conejos , Ácido Hialurónico/química , Nanopartículas/química , Dióxido de Silicio/química , Línea Celular Tumoral , Aterosclerosis/diagnóstico por imagen
2.
Small ; 20(25): e2307247, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38243871

RESUMEN

Oral treatment of colon diseases with the CRISPR/Cas9 system has been hampered by the lack of a safe and efficient delivery platform. Overexpressed CD98 plays a crucial role in the progression of ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). In this study, lipid nanoparticles (LNPs) derived from mulberry leaves are functionalized with Pluronic copolymers and optimized to deliver the CRISPR/Cas gene editing machinery for CD98 knockdown. The obtained LNPs possessed a hydrodynamic diameter of 267.2 nm, a narrow size distribution, and a negative surface charge (-25.6 mV). Incorporating Pluronic F127 into LNPs improved their stability in the gastrointestinal tract and facilitated their penetration through the colonic mucus barrier. The galactose end groups promoted endocytosis of the LNPs by macrophages via asialoglycoprotein receptor-mediated endocytosis, with a transfection efficiency of 2.2-fold higher than Lipofectamine 6000. The LNPs significantly decreased CD98 expression, down-regulated pro-inflammatory cytokines (TNF-α and IL-6), up-regulated anti-inflammatory factors (IL-10), and polarized macrophages to M2 phenotype. Oral administration of LNPs mitigated UC and CAC by alleviating inflammation, restoring the colonic barrier, and modulating intestinal microbiota. As the first oral CRISPR/Cas9 delivery LNP, this system offers a precise and efficient platform for the oral treatment of colon diseases.


Asunto(s)
Sistemas CRISPR-Cas , Lípidos , Morus , Nanopartículas , Hojas de la Planta , Nanopartículas/química , Hojas de la Planta/química , Animales , Administración Oral , Morus/química , Lípidos/química , Ratones , Enfermedades del Colon/terapia , Humanos , Masculino , Liposomas
3.
Pharmacol Res ; 208: 107379, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39218421

RESUMEN

Tuberculosis (TB), a deadly disease caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the top killers among infectious diseases worldwide. How to increase targeting effects of current anti-TB chemotherapeutics and enhance anti-TB immunological responses remains a big challenge in TB and drug-resistant TB treatment. Here, mannose functionalized and polyetherimide protected graphene oxide system (GO-PEI-MAN) was designed for macrophage-targeted antibiotic (rifampicin) and autophagy inducer (carbamazepine) delivery to achieve more effective Mtb killings by combining targeted drug killing and host immunological clearance. GO-PEI-MAN system demonstrated selective uptake by in vitro macrophages and ex vivo macrophages from macaques. The endocytosed GO-PEI-MAN system would be transported into lysosomes, where the drug loaded Rif@Car@GO-PEI-MAN system would undergo accelerated drug release in acidic lysosomal conditions. Rif@Car@GO-PEI-MAN could significantly promote autophagy and apoptosis in Mtb infected macrophages, as well as induce anti-bacterial M1 polarization of Mtb infected macrophages to increase anti-bacterial IFN-γ and nitric oxide production. Collectively, Rif@Car@GO-PEI-MAN demonstrated effectively enhanced intracellular Mtb killing effects than rifampicin, carbamazepine or GO-PEI-MAN alone in Mtb infected macrophages, and could significantly reduce mycobacterial burdens in the lung of infected mice with alleviated pathology and inflammation without systemic toxicity. This macrophage targeted nanosystem synergizing increased drug killing efficiency and enhanced host immunological defense may be served as more effective therapeutics against TB and drug-resistant TB.


Asunto(s)
Antituberculosos , Grafito , Macrófagos , Mycobacterium tuberculosis , Rifampin , Tuberculosis , Grafito/química , Animales , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Tuberculosis/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Rifampin/farmacología , Rifampin/administración & dosificación , Rifampin/uso terapéutico , Ratones , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Antituberculosos/administración & dosificación , Autofagia/efectos de los fármacos , Macaca , Nanopartículas , Células RAW 264.7
4.
J Nanobiotechnology ; 22(1): 221, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724958

RESUMEN

Intra-articular drugs used to treat osteoarthritis (OA) often suffer from poor pharmacokinetics and stability. Nano-platforms as drug delivery systems for drug delivery are promising for OA therapy. In this study, we reported an M1 macrophage-targeted delivery system Bai@FA-UIO-66-NH2 based on folic acid (FA) -modified metal-organic framework (MOF) loaded with baicalin (Bai) as antioxidant agent for OA therapy. With outstanding biocompatibility and high drug loading efficiency, Bai@FA-UIO-66-NH2 could be specifically uptaken by LPS-induced macrophages to serve as a potent ROS scavenger, gradually releasing Bai at the subcellular level to reduce ROS production, modulate macrophage polarization to M2, leading to alleviation of synovial inflammation in OA joints. The synergistic effect of Bai@FA-UIO-66-NH2 on macrophage polarization and ROS scavenging significantly improved the therapeutic efficacy of OA, which may provide a new insight into the design of OA precision therapy.


Asunto(s)
Flavonoides , Macrófagos , Estructuras Metalorgánicas , Osteoartritis , Especies Reactivas de Oxígeno , Estructuras Metalorgánicas/química , Osteoartritis/tratamiento farmacológico , Animales , Flavonoides/farmacología , Flavonoides/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Células RAW 264.7 , Antioxidantes/farmacología , Antioxidantes/química , Sistemas de Liberación de Medicamentos/métodos , Ácido Fólico/química , Masculino , Ratas , Lipopolisacáridos/farmacología , Ratas Sprague-Dawley
5.
J Nanobiotechnology ; 21(1): 369, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817142

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Macrófagos , Tuberculosis/tratamiento farmacológico , Rifampin/farmacología , Hierro
6.
J Nanobiotechnology ; 21(1): 321, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679849

RESUMEN

Ulcerative colitis (UC) faces some barriers in oral therapy, such as how to safely deliver drugs to the colon and accumulate in the colon lesions. Hence, we report an advanced yeast particles system loaded with supramolecular nanoparticles with ROS scavenger (curcumin) to treat UC by reducing oxidative stress state and inflammatory response and accelerating the reprogramming of macrophages. In this study, the dual-sensitive materials are bonded on ß-cyclodextrin (ß-CD), the D-mannose (Man) is modified to adamantane (ADA), and then loaded with curcumin (CUR), to form a functional supramolecular nano-delivery system (Man-CUR NPs) through the host-guest interaction. To improve gastrointestinal stability and colonic accumulation of Man-CUR NPs, yeast cell wall microparticles (YPs) encapsulated Man-CUR NPs to form Man-CUR NYPs via electrostatic adsorption and vacuum extrusion technologies. As expected, the YPs showed the strong stability in complex gastrointestinal environment. In addition, the Man modified supramolecular nanoparticles demonstrated excellent targeting ability to macrophages in the in vitro cellular uptake study and the pH/ROS sensitive effect of Man-CUR NPs was confirmed by the pH/ROS-dual stimulation evaluation. They also enhanced lipopolysaccharide (LPS)-induced inflammatory model in macrophages through downregulation of pro-inflammatory factors, upregulation of anti-inflammatory factors, M2 macrophage polarization, and scavenging the excess ROS. Notably, in DSS-induced mice colitis model, Man-CUR NYPs can reduce the inflammatory responses by modulating TLR4/NF-κB signaling pathways, alleviate oxidative stress by Nrf2/HO-1 signaling pathway, promote macrophages reprogramming and improve the favorable recovery of the damaged colonic tissue. Taken together, this study not only provides strategy for "supramolecular curcumin nanoparticles with pH/ROS sensitive and multistage therapeutic effects" in "advanced yeast particles", but also provided strong theoretical support multi-effect therapy for UC.


Asunto(s)
Colitis Ulcerosa , Curcumina , Animales , Ratones , Saccharomyces cerevisiae , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Curcumina/farmacología , Especies Reactivas de Oxígeno , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad
7.
J Theor Biol ; 549: 111207, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35772491

RESUMEN

Non Small Cell Lung Cancer (NSCLC) is the most common type of lung cancer, and represents the leading cause of cancer-related deaths worldwide. Experimental studies have shown that these solid cancers are heavily infiltrated with macrophages: anti-tumour M1 macrophages, pro-tumour M2 macrophages, and macrophage subtypes sharing both M1 and M2 properties. In this study we aim to investigate qualitatively the role of macrophages with different functional phenotypes (especially those with mixed phenotypes) on cancer dynamics and the success of different immunotherapies for cancer. To this end, we start with two time-evolving mathematical models for cancer-immune interactions that consider: (i) the effect of the two extreme phenotypes, M1 and M2 cells; (ii) the effect of M1 and M2 cells, as well as a macrophage sub-population with a mixed phenotype (throughout this theoretical study we call these cells "M12 cells"). We compare the dynamics of the two models using computational approaches, paying particular attention to the effect of different anti-cancer immunotherapies that focus on macrophages. Since data available for NSCLC and macrophage interactions are incomplete, we perform a global sensitivity analysis to see the influence of input parameters on model outcomes. Finally, we consider extensions of the previous two models to include also the spatial movement of cells, and investigate the role of macrophages with extreme phenotypes and with mixed phenotypes, on the invasion of cancer cells into the surrounding extracellular matrix (ECM). We use numerical simulations to investigate the macrophages phenotypes at the tumour center versus the invasive margin. Again, we examine the impact of immunotherapies for cancer on the spatial dynamics of cancers and immune cells, and observe a shift in the phenotype of macrophages distributed at the tumour center and invasive margin.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/terapia , Humanos , Inmunoterapia , Neoplasias Pulmonares/terapia , Macrófagos/metabolismo
8.
Bioorg Chem ; 127: 105977, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35779404

RESUMEN

The transcription factor NF-κB is a pivotal mediator of chronic inflammatory and autoimmune diseases. Based on our previously published dual EGFR/NF-κB inhibitors, we designed and synthesized new thiourea quinazoline derivatives that retained only the NF-κB inhibitory activity. Several congeners displayed a strong suppression of NF-κB activity in a reporter gene assay, yet low cytotoxicity, and were further evaluated in differentiated macrophage-like THP-1 cells. The compounds exhibited a strong inhibition of IL-6 and, less potently, of TNFα release, which was accompanied by a selective induction of macrophage cell death. The mode of action was investigated with a selected inhibitor, 18, revealing that the translocation of p65/RelA to the nucleus but not its release from the IκB complex was inhibited. Eventually, 18 was identified as the first small molecule inhibitor affecting only the phosphorylation of p65-Ser468 but not of Ser536, which may be causally related to the retention of NF-κB in the cytoplasm. Altogether, our novel NF-κB inhibitors seem applicable for the suppression of cytokine release and the additional selective depletion of activated macrophages in various inflammatory diseases.


Asunto(s)
FN-kappa B , Feniltiourea , Antiinflamatorios/farmacología , Receptores ErbB/metabolismo , Lipopolisacáridos , FN-kappa B/metabolismo , Fosforilación
9.
Nanomedicine ; 40: 102490, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34748957

RESUMEN

The basic aim of the study was to develop and evaluate the triple drug loaded cationic nano-vesicles (cNVs), where miltefosine was used as a replacement of surfactant (apart from its anti-leishmanial role), in addition to meglumine antimoniate (MAM) and imiquimod (Imq), as a combination therapy for the topical treatment of cutaneous leishmaniasis (CL). The optimized formulation was nano-sized (86.2 ±â€¯2.7 nm) with high entrapment efficiency (63.8 ±â€¯2.1% (MAM) and 81.4 ±â€¯2.3% (Imq)). In-vivo skin irritation assay showed reduced irritation potential and a decrease in the cytotoxicity of cNVs as compared to conventional NVs (having sodium deoxycholate as a surfactant). A synergistic interaction between drugs was observed against intracellular amastigotes, whereas the in-vivo antileishmanial study presented a significant reduction in the parasitic burden. The results suggested the potential of surfactant free, triple drug loaded cNVs as an efficient vehicle for the safe topical treatment of CL.


Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis Cutánea , Administración Tópica , Antiprotozoarios/farmacología , Humanos , Leishmaniasis Cutánea/tratamiento farmacológico , Tensoactivos
10.
Acta Pharmacol Sin ; 42(11): 1913-1920, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34561552

RESUMEN

Sepsis is a dysregulated immune response to infection and potentially leads to life-threatening organ dysfunction, which is often seen in serious Covid-19 patients. Disulfiram (DSF), an old drug that has been used to treat alcohol addiction for decades, has recently been identified as a potent inhibitor of the gasdermin D (GSDMD)-induced pore formation that causes pyroptosis and inflammatory cytokine release. Therefore, DSF represents a promising therapeutic for the treatment of inflammatory disorders. Lactoferrin (LF) is a multifunctional glycoprotein with potent antibacterial and anti-inflammatory activities that acts by neutralizing circulating endotoxins and activating cellular responses. In addition, LF has been well exploited as a drug nanocarrier and targeting ligands. In this study, we developed a DSF-LF nanoparticulate system (DSF-LF NP) for combining the immunosuppressive activities of both DSF and LF. DSF-LF NPs could effectively block pyroptosis and inflammatory cytokine release from macrophages. Treatment with DSF-LF NPs showed remarkable therapeutic effects on lipopolysaccharide (LPS)-induced sepsis. In addition, this therapeutic strategy was also applied to treat ulcerative colitis (UC), and substantial treatment efficacy was achieved in a murine colitis model. The underlying mode of action of these DSF-LF-NPs may contribute to efficiently suppressing macrophage-mediated inflammatory responses and ameliorating the complications caused by sepsis and UC. As macrophage pyroptosis plays a pivotal role in inflammation, this safe and effective biomimetic nanomedicine may offer a versatile therapeutic strategy for treating various inflammatory diseases by repurposing DSF.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Colitis Ulcerosa , Disulfiram/farmacocinética , Lactoferrina , Síndrome de Respuesta Inflamatoria Sistémica , Inhibidores del Acetaldehído Deshidrogenasa/farmacología , Animales , Antiinflamatorios/farmacología , Materiales Biomiméticos/farmacología , COVID-19/inmunología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inmunología , Modelos Animales de Enfermedad , Disulfiram/farmacología , Portadores de Fármacos/farmacología , Humanos , Inmunosupresores/farmacología , Lactoferrina/metabolismo , Lactoferrina/farmacología , Lipopolisacáridos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Nanopartículas/uso terapéutico , Piroptosis/efectos de los fármacos , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Resultado del Tratamiento
11.
Mar Drugs ; 19(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808703

RESUMEN

Radiation-induced fibrosis is a serious long-lasting side effect of radiation therapy. Central to this condition is the role of macrophages that, activated by radiation-induced reactive oxygen species and tissue cell damage, produce pro-inflammatory cytokines, such as transforming growth factor beta (TGFß). This, in turn, recruits fibroblasts at the site of the lesion that initiates fibrosis. We investigated whether astaxanthin, an antioxidant molecule extracted from marine and freshwater organisms, could help control macrophage activation. To this purpose, we encapsulated food-grade astaxanthin from Haematococcus pluvialis into micrometer-sized whey protein particles to specifically target macrophages that can uptake material within this size range by phagocytosis. The data show that astaxanthin-loaded microparticles are resistant to radiation, are well-tolerated by J774A.1 macrophages, induce in these cells a significant reduction of intracellular reactive oxygen species and inhibit the release of active TGFß as evaluated in a bioassay with transformed MFB-F11 fibroblasts. Micro-encapsulation of bioactive molecules is a promising strategy to specifically target phagocytic cells and modulate their own functions.


Asunto(s)
Antioxidantes/farmacología , Macrófagos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína de Suero de Leche/metabolismo , Animales , Antioxidantes/metabolismo , Línea Celular , Portadores de Fármacos , Composición de Medicamentos , Macrófagos/metabolismo , Ratones , Tamaño de la Partícula , Xantófilas/metabolismo , Xantófilas/farmacología
12.
Drug Dev Ind Pharm ; 47(3): 440-453, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33615936

RESUMEN

OBJECTIVE: The purpose of this study was to develop novel carbopol-based miltefosine-loaded transfersomal gel (HePCTG) for the treatment of cutaneous leishmaniasis (CL) via efficient targeting of leishmania infected macrophages. METHODS: Miltefosine-loaded transfersomes (HePCT) were prepared by ethanol injection method followed by their incorporation into carbopol gel to form HePCTG. The prepared HePCT were assessed for physicochemical properties including mean particle size, polydispersity index, zeta potential, entrapment efficiency, morphology, and deformability. Similarly, HePCTG was evaluated for physiochemical and rheological attributes. The in vitro release, skin permeation, skin irritation, anti-leishmanial activity, and in vivo efficacy in BALB/c mice against infected macrophages were also performed for HePCT. RESULTS: The optimized HePCT displayed a particle size of 168 nm with entrapment efficiency of 92%. HePCTG showed suitable viscosity, pH, and sustained release of the incorporated drug. Furthermore, HePCT and HePCTG demonstrated higher skin permeation than drug solution. The results of macrophage uptake study indicated improved drug intake by passive diffusion. The lower half maximal inhibitory concentration value, selectivity index and higher 50% cytotoxic concentration  value of HePCT compared to that of HePC solution demonstrated the improved anti-leishmanial efficacy and non-toxicity of the formulation. This was further confirmed by the notable reduction in parasite load and lesion size observed in in vivo anti-leishmanial study. CONCLUSION: It can be stated that the formulated HePCTG can effectively be used for the treatment of CL.


Asunto(s)
Leishmaniasis Cutánea , Resinas Acrílicas , Animales , Leishmaniasis Cutánea/tratamiento farmacológico , Macrófagos , Ratones , Ratones Endogámicos BALB C , Fosforilcolina/análogos & derivados
13.
Pharm Dev Technol ; 26(9): 1000-1009, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34396913

RESUMEN

Conventional non-pH-sensitive liposomes for cytoplasmic delivery of protein suffer from poor efficiency. Here we investigated mannosylated pH-sensitive liposomes (MAN-PSL) for cytoplasmic delivery of protein to macrophages RAW 264.7 using PSL and non-pH-sensitive liposomes for comparison. We characterised the pH-dependent fluorescence of green fluorescent protein (GFP) and encapsulated it in liposomes as an intracellular trafficking tracer. GFP showed a reversed 'S'-shaped pH-fluorescence curve with a dramatic signal loss at acidic pH. GFP stored at 4 °C with light protection showed a half-life of 10 days (pH 5-8). The entrapment efficiency of GFP was dominated by the volume ratio of intraliposomal core to external medium for thin-film hydration. Mannosylation did not affect the pH-responsiveness of PSL. Confocal microscopy elucidated that mannosylation promoted the cellular uptake of PSL. For both these liposomes, the strongest, homogeneously distributed GFP fluorescence in the cytoplasm was found at 3 h, confirming efficient endosomal escape of GFP. Conversely, internalisation of non-pH-sensitive liposomes was slow (peaked at 12 h) and both Nile Red and GFP signals remained weak and punctuated in the cytosol. In conclusion, GFP performed as a probe for endosome escape of liposomal cargo. Mannosylation facilitated the internalisation of PSL without compromising their endosomal escape ability.


Asunto(s)
Citoplasma/metabolismo , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Macrófagos/metabolismo , Manosa/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Citoplasma/efectos de los fármacos , Endosomas/efectos de los fármacos , Proteínas Fluorescentes Verdes/administración & dosificación , Proteínas Fluorescentes Verdes/síntesis química , Concentración de Iones de Hidrógeno , Liposomas , Sustancias Luminiscentes/administración & dosificación , Sustancias Luminiscentes/síntesis química , Sustancias Luminiscentes/metabolismo , Macrófagos/efectos de los fármacos , Manosa/administración & dosificación , Manosa/síntesis química , Ratones , Microscopía Confocal/métodos , Células RAW 264.7
14.
AAPS PharmSciTech ; 22(5): 171, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34100170

RESUMEN

Macrophages act as a cellular reservoir in HIV infection. Elimination of HIV from macrophages has been an unfulfilled dream due to the failure of drugs to reach them. To address this, we developed CD44 receptor-targeted, novel hyaluronic acid (HA)-coated nanostructured lipid carriers (NLCs) of efavirenz via washless layer-by-layer (LbL) assembly of HA and polyallylamine hydrochloride (PAH). NLCs were subjected to TEM analysis, size and zeta potential, in vitro release and encapsulation efficiency studies. The uptake of NLCs in THP-1 cells was studied using fluorescence microscopy and flow cytometry. The anti-HIV efficacy was evaluated using p24 antigen inhibition assay. NLCs were found to be spherical in shape with anionic zeta potential (-23.66 ± 0.87 mV) and 241.83 ± 5.38 nm particle size. NLCs exhibited prolonged release of efavirenz during in vitro drug release studies. Flow cytometry revealed 1.73-fold higher uptake of HA-coated NLCs in THP-1 cells. Cytotoxicity studies showed no significant change in cell viability in presence of NLCs as compared with the control. HA-coated NLCs distributed throughout the cell including cytoplasm, plasma membrane and nucleus, as observed during fluorescence microscopy. HA-coated NLCs demonstrated consistent and significantly higher inhibition (81.26 ± 1.70%) of p24 antigen which was 2.08-fold higher than plain NLCs. The obtained results suggested preferential uptake of HA-coated NLCs via CD44-mediated uptake. The present finding demonstrates that HA-based CD44 receptor targeting in HIV infection is an attractive strategy for maximising the drug delivery to macrophages and achieve effective viral inhibition.


Asunto(s)
Portadores de Fármacos/administración & dosificación , VIH-1/efectos de los fármacos , Receptores de Hialuranos , Macrófagos/efectos de los fármacos , Nanoestructuras/administración & dosificación , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Alquinos/administración & dosificación , Alquinos/síntesis química , Alquinos/metabolismo , Benzoxazinas/administración & dosificación , Benzoxazinas/síntesis química , Benzoxazinas/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Ciclopropanos/administración & dosificación , Ciclopropanos/síntesis química , Ciclopropanos/metabolismo , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/síntesis química , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , VIH-1/fisiología , Humanos , Receptores de Hialuranos/metabolismo , Lípidos/administración & dosificación , Lípidos/síntesis química , Macrófagos/metabolismo , Nanoestructuras/química , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/metabolismo , Células THP-1
15.
Mol Pharm ; 16(6): 2616-2625, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31013098

RESUMEN

To efficiently deliver CpG oligodeoxynucleotides (ODNs) to macrophages for the reversal of cancer-induced immunosuppression, nanoparticles ODN@MCBSA with mannosylated cationic albumin (MCBSA) as a macrophage targeting vector were constructed. Compared with ODN@CBSA with cationic albumin (CBSA) as a vector, ODN@MCBSA exhibited significantly improved cellular uptake mediated by mannose moieties, resulting in significantly enhanced secretion of proflammatory cytokines including IL-12, IL-6, TNF-α, and iNOS. The modulation of macrophages toward the favorable M1 phenotype was confirmed by the upregulated CD80 expression after being treated by ODN delivery systems. In addition to immune cells, the effects of the ODN delivery system on cancerous HeLa cells were also investigated. The results showed that ODN@MCBSA did not affect the overall tumor cell viability. However, enhanced NF-κB, p-Akt, PIK3R3, Fas, and FasL, as well as upregulated caspases were observed in tumor cells, implying the pleiotropic effects on tumor cells. Our study provides a more in-depth understanding on the immunotherapeutic effects of CpG ODNs and highlights the importance of macrophage targeting delivery to minimize the effects on tumor cells. These results indicate that MCBSA could serve as a promising delivery vector of CpG ODNs to macrophages for cancer immunotherapy.


Asunto(s)
Macrófagos/metabolismo , Nanopartículas/química , Oligodesoxirribonucleótidos/metabolismo , Células HeLa , Humanos , Interleucina-12/metabolismo , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Mol Pharm ; 15(7): 2870-2882, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29863879

RESUMEN

In this work, a nano-in-micro carrier was constructed by loading polymer-lipid hybrid nanoparticles (NPs) into porous and hollow yeast cell wall microparticles (YPs) for macrophage-targeted oral delivery of cabazitaxel (CTX). The YPs, primarily composed of natural ß-1,3-d-glucan, can be recognized by the apical membrane receptor, dectin-1, which has a high expression on macrophages and intestinal M cells. By combining electrostatic force-driven self-deposition with solvent hydration/lyophilization methods, the positively charged NPs loaded with CTX or fluorescence probes were efficiently packaged into YPs, as verified by scanning electron microscope (SEM), atomic force mircoscope (AFM), and confocal laser scanning microscopy (CLSM) images. NP-loaded YPs (NYPs) showed a slower in vitro drug release and higher drug stability compared with NPs in a simulated gastrointestinal environment. Biodistribution experiments confirmed a widespread distribution and extended retention time of NYPs in the intestinal tract after oral administration. Importantly, a large amount of NYPs were primarily accumulated and transported in the intestinal Peyer's patches as visualized in distribution and absorption site studies, implying that NYPs were mainly absorbed through the lymphatic pathway. In vitro cell evaluation further demonstrated that NYPs were rapidly and efficiently taken up by macrophages via receptor dectin-1-mediated endocytosis using a mouse macrophage RAW 264.7 cell line. As expected, in the study of in vivo pharmacokinetics, the oral bioavailability of CTX was improved to 32.1% when loaded in NYPs, which is approximately 5.7 times higher than that of the CTX solution, indicating the NYPs are efficient for oral targeted delivery. Hence, this nano-in-micro carrier is believed to become a hopeful alternative strategy for increasing the oral absorption of small molecule drugs.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Macrófagos/efectos de los fármacos , Taxoides/administración & dosificación , Administración Oral , Animales , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Pared Celular/química , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Absorción Intestinal , Macrófagos/inmunología , Masculino , Ratones , Modelos Animales , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Tamaño de la Partícula , Proteoglicanos , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Saccharomyces cerevisiae/química , Taxoides/farmacocinética , Distribución Tisular , beta-Glucanos/química
17.
Pharm Res ; 35(3): 60, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29427248

RESUMEN

PURPOSE: To fabricate, characterize and evaluate 3-O-sn-Phosphatidyl-L-serine (PhoS) anchored PLGA nanoparticles for macrophage targeted therapeutic intervention of VL. MATERIALS AND METHODS: PLGA-AmpB NPs were prepared by well-established nanoprecipitation method and decorated with Phos by thin film hydration method. Physico-chemical characterization of the formulation was done by Zetasizer nano ZS and atomic force microscopy. RESULTS: The optimized formulation (particle size, 157.3 ± 4.64 nm; zeta potential, - 42.51 ± 2.11 mV; encapsulation efficiency, ∼98%) showed initial rapid release up to 8 h followed by sustained release until 72 h. PhoS generated 'eat-me' signal driven augmented macrophage uptake, significant increase in in-vitro (with ∼82% parasite inhibition) and in-vivo antileishmanial activity with preferential accumulation in macrophage rich organs liver and spleen were found. Excellent hemo-compatibility justified safety profile of developed formulation in comparison to commercial formulations. CONCLUSION: The developed PhoS-PLGA-AmpB NPs have improved efficacy, and necessary stability which promisingly put itself as a better alternative to available commercial formulations for optimized treatment of VL.


Asunto(s)
Anfotericina B/administración & dosificación , Antiprotozoarios/administración & dosificación , Portadores de Fármacos/química , Leishmaniasis Visceral/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Animales , Línea Celular , Preparaciones de Acción Retardada/administración & dosificación , Modelos Animales de Enfermedad , Composición de Medicamentos/métodos , Evaluación Preclínica de Medicamentos , Estabilidad de Medicamentos , Humanos , Leishmania donovani/efectos de los fármacos , Macrófagos/parasitología , Masculino , Ratones , Nanopartículas/química , Fosfatidilserinas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas , Ratas Wistar , Resultado del Tratamiento
18.
Int J Mol Sci ; 19(7)2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973487

RESUMEN

Macrophages, cells belonging to the innate immune system, present a high plasticity grade, being able to change their phenotype in response to environmental stimuli. They play central roles during development, homeostatic tissue processes, tissue repair, and immunity. Furthermore, it is recognized that macrophages are involved in chronic inflammation and that they play central roles in inflammatory diseases and cancer. Due to their large involvement in the pathogenesis of several types of human diseases, macrophages are considered to be relevant therapeutic targets. Nanotechnology-based systems have attracted a lot of attention in this field, gaining a pivotal role as useful moieties to target macrophages in diseased tissues. Among the different approaches that can target macrophages, the most radical is represented by their depletion, commonly obtained by means of clodronate-containing liposomal formulations and/or depleting antibodies. These strategies have produced encouraging results in experimental mouse models. In this review, we focus on macrophage targeting, based on the results so far obtained in preclinical models of inflammatory diseases and cancer. Pros and cons of these therapeutic interventions will be highlighted.


Asunto(s)
Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Ácido Clodrónico/uso terapéutico , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Humanos , Inflamación/inmunología , Liposomas , Macrófagos/inmunología , Ratones , Nanotecnología , Neoplasias/inmunología
19.
Cell Mol Life Sci ; 73(13): 2411-24, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26956893

RESUMEN

Myeloid cells infiltrating the tumor microenvironment, especially tumor-associated macrophages (TAMs), are essential providers of cancer-related inflammation, a condition known to accelerate tumor progression and limit the response to anti-tumor therapies. As a matter of fact, TAMs may have a dual role while interfering with cancer treatments, as they can either promote or impair their functionality. Here we review the connection between macrophages and anticancer therapies; moreover, we provide an overview of the different strategies to target or re-program TAMs for therapeutic purposes.


Asunto(s)
Inflamación/complicaciones , Macrófagos/patología , Neoplasias/complicaciones , Neoplasias/terapia , Animales , Técnicas de Reprogramación Celular/métodos , Humanos , Inmunoterapia/métodos , Inflamación/inmunología , Inflamación/patología , Inflamación/terapia , Macrófagos/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neovascularización Patológica/complicaciones , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Microambiente Tumoral
20.
Mol Pharm ; 13(9): 3247-55, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27463245

RESUMEN

Nitazoxanide (NTZ) has moderate mycobactericidal activity and is also an inducer of autophagy in mammalian cells. High-payload (40-50% w/w) inhalable particles containing NTZ alone or in combination with antituberculosis (TB) agents isoniazid (INH) and rifabutin (RFB) were prepared with high incorporation efficiency of 92%. In vitro drug release was corrected for drug degradation during the course of study and revealed first-order controlled release. Particles were efficiently taken up in vitro by macrophages and maintained intracellular drug concentrations at one order of magnitude higher than NTZ in solution for 6 h. Dose-dependent killing of Mtb and restoration of lung and spleen architecture were observed in experimentally infected mice treated with inhalations containing NTZ. Adjunct NTZ with INH and RFB cleared culturable bacteria from the lung and spleen and markedly healed tissue architecture. NTZ can be used in combination with INH-RFB to kill the pathogen and heal the host.


Asunto(s)
Antituberculosos/uso terapéutico , Macrófagos/efectos de los fármacos , Tiazoles/uso terapéutico , Tuberculosis/tratamiento farmacológico , Administración por Inhalación , Animales , Antituberculosos/administración & dosificación , Autofagia/efectos de los fármacos , Línea Celular , Humanos , Isoniazida/administración & dosificación , Isoniazida/uso terapéutico , Masculino , Ratones , Nitrocompuestos , Planificación de la Radioterapia Asistida por Computador , Rifabutina/administración & dosificación , Rifabutina/uso terapéutico , Tiazoles/administración & dosificación , Tuberculosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA