Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 730
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(37): e2404175121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39236245

RESUMEN

We generated SARS-CoV-2 variants resistant to three SARS-CoV-2 main protease (Mpro) inhibitors (nirmatrelvir, TKB245, and 5h), by propagating the ancestral SARS-CoV-2WK521WT in VeroE6TMPRSS2 cells with increasing concentrations of each inhibitor and examined their structural and virologic profiles. A predominant E166V-carrying variant (SARS-CoV-2WK521E166V), which emerged when passaged with nirmatrelvir and TKB245, proved to be resistant to the two inhibitors. A recombinant SARS-CoV-2E166V was resistant to nirmatrelvir and TKB245, but sensitive to 5h. X-ray structural study showed that the dimerization of Mpro was severely hindered by E166V substitution due to the disruption of the presumed dimerization-initiating Ser1'-Glu166 interactions. TKB245 stayed bound to MproE166V, whereas nirmatrelvir failed. Native mass spectrometry confirmed that nirmatrelvir and TKB245 promoted the dimerization of Mpro, and compromised the enzymatic activity; the Ki values of recombinant MproE166V for nirmatrelvir and TKB245 were 117±3 and 17.1±1.9 µM, respectively, indicating that TKB245 has a greater (by a factor of 6.8) binding affinity to MproE166V than nirmatrelvir. SARS-CoV-2WK521WT selected with 5h acquired A191T substitution in Mpro (SARS-CoV-2WK521A191T) and better replicated in the presence of 5h, than SARS-CoV-2WK521WT. However, no significant enzymatic or structural changes in MproA191T were observed. The replicability of SARS-CoV-2WK521E166V proved to be compromised compared to SARS-CoV-2WK521WT but predominated over SARS-CoV-2WK521WT in the presence of nirmatrelvir. The replicability of SARS-CoV-2WK521A191T surpassed that of SARS-CoV-2WK521WT in the absence of 5h, confirming that A191T confers enhanced viral fitness. The present data should shed light on the understanding of the mechanism of SARS-CoV-2's drug resistance acquisition and the development of resistance-repellant COVID-19 therapeutics.


Asunto(s)
Proteasas 3C de Coronavirus , Farmacorresistencia Viral , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Humanos , Chlorocebus aethiops , Animales , Farmacorresistencia Viral/genética , Células Vero , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , COVID-19/virología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Cristalografía por Rayos X , Lactamas , Leucina , Nitrilos , Prolina
2.
J Biol Chem ; 300(6): 107367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750796

RESUMEN

The main protease (Mpro) remains an essential therapeutic target for COVID-19 post infection intervention given its critical role in processing the majority of viral proteins encoded by the genome of severe acute respiratory syndrome related coronavirus 2 (SARS-CoV-2). Upon viral entry, the +ssRNA genome is translated into two long polyproteins (pp1a or the frameshift-dependent pp1ab) containing all the nonstructural proteins (nsps) required by the virus for immune modulation, replication, and ultimately, virion assembly. Included among these nsps is the cysteine protease Mpro (nsp5) which self-excises from the polyprotein, dimerizes, then sequentially cleaves 11 of the 15 cut-site junctions found between each nsp within the polyprotein. Many structures of Mpro (often bound to various small molecule inhibitors or peptides) have been detailed recently, including structures of Mpro bound to each of the polyprotein cleavage sequences, showing that Mpro can accommodate a wide range of targets within its active site. However, to date, kinetic characterization of the interaction of Mpro with each of its native cleavage sequences remains incomplete. Here, we present a robust and cost-effective FRET based system that benefits from a more consistent presentation of the substrate that is also closer in organization to the native polyprotein environment compared to previously reported FRET systems that use chemically modified peptides. Using this system, we were able to show that while each site maintains a similar Michaelis constant, the catalytic efficiency of Mpro varies greatly between cut-site sequences, suggesting a clear preference for the order of nsp processing.


Asunto(s)
Proteasas 3C de Coronavirus , Transferencia Resonante de Energía de Fluorescencia , Poliproteínas , SARS-CoV-2 , Humanos , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , COVID-19/virología , COVID-19/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Poliproteínas/metabolismo , Poliproteínas/química , Proteolisis , SARS-CoV-2/enzimología , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética
3.
J Biol Chem ; 300(9): 107675, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128719

RESUMEN

The assembly of two monomeric constructs spanning segments 1-199 (MPro1-199) and 10-306 (MPro10-306) of SARS-CoV-2 main protease (MPro) was examined to assess the existence of a transient heterodimer intermediate in the N-terminal autoprocessing pathway of MPro model precursor. Together, they form a heterodimer population accompanied by a 13-fold increase in catalytic activity. Addition of inhibitor GC373 to the proteins increases the activity further by ∼7-fold with a 1:1 complex and higher order assemblies approaching 1:2 and 2:2 molecules of MPro1-199 and MPro10-306 detectable by analytical ultracentrifugation and native mass estimation by light scattering. Assemblies larger than a heterodimer (1:1) are discussed in terms of alternate pathways of domain III association, either through switching the location of helix 201 to 214 onto a second helical domain of MPro10-306 and vice versa or direct interdomain III contacts like that of the native dimer, based on known structures and AlphaFold 3 prediction, respectively. At a constant concentration of MPro1-199 with molar excess of GC373, the rate of substrate hydrolysis displays first order dependency on the MPro10-306 concentration and vice versa. An equimolar composition of the two proteins with excess GC373 exhibits half-maximal activity at ∼6 µM MPro1-199. Catalytic activity arises primarily from MPro1-199 and is dependent on the interface interactions involving the N-finger residues 1 to 9 of MPro1-199 and E290 of MPro10-306. Importantly, our results confirm that a single N-finger region with its associated intersubunit contacts is sufficient to form a heterodimeric MPro intermediate with enhanced catalytic activity.


Asunto(s)
Proteasas 3C de Coronavirus , Multimerización de Proteína , SARS-CoV-2 , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , SARS-CoV-2/enzimología , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Humanos , Dominios Proteicos , COVID-19/virología , Modelos Moleculares
4.
J Virol ; 98(6): e0004924, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38742901

RESUMEN

SARS-CoV-2 3C-like main protease (3CLpro) is essential for protein excision from the viral polyprotein. 3CLpro inhibitor drug development to block SARS-CoV-2 replication focuses on the catalytic non-prime (P) side for specificity and potency, but the importance of the prime (P') side in substrate specificity and for drug development remains underappreciated. We determined the P6-P6' specificity for 3CLpro from >800 cleavage sites that we identified using Proteomic Identification of Cleavage site Specificity (PICS). Cleavage occurred after the canonical P1-Gln and non-canonical P1-His and P1-Met residues. Moreover, P3 showed a preference for Arg/Lys and P3' for His. Essential H-bonds between the N-terminal Ser1 of protomer-B in 3CLpro dimers form with P1-His, but not with P1-Met. Nonetheless, cleavage occurs at P1-Met456 in native MAP4K5. Elevated reactive oxygen species in SARS-CoV-2 infection oxidize methionines. Molecular simulations revealed P1-MetOX forms an H-bond with Ser1 and notably, strong positive cooperativity between P1-Met with P3'-His was revealed, which enhanced peptide-cleavage rates. The highly plastic S3' subsite accommodates P3'-His that displays stabilizing backbone H-bonds with Thr25 lying central in a "'threonine trio" (Thr24-Thr25-Thr26) in the P'-binding domain I. Molecular docking simulations unveiled structure-activity relationships impacting 3CLpro-substrate interactions, and the role of these structural determinants was confirmed by MALDI-TOF-MS cleavage assays of P1'- and P3'-positional scanning peptide libraries carrying a 2nd optimal cut-site as an internal positive control. These data informed the design of two new and highly soluble 3CLproquenched-fluorescent peptide substrates for improved FRET monitoring of 3CLpro activity with 15× improved sensitivity over current assays.IMPORTANCEFrom global proteomics identification of >800 cleavage sites, we characterized the P6-P6' active site specificity of SARS-CoV-2 3CLpro using proteome-derived peptide library screens, molecular modeling simulations, and focussed positional peptide libraries. In P1', we show that alanine and serine are cleaved 3× faster than glycine and the hydrophobic small amino acids Leu, Ile, or Val prevent cleavage of otherwise optimal non-prime sequences. In characterizing non-canonical non-prime P1 specificity, we explored the unusual P1-Met specificity, discovering enhanced cleavage when in the oxidized state (P1-MetOX). We unveiled unexpected amino acid cooperativity at P1-Met with P3'-His and noncanonical P1-His with P2-Phe, and the importance of the threonine trio (Thr24-Thr25-Thr26) in the prime side binding domain I in defining prime side binding in SARS-CoV-2 3CLpro. From these analyses, we rationally designed quenched-fluorescence natural amino acid peptide substrates with >15× improved sensitivity and high peptide solubility, facilitating handling and application for screening of new antiviral drugs.


Asunto(s)
Proteasas 3C de Coronavirus , Proteómica , SARS-CoV-2 , Humanos , Dominio Catalítico , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , COVID-19/virología , COVID-19/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/metabolismo , Péptidos/química , Proteómica/métodos , SARS-CoV-2/enzimología , Especificidad por Sustrato
5.
Proc Natl Acad Sci U S A ; 119(16): e2117142119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35380892

RESUMEN

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key enzyme, which extensively digests CoV replicase polyproteins essential for viral replication and transcription, making it an attractive target for antiviral drug development. However, the molecular mechanism of how Mpro of SARS-CoV-2 digests replicase polyproteins, releasing the nonstructural proteins (nsps), and its substrate specificity remain largely unknown. Here, we determine the high-resolution structures of SARS-CoV-2 Mpro in its resting state, precleavage state, and postcleavage state, constituting a full cycle of substrate cleavage. The structures show the delicate conformational changes that occur during polyprotein processing. Further, we solve the structures of the SARS-CoV-2 Mpro mutant (H41A) in complex with six native cleavage substrates from replicase polyproteins, and demonstrate that SARS-CoV-2 Mpro can recognize sequences as long as 10 residues but only have special selectivity for four subsites. These structural data provide a basis to develop potent new inhibitors against SARS-CoV-2.


Asunto(s)
Proteasas 3C de Coronavirus , ARN Polimerasa Dependiente de ARN de Coronavirus , SARS-CoV-2 , Antivirales/química , Proteasas 3C de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Poliproteínas/química , Conformación Proteica , Proteolisis , SARS-CoV-2/enzimología , Especificidad por Sustrato/genética
6.
Proc Natl Acad Sci U S A ; 119(15): e2120913119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35324337

RESUMEN

SignificanceThe coronavirus main protease (Mpro) is required for viral replication. Here, we obtained the extended conformation of the native monomer of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Mpro by trapping it with nanobodies and found that the catalytic domain and the helix domain dissociate, revealing allosteric targets. Another monomeric state is termed compact conformation and is similar to one protomer of the dimeric form. We designed a Nanoluc Binary Techonology (NanoBiT)-based high-throughput allosteric inhibitor assay based on structural conformational change. Our results provide insight into the maturation, dimerization, and catalysis of the coronavirus Mpro and pave a way to develop an anticoronaviral drug through targeting the maturation process to inhibit the autocleavage of Mpro.


Asunto(s)
Antivirales , COVID-19 , Proteasas 3C de Coronavirus , Inhibidores de Proteasas , SARS-CoV-2 , Regulación Alostérica/efectos de los fármacos , Antivirales/química , Antivirales/farmacología , COVID-19/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Humanos , Luciferasas , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Conformación Proteica , Multimerización de Proteína
7.
J Biol Chem ; 299(7): 104886, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37271339

RESUMEN

The effect of mutations of the catalytic dyad residues of SARS-CoV-2 main protease (MProWT) on the thermodynamics of binding of covalent inhibitors comprising nitrile [nirmatrelvir (NMV), NBH2], aldehyde (GC373), and ketone (BBH1) warheads to MPro is examined together with room temperature X-ray crystallography. When lacking the nucleophilic C145, NMV binding is ∼400-fold weaker corresponding to 3.5 kcal/mol and 13.3 °C decrease in free energy (ΔG) and thermal stability (Tm), respectively, relative to MProWT. The H41A mutation results in a 20-fold increase in the dissociation constant (Kd), and 1.7 kcal/mol and 1.4 °C decreases in ΔG and Tm, respectively. Increasing the pH from 7.2 to 8.2 enhances NMV binding to MProH41A, whereas no significant change is observed in binding to MProWT. Structures of the four inhibitor complexes with MPro1-304/C145A show that the active site geometries of the complexes are nearly identical to that of MProWT with the nucleophilic sulfur of C145 positioned to react with the nitrile or the carbonyl carbon. These results support a two-step mechanism for the formation of the covalent complex involving an initial non-covalent binding followed by a nucleophilic attack by the thiolate anion of C145 on the warhead carbon. Noncovalent inhibitor ensitrelvir (ESV) exhibits a binding affinity to MProWT that is similar to NMV but differs in its thermodynamic signature from NMV. The binding of ESV to MProC145A also results in a significant, but smaller, increase in Kd and decrease in ΔG and Tm, relative to NMV.


Asunto(s)
COVID-19 , Inhibidores de Proteasa de Coronavirus , SARS-CoV-2 , Humanos , Carbono , Inhibidores de Proteasa de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/farmacología , Lactamas , Leucina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nitrilos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología
8.
J Biol Chem ; 299(3): 102990, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36758802

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019, constitutes an emerging human pathogen of zoonotic origin. A critical role in protecting the host against invading pathogens is carried out by interferon-stimulated genes (ISGs), the primary effectors of the type I interferon (IFN) response. All coronaviruses studied thus far have to first overcome the inhibitory effects of the IFN/ISG system before establishing efficient viral replication. However, whether SARS-CoV-2 evades IFN antiviral immunity by manipulating ISG activation remains to be elucidated. Here, we show that the SARS-CoV-2 main protease (Mpro) significantly suppresses the expression and transcription of downstream ISGs driven by IFN-stimulated response elements in a dose-dependent manner, and similar negative regulations were observed in two mammalian epithelial cell lines (simian Vero E6 and human A549). Our analysis shows that to inhibit the ISG production, Mpro cleaves histone deacetylases (HDACs) rather than directly targeting IFN signal transducers. Interestingly, Mpro also abolishes the activity of ISG effector mRNA-decapping enzyme 1a (DCP1A) by cleaving it at residue Q343. In addition, Mpro from different genera of coronaviruses has the protease activity to cleave both HDAC2 and DCP1A, even though the alphacoronaviruse Mpro exhibits weaker catalytic activity in cleaving HDAC2. In conclusion, our findings clearly demonstrate that SARS-CoV-2 Mpro constitutes a critical anti-immune effector that modulates the IFN/ISG system at multiple levels, thus providing a novel molecular explanation for viral immune evasion and allowing for new therapeutic approaches against coronavirus disease 2019 infection.


Asunto(s)
COVID-19 , Interferón Tipo I , Animales , Humanos , SARS-CoV-2 , Histona Desacetilasas/genética , Interferón Tipo I/farmacología , Péptido Hidrolasas , Mamíferos , Endorribonucleasas , Transactivadores
9.
J Biol Chem ; 299(3): 103004, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36775130

RESUMEN

SARS-CoV-2 is the causative agent of COVID-19. The main viral protease (Mpro) is an attractive target for antivirals. The clinically approved drug nirmatrelvir and the clinical candidate ensitrelvir have so far showed great potential for treatment of viral infection. However, the broad use of antivirals is often associated with resistance generation. Herein, we enzymatically characterized 14 naturally occurring Mpro polymorphisms that are close to the binding site of these antivirals. Nirmatrelvir retained its potency against most polymorphisms tested, while mutants G143S and Q189K were associated with diminished inhibition constants. For ensitrelvir, diminished inhibition constants were observed for polymorphisms M49I, G143S, and R188S, but not for Q189K, suggesting a distinct resistance profile between inhibitors. In addition, the crystal structures of selected polymorphisms revealed interactions that were critical for loss of potency. In conclusion, our data will assist the monitoring of potential resistant strains, support the design of combined therapy, as well as assist the development of the next generation of Mpro inhibitors.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Antivirales/farmacología , Lactamas , Leucina , Nitrilos , Inhibidores de Proteasas/farmacología
10.
J Biol Chem ; 299(5): 104697, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37044215

RESUMEN

The processing of the Coronavirus polyproteins pp1a and pp1ab by the main protease Mpro to produce mature proteins is a crucial event in virus replication and a promising target for antiviral drug development. Mpro cleaves polyproteins in a defined order, but how Mpro and/or the polyproteins determine the order of cleavage remains enigmatic due to a lack of structural information about polyprotein-bound Mpro. Here, we present the cryo-EM structures of SARS-CoV-2 Mpro in an apo form and in complex with the nsp7-10 region of the pp1a polyprotein. The complex structure shows that Mpro interacts with only the recognition site residues between nsp9 and nsp10, without any association with the rest of the polyprotein. Comparison between the apo form and polyprotein-bound structures of Mpro highlights the flexible nature of the active site region of Mpro, which allows it to accommodate ten recognition sites found in the polyprotein. These observations suggest that the role of Mpro in selecting a preferred cleavage site is limited and underscores the roles of the structure, conformation, and/or dynamics of the polyproteins in determining the sequence of polyprotein cleavage by Mpro.


Asunto(s)
Proteasas 3C de Coronavirus , Poliproteínas , Proteolisis , SARS-CoV-2 , Humanos , Poliproteínas/metabolismo , SARS-CoV-2/metabolismo , Proteasas 3C de Coronavirus/metabolismo
11.
Proteins ; 92(6): 735-749, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38213131

RESUMEN

The new viral strains of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are continuously rising, becoming more virulent, and transmissible. Therefore, the development of new antiviral drugs is essential. Due to its significant role in the viral life cycle of SARS-CoV-2, the main protease (Mpro) enzyme is a leading target for antiviral drug design. The Mpro monomer consists of domain DI, DII, and DI-DII interface. Twenty-one conserved water molecules (W4-W24) are occupied at these domains according to multiple crystal structure analyses. The crystal and MD structures reveal the presence of eight conserved water sites in domain DI, DII and remaining in the DI-DII interface. Grid-based inhomogeneous fluid solvation theory (GIST) was employed on MD structures of Mpro native to predict structural and thermodynamic properties of each conserved water site for focusing to identify the specific conserved water molecules that can easily be displaced by proposed ligands. Finally, MD water W13 is emerged as a promising candidate for water mimic drug design due to its low mean interaction energy, loose binding character with the protein, and its involvement in a water-mediated H-bond with catalytic His41 via the interaction Thr25(OG)---W13---W---His41(NE2). In this context, water occupancy, relative interaction energy, entropy, and topologies of W13 are thermodynamically acceptable for the water displacement method. Therefore, the strategic use of W13's geometrical position in the DI domain may be implemented for drug discovery against COVID disease by designing new ligands with appropriately oriented chemical groups to mimic its structural, electronic, and thermodynamic properties.


Asunto(s)
Proteasas 3C de Coronavirus , Simulación de Dinámica Molecular , SARS-CoV-2 , Termodinámica , Agua , Humanos , Antivirales/química , Antivirales/farmacología , Antivirales/metabolismo , Sitios de Unión , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , COVID-19/virología , Diseño de Fármacos , Enlace de Hidrógeno , Ligandos , Unión Proteica , SARS-CoV-2/química , SARS-CoV-2/enzimología , Solventes/química , Agua/química
12.
Biochem Biophys Res Commun ; 735: 150469, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39106601

RESUMEN

Recurrent epidemics of coronaviruses have posed significant threats to human life and health. The mortality rate of patients infected with the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is 35 %. The main protease (Mpro) plays a crucial role in the MERS-CoV life cycle, and Mpro exhibited a high degree of conservation among different coronaviruses. Therefore inhibition of Mpro has become an effective strategy for the development of broad-spectrum anti-coronaviral drugs. The inhibition of SARS-CoV-2 Mpro by the anti-tumor drug carmofur has been revealed, but structural studies of carmofur in complex with Mpro from other types of coronavirus have not been reported. Hence, we revealed the structure of the MERS-CoV Mpro-carmofur complex, analysed the structural basis for the binding of carmofur to MERS-CoV Mpro in detail, and compared the binding patterns of carmofur to Mpros of two different coronaviruses, MERS-CoV and SARS-CoV-2. Considering the importance of Mpros for coronavirus therapy, structural understanding of Mpro inhibition by carmofur could contribute to the design and development of novel antiviral drugs with safe and broad-spectrum efficacy.

13.
Biochem Biophys Res Commun ; 724: 150231, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852502

RESUMEN

Human coronaviruses are a group of pathogens that primarily cause respiratory and intestinal diseases. Infection can easily cause respiratory symptoms, as well as a variety of serious complications. There are several types of human coronaviruses, such as SARS-CoV, MERS-CoV, HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, and SARS-CoV-2. The prevalence of COVID-19 has led to a growing focus on drug research against human coronaviruses. The main protease (Mpro) from human coronaviruses is a relatively conserved that controls viral replication. X77 was discovered to have extremely high inhibitory activity against SARS-CoV-2 Mpro through the use of computer-simulated docking. In this paper, we have resolved the crystal structure of the HCoV-NL63 Mpro complexed with X77 and analyzed their interaction in detail. This data provides essential information for solving their binding modes and their structural determinants. Then, we compared the binding modes of X77 with SARS-CoV-2 Mpro and HCoV-NL63 Mpro in detail. This study illustrates the structural basis of HCoV-NL63 Mpro binding to the inhibitor X77. The structural insights derived from this study will inform the development of new drugs with broad-spectrum resistance to human coronaviruses.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Coronavirus Humano NL63 , SARS-CoV-2 , Humanos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Cristalografía por Rayos X , Antivirales/química , Antivirales/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/metabolismo , Unión Proteica , Modelos Moleculares , Sitios de Unión , COVID-19/virología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Betacoronavirus/enzimología , Conformación Proteica
14.
Biochem Biophys Res Commun ; 692: 149352, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38056159

RESUMEN

SARS-CoV-2 constantly circulates and evolves worldwide, generating many variants and posing a menace to global health. It is urgently needed to discover effective medicines to treat the disease caused by SARS-CoV-2 and its variants. An established target for anti-SARS-CoV-2 drug discovery is the main protease (Mpro), since it exerts an irreplaceable action in viral life cycle. CCF0058981, derived from ML300, is a non-covalent inhibitor that exhibits low nanomolar potency against SARS-CoV-2 Mpro and submicromolar anti-SARS-CoV-2 activity, thereby providing a valuable starting point for drug design. However, structural basis underlying inhibition of SARS-CoV-2 Mpro by CCF0058981 remains undetermined. In this study, the crystal structures of CCF0058981 in complex with two SARS-CoV-2 Mpro mutants (M49I and V186F), which have been identified in the recently emerged Omicron subvariants, were solved. Structural analysis defined the pivotal molecular factors responsible for the interactions between CCF0058981 and these two Mpro mutants, and revealed the binding modes of CCF0058981 to Mpro M49I and V186F mutants. These data not only provide structural insights for SARS-CoV-2 Mpro inhibition by CCF0058981, but also add to develop effective broad-spectrum drugs against SARS-CoV-2 as well as its variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/química , Simulación del Acoplamiento Molecular
15.
J Mol Recognit ; : e3101, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221493

RESUMEN

The SARS-CoV-2 main protease (Mpro) is an essential enzyme that promotes viral transcription and replication. Mpro conserved nature in different variants and its nonoverlapping nature with human proteases make it an attractive target for therapeutic intervention against SARS-CoV-2. In this work, the interaction mechanism between Mpro and diindolylmethane derivatives was investigated by molecular docking, enzymatic inhibition assay, UV-vis, fluorescence spectroscopy, and circular dichroism spectroscopy. Results of IC50 values show that 1p (9.87 µM) was the strongest inhibitor for Mpro in this work, which significantly inhibited the activity of Mpro. The binding constant (4.07 × 105 Lmol-1), the quenching constant (5.41 × 105 Lmol-1), and thermodynamic parameters indicated that the quenching mode of 1p was static quenching, and the main driving forces between 1p and Mpro are hydrogen bond and van der Waals force. The influence of molecular structure on the binding is investigated. Chlorine atoms and methoxy groups are favorable for the diindolylmethane derivative inhibitors of Mpro. This work confirms the changes in the microenvironment of Mpro by 1p, and provides clues for the design of potential inhibitors.

16.
J Med Virol ; 96(3): e29498, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436148

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health. In parallel with vaccines, efficacious antivirals are urgently needed. SARS-CoV-2 main protease (Mpro) is an attractive drug target for antiviral development owing to its key roles in virus replication and host immune evasion. Due to the limitations of currently available methods, the development of novel high-throughput screening assays is of the highest importance for the discovery of Mpro inhibitors. In this study, we first developed an improved fluorescence-based assay for rapid screening of Mpro inhibitors from an anti-infection compound library using a versatile dimerization-dependent red fluorescent protein (ddRFP) biosensor. Utilizing this assay, we identified MG-101 as a competitive Mpro inhibitor in vitro. Moreover, our results revealed that ensitrelvir is a potent Mpro inhibitor, but baicalein, chloroquine, ebselen, echinatin, and silibinin are not. Therefore, this robust ddRFP assay provides a faithful avenue for rapid screening and evaluation of Mpro inhibitors to fight against COVID-19.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Humanos , SARS-CoV-2 , Inhibidores de Proteasas/farmacología , Antivirales/farmacología
17.
Chemistry ; 30(44): e202401606, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38801240

RESUMEN

The development of novel antivirals is crucial not only for managing current COVID-19 infections but for addressing potential future zoonotic outbreaks. SARS-CoV-2 main protease (Mpro) is vital for viral replication and viability and therefore serves as an attractive target for antiviral intervention. Herein, we report the optimization of a cyclic peptide inhibitor that emerged from an mRNA display selection against the SARS-CoV-2 Mpro to enhance its cell permeability and in vitro antiviral activity. By identifying mutation-tolerant amino acid residues within the peptide sequence, we describe the development of a second-generation Mpro inhibitor bearing five cyclohexylalanine residues. This cyclic peptide analogue exhibited significantly improved cell permeability and antiviral activity compared to the parent peptide. This approach highlights the importance of optimizing cyclic peptide hits for activity against intracellular targets such as the SARS-CoV-2 Mpro.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos Cíclicos , SARS-CoV-2 , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Antivirales/química , Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Humanos , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Aminoácidos/química , Tratamiento Farmacológico de COVID-19
18.
Chemistry ; 30(17): e202303940, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38246870

RESUMEN

Protein-templated fragment ligation was established as a method for the rapid identification of high affinity ligands, and multicomponent reactions (MCR) such as the Ugi four-component reaction (Ugi 4CR) have been efficient in the synthesis of drug candidates. Thus, the combination of both strategies should provide a powerful approach to drug discovery. Here, we investigate protein-templated Ugi 4CR quantitatively using a fluorescence-based enzyme assay, HPLC-QTOF mass spectrometry (MS), and native protein MS with SARS-CoV-2 main protease as template. Ugi reactions were analyzed in aqueous buffer at varying pH and fragment concentration. Potent inhibitors of the protease were formed in presence of the protein via Ugi 4CR together with Ugi three-component reaction (Ugi 3CR) products. Binding of inhibitors to the protease was confirmed by native MS and resulted in the dimerization of the protein target. Formation of Ugi products was, however, more efficient in the non-templated reaction, apparently due to interactions of the protein with the isocyanide and imine fragments. Consequently, in-situ ligation screening of Ugi 4CR products was identified as a superior approach to the discovery of SARS-CoV-2 protease inhibitors.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Proteasas 3C de Coronavirus , Cianuros/química , Endopeptidasas , Inhibidores de Proteasas
19.
Protein Expr Purif ; 222: 106531, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38852715

RESUMEN

The SARS-CoV-2 main protease (Mpro) plays a crucial role in virus amplification and is an ideal target for antiviral drugs. Currently, authentic Mpro is prepared through two rounds of proteolytic cleavage. In this method, Mpro carries a self-cleavage site at the N-terminus and a protease cleavage site followed by an affinity tag at the C-terminus. This article proposes a novel method for producing authentic Mpro through single digestion. Mpro was constructed by fusing a His tag containing TEV protease cleavage sites at the N-terminus. The expressed recombinant protein was digested by TEV protease, and the generated protein had a decreased molecular weight and significantly increased activity, which was consistent with that of authentic Mpro generated by the previous method. These findings indicated that authentic Mpro was successfully obtained. Moreover, the substrate specificity of Mpro was investigated. Mpro had a strong preference for Phe at position the P2, which suggested that the S2 subsite was an outstanding target for designing inhibitors. This article also provides a reference for the preparation of Mpro for sudden coronavirus infection in the future.


Asunto(s)
Proteasas 3C de Coronavirus , SARS-CoV-2 , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Especificidad por Sustrato , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , COVID-19/virología
20.
Bioorg Med Chem Lett ; 110: 129852, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925524

RESUMEN

The global outbreak of the COVID-19 pandemic caused by the SARS-CoV-2 virus had led to profound respiratory health implications. This study focused on designing organoselenium-based inhibitors targeting the SARS-CoV-2 main protease (Mpro). The ligand-binding pathway sampling method based on parallel cascade selection molecular dynamics (LB-PaCS-MD) simulations was employed to elucidate plausible paths and conformations of ebselen, a synthetic organoselenium drug, within the Mpro catalytic site. Ebselen effectively engaged the active site, adopting proximity to H41 and interacting through the benzoisoselenazole ring in a π-π T-shaped arrangement, with an additional π-sulfur interaction with C145. In addition, the ligand-based drug design using the QSAR with GFA-MLR, RF, and ANN models were employed for biological activity prediction. The QSAR-ANN model showed robust statistical performance, with an r2training exceeding 0.98 and an RMSEtest of 0.21, indicating its suitability for predicting biological activities. Integration the ANN model with the LB-PaCS-MD insights enabled the rational design of novel compounds anchored in the ebselen core structure, identifying promising candidates with favorable predicted IC50 values. The designed compounds exhibited suitable drug-like characteristics and adopted an active conformation similar to ebselen, inhibiting Mpro function. These findings represent a synergistic approach merging ligand and structure-based drug design; with the potential to guide experimental synthesis and enzyme assay testing.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Diseño de Fármacos , Isoindoles , Aprendizaje Automático , Simulación de Dinámica Molecular , Compuestos de Organoselenio , Inhibidores de Proteasas , Relación Estructura-Actividad Cuantitativa , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Compuestos de Organoselenio/química , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/síntesis química , Isoindoles/química , Isoindoles/farmacología , Isoindoles/síntesis química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/síntesis química , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Humanos , Azoles/química , Azoles/farmacología , Azoles/síntesis química , COVID-19/virología , Dominio Catalítico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA