Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 277-304, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654323

RESUMEN

Metabolites are the small biological molecules involved in energy conversion and biosynthesis. Studying metabolism is inherently challenging due to metabolites' reactivity, structural diversity, and broad concentration range. Herein, we review the common pitfalls encountered in metabolomics and provide concrete guidelines for obtaining accurate metabolite measurements, focusing on water-soluble primary metabolites. We show how seemingly straightforward sample preparation methods can introduce systematic errors (e.g., owing to interconversion among metabolites) and how proper selection of quenching solvent (e.g., acidic acetonitrile:methanol:water) can mitigate such problems. We discuss the specific strengths, pitfalls, and best practices for each common analytical platform: liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), and enzyme assays. Together this information provides a pragmatic knowledge base for carrying out biologically informative metabolite measurements.


Asunto(s)
Cromatografía Liquida/normas , Cromatografía de Gases y Espectrometría de Masas/normas , Espectroscopía de Resonancia Magnética/normas , Espectrometría de Masas/normas , Metabolómica/normas , Adenosina Trifosfato/análisis , Animales , Glutatión/análisis , Guías como Asunto , Humanos , Microextracción en Fase Líquida/métodos , Metabolómica/instrumentación , Metabolómica/métodos , Ratones , NADP/análisis , Solventes
2.
Mol Cell ; 79(1): 99-114.e9, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32445620

RESUMEN

Structural maintenance of chromosomes (SMC) complexes are essential for genome organization from bacteria to humans, but their mechanisms of action remain poorly understood. Here, we characterize human SMC complexes condensin I and II and unveil the architecture of the human condensin II complex, revealing two putative DNA-entrapment sites. Using single-molecule imaging, we demonstrate that both condensin I and II exhibit ATP-dependent motor activity and promote extensive and reversible compaction of double-stranded DNA. Nucleosomes are incorporated into DNA loops during compaction without being displaced from the DNA, indicating that condensin complexes can readily act upon nucleosome-bound DNA molecules. These observations shed light on critical processes involved in genome organization in human cells.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Nucleosomas/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/genética , Humanos , Modelos Moleculares , Complejos Multiproteicos/genética , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula/métodos
3.
Proc Natl Acad Sci U S A ; 119(17): e2119032119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35439051

RESUMEN

Iodine-induced cleavage at phosphorothioate DNA (PT-DNA) is characterized by extremely high sensitivity (∼1 phosphorothioate link per 106 nucleotides), which has been used for detecting and sequencing PT-DNA in bacteria. Despite its foreseeable potential for wide applications, the cleavage mechanism at the PT-modified site has not been well established, and it remains unknown as to whether or not cleavage of the bridging P-O occurs at every PT-modified site. In this work, we conducted accurate ωB97X-D calculations and high-performance liquid chromatography-mass spectrometry to investigate the process of PT-DNA cleavage at the atomic and molecular levels. We have found that iodine chemoselectively binds to the sulfur atom of the phosphorothioate link via a strong halogen-chalcogen interaction (a type of halogen bond, with binding affinity as high as 14.9 kcal/mol) and thus triggers P-O bond cleavage via phosphotriester-like hydrolysis. Additionally, aside from cleavage of the bridging P-O bond, the downstream hydrolyses lead to unwanted P-S/P-O conversions and a loss of the phosphorothioate handle. The mechanism we outline helps to explain specific selectivity at the PT-modified site but also predicts the dynamic stoichiometry of P-S and P-O bond breaking. For instance, Tris is involved in the cascade derivation of S-iodo-phosphorothioate to S-amino-phosphorothioate, suppressing the S-iodo-phosphorothioate hydrolysis to a phosphate diester. However, hydrolysis of one-third of the Tris-O-grafting phosphotriester results in unwanted P-S/P-O conversions. Our study suggests that bacterial DNA phosphorothioation may more frequently occur than previous bioinformatic estimations have predicted from iodine-induced deep sequencing data.


Asunto(s)
Yodo , División del ADN , ADN Bacteriano/genética , Yoduros , Fosfatos/química , Azufre
4.
Proteomics ; 24(14): e2300351, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38700052

RESUMEN

Single-cell proteomics is currently far less productive than other approaches. Still, the proteomic community is having trouble adapting to the limitation of having to examine fewer cells than they would like. Studies on a small number of cells should be carefully planned to maximize the chances of success in this situation. This study aims to determine how sample size and measurement speed (slope)/variation affect the accuracy of a protein proteome mass spectrometric determination. The determination accuracy was shown to increase, and the false positive rate was shown to decrease as the sample size increased from 7 to 100 cells and the measurement slope/variation (S/V) ratio increased from 1 to 6. Furthermore, it was discovered that the number of cells in the sample increased the accuracy of this estimate. Thus, for 100 cells, the measurement S/V ratio was typically estimated to be very close to the real-world value, with a standard deviation of 0.35. For sample sizes from 7 to 100 cells, this accuracy was seen when calculating the measurement S/V ratio. The findings can help researchers plan experiments for mass spectroscopic protein proteome determination and other research purposes.


Asunto(s)
Espectrometría de Masas , Proteoma , Proteómica , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas/métodos , Humanos , Análisis de la Célula Individual/métodos , Tamaño de la Muestra
5.
Small ; 20(4): e2305349, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37715334

RESUMEN

The steadily growing electric vehicle market is a driving force in low-cost, high-energy-density lithium-ion battery development. To meet this demand, LiNi0.975 Al0.025 O2 (LNA), a high-energy-density and cobalt-free cathode material, has been developed using a low-cost and efficient co-precipitation and lithiation process. This article explores how further processing (i.e., washing residual lithium from the secondary particle surface and applying a secondary heat treatment at 650 °C) changes the chemical environment of the surface and the electrochemical performance of the LNA cathode material. After washing, a nonconductive nickel oxide (NiO) phase is formed on the surface, decreasing the initial capacity in electrochemical tests, and suppressing high-voltage (H2) to (H3) phase transition results in enhanced cycle properties. Furthermore, the secondary heat treatment re-lithiates surface NiO back to LNAand increases the initial capacity with enhanced cycle properties. Electrochemical tests are performed with the cells without tap charge to suppress the H2 to H3 phase transition. Results reveal that avoiding charging cells at a high voltage for a long time dramatically improves LNA's cycle life. In addition, the gas analysis tests performed during charge and discharge to reveal how the amount of residual lithium compounds on the surface affects gas formation are studied.

6.
Drug Metab Dispos ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378703

RESUMEN

Camonsertib is a novel ATR kinase inhibitor in clinical development for advanced cancers targeting sensitizing mutations. This article describes the identification and biosynthesis of an N-glucuronide metabolite of camonsertib. This metabolite was first observed in human hepatocyte incubations and was subsequently isolated to determine the structure, evaluate its stability as part of bioanalytical method development and for use as a standard for estimating its concentration in Phase I samples. The N-glucuronide was scaled-up using a purified bacterial culture preparation and was subsequently isolated using preparative chromatography. The bacterial culture generated sufficient material of the glucuronide to allow for one- and two-dimensional 1H and 13C NMR structural elucidation and further bioanalytical characterization. The NOE data combined with the gradient HMBC experiment and molecular modeling, strongly suggests that the point of attachment of the glucuronide results in the formation of (2S,3S,4S,5R,6R)-3,4,5-trihydroxy-6-(5-(4-((1R,3r,5S)-3-hydroxy-8-oxabicyclo[3.2.1]octan-3-yl)-6-((R)-3-methylmorpholino)-1H-pyrazolo[3,4-b]pyridin-1-yl)-1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-carboxylic acid. Significance Statement This is the first report of a glucuronide metabolite of camonsertib formed by human hepatocyte incubations. This study reveals the structure of an N-glucuronide metabolite of camonsertib using detailed elucidation by one- and two-dimensional NMR after scale-up using a novel bacterial culture approach yielding significant quantities of a purified metabolite.

7.
Int Microbiol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506948

RESUMEN

Ten fungal species were isolated from soil in the Western Desert and Wadi El-Natron in Egypt. All fungal isolates were morphologically recognized down to the species level. Methanol extracts of fungal mycelia and ethyl acetate extracts of culture filtrate from the isolated fungi were evaluated for antimicrobial activity against six pathogenic bacteria and one pathogenic yeast (Candida albicans ATCC20231). Only ethyl acetate extracts of Fusarium circinatum, Aspergillus niger, and Aspergillus terreus culture filtrates showed significant antimicrobial activity against the majority of the investigated pathogens. The culture filtrate extract of Aspergillus niger exhibited notable cytotoxicity towards the breast cancer (MCF-7) cell line, with the lowest detected IC50 recorded at 8 µg/µl. Whereas Fusarium circinatum and Aspergillus terreus had IC50s of 15.91 µg/µl and 18 µg/µl, respectively. A gas chromatography-mass spectroscopy (GC-MS) investigation of A. niger's potent extract revealed 23 compounds with different biological activities. Glycidyleoleate was found to be the main extract component. Aspergillus niger extract was chosen to study its possible cytotoxic mechanism. The extract was found to induce apoptosis and cell cycle arrest at the < 2n stage. Despite a significant increase in caspases 8 and 9, the production levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) have shown a significant decrease. The high interaction of glycidyleoleate against the studied cytokines' binding receptors was demonstrated via docking studies. In conclusion, the available data revealed that the culture filtrate extract of A. niger possesses promising antimicrobial, cytotoxic, and immunomodulatory properties.

8.
Clin Chem Lab Med ; 62(5): 946-957, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38008765

RESUMEN

OBJECTIVES: The aim of the present study was to establish the population- and laboratory-specific reference intervals (RIs) for the Slovenian adult population for 24 trace elements (TEs) in blood, plasma and erythrocytes and to evaluate the impact of gender, age, seafood consumption, smoking habits and amalgam fillings on TEs levels. METHODS: TEs (Mn, Co, Cu, Zn, Se and Mo, Li, Be, V, Cr, Ni, Ga, As, Rb, Sr, Ag, Cd, Sn, Cs, Au, Hg, Tl, Pb and U) were determined in 192 a priori selected blood donors (107 women and 85 men, aged 18-65 years), using inductively coupled plasma mass spectrometry (ICP-MS) with the Octopole Reaction System. Participants filled out a questionnaire, and RIs were established according to the Clinical and Laboratory Standards Institute (CLSI) guidelines for TEs. RESULTS: Uniform RIs for non-essential and gender-specific for essential TEs in blood, plasma and erythrocytes were established. In our population, higher blood and plasma Cu, and erythrocyte Mn levels in women were found. In men, blood Zn, plasma Zn, Mn and Se, and erythrocyte Cu levels were higher. Zn levels were higher in 30-39 years age group. Pb and Sr increased with age. Smoking positively affected Cd, Pb, Cs and Rb; seafood consumption increased As, Hg and Zn; and amalgam increased Hg, Ag and Cu levels. CONCLUSIONS: Essential TEs were inside recommended levels, and the non-essential ones were far below critical levels. Established RIs will provide an important foundation for clinical diagnostics, safety erythrocyte transfusions assessment, toxicology and epidemiological studies.


Asunto(s)
Mercurio , Oligoelementos , Adulto , Masculino , Humanos , Femenino , Espectrometría de Masas/métodos , Oligoelementos/análisis , Cadmio , Plomo , Eritrocitos/química
9.
Chirality ; 36(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448043

RESUMEN

Synthetic therapeutic peptides are a complex and popular class of pharmaceuticals. In recent years, peptides with proven therapeutic activity have gained significant interest in the market. The determination of synthetic peptide enantiomeric purity plays a critical role in the evaluation of the quality of the medicine. Since racemization is one of the most common side reactions occurring in AAs or peptides, enantiomeric impurities such as D-isomers can form during the peptide synthesis or can be introduced from the starting materials (e.g., AAs). The therapeutic effect of a synthetic or semi-synthetic bioactive peptide molecule depends on its AA enantiomeric purity and secondary/tertiary structure. Therefore, the enantiomeric purity determination for synthetic peptides is supportive for interpreting unwanted therapeutic effects and determining the quality of synthetic peptide therapeutics. However, enantiomeric purity analysis encounters formidable analytical challenges during chromatographic separation, as D/L isomers have identical physical-chemical properties except stereochemical configuration. To ensure peptides AA stereochemical configuration whether in the free or bound state, sensitive and reproducible quantitative analytical method is mandatory. In this regard, numerous analytical techniques were emerged for the quantification of D-isomeric impurities in synthetic peptides, but still, very few reports are available in the literature. Thus, the purpose of this paper is to provide an overview of the importance, regulatory requirements, and various analytical methods used for peptide enantiomeric purity determination. In addition, we discussed the available literature in terms of enantiomeric impurity detection, common hydrolysis procedural aspects, and different analytical strategies used for sample preparation.


Asunto(s)
Péptidos , Estereoisomerismo , Isomerismo , Hidrólisis
10.
Biomed Chromatogr ; : e5968, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039695

RESUMEN

Withania somnifera belongs to the family Solanaceae, commonly called ashwagandha, and is traditionally used as an astringent, hepatoprotective and antioxidant, and as a treatment for rheumatism. Therefore the current study aimed to explore the dichloromethane fraction of W. somnifera whole plant (DCFWS) and ethyl acetate fraction of W. somnifera (EAFWS) using gas chromatoghraphy-mass spectrometry (GC-MS) analysis and to find the acetylcholinesterase inhibition potential along with spasmolytic activity. The GC-MS-detected phytochemicals were 2,4-bis(1,1-dimethylethyl), hexadecanoic acid, 1-nonadecene and 11-octadecenoic acid. The DCFWS and EAFWS exhibited acetylcholinesterase inhibitory potential with significant inhibitory concentration values. The acute toxicity results of both fractions showed high toxicity, causing emesis at 0.5 g and both emesis and diarrhea at 1 g/kg. Both fractions exhibited significant (p ≤ 0.01) laxative activity against metronidazole (7 mg/kg) and loperamide hydrochloride (4 mg/kg) induced constipation. Both DCFWS (66.8 ± 3.85%) and EAFWS (58.58 ± 3.28%) significantly (p ≤ 0.05) increased charcoal movement compared with distal water (43.93 ± 4.34%). Similarly the effect of DCFWS on KCl-induced (80 mm) contraction was more significant as compared with EAFWS. It was concluded that the plant can be used in the treatment of gastrointestinal tract diseases such as constipation. Furthermore, additional work is required in the future to determine the bioactive compounds that act as therapeutic agents in W. somnifera.

11.
Biomed Chromatogr ; : e5967, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189519

RESUMEN

This study aims to identify potential efficacy-related biomarkers and investigate the mechanism of Youjing granule (YG) in improving spermatogenic function in rats based on metabolomics combined with network pharmacology. We obtained YG-containing serum from Sprague-Dawley rats, compared it with control group serum and analyzed it using gas chromatography-mass spectroscopy to identify potential biomarkers and investigate the mechanism of YG in improving spermatogenic function in rats. Six important differential biomarkers, comprising putrescine, amidine, arginine, d-fructose-6-phosphate, l-proline and galactose, were identified in the YG-containing serum and then used to explore the potential mechanisms. The ultra-high-performance liquid chromatography-high-resolution mass spectrometry technology was adopted for the rapid separation, identification and analysis of chemical components of YG in blood. A total of 69 detected chromatographic peaks were revealed. The binding energy between core compounds and key proteins is low, among which dipsacoside B is the best. The outcomes suggest that YG may improve spermatogenic function in rats by facilitating the development of spermatogonial stem cells, counteracting oxidative stress and controlling cellular apoptosis. Youjing granule may also affect the energy required for sperm production or influence sperm growth and maturation.

12.
Biomed Chromatogr ; 38(3): e5805, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38072000

RESUMEN

In the present study, the main objective is to develop an analytical method for ultra-trace level measurement of 2,6-diamino-5-nitropyrimidin-4(3H)-one (DMNP) in valganciclovir hydrochloride (VAL) using liquid chromatography-quadrupole time-of-flight-tandem mass spectroscopy (LC-QTOF-MS/MS). In the early stages of guanine synthesis, DMNP is formed, and guanine is known to be the key starting material for the synthesis of VAL. Taking into consideration DMNP potential genotoxicity, this analytical method has been developed. This method is time saving and suitable for confirming the masses of parent and fragment ions by MS and MS/MS further fragmentation. An isocratic program and Acquity UPLC HSS cyano column (100 × 2.1 mm × 1.8 µm) were used to achieve optimal separation between VAL and the DMNP impurity. A 0.1% ammonia solution in Milli-Q water was used as mobile phase A, and methanol was used as mobile phase B in the ratio 90:10 v/v in isocratic mode. In accordance with the International Conference on Harmonization's requirements, the developed method was validated. The detection and quantification levels were found to be 0.028 and 0.083 ppm respectively. The DMNP impurity is linear from 0.083 to 1.245 ppm levels with correlation coefficient (R2 ) of 0.9960. The recoveries were found to be 97.0-107.9%.


Asunto(s)
Daño del ADN , Espectrometría de Masas en Tándem , Valganciclovir , Cromatografía Liquida , Guanina , Cromatografía Líquida de Alta Presión
13.
Nano Lett ; 23(18): 8385-8391, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37703459

RESUMEN

We use in situ liquid secondary ion mass spectroscopy, cryogenic transmission electron microscopy, and density functional theory calculation to delineate the molecular process in the formation of the solid-electrolyte interphase (SEI) layer under the dynamic operating conditions. We discover that the onset potential for SEI layer formation and the thickness of the SEI show dependence on the solvation shell structure. On a Cu film anode, the SEI is noticed to start to form at around 2.0 V (nominal cell voltage) with a final thickness of about 40-50 nm in the 1.0 M LiPF6/EC-DMC electrolyte, while for the case of 1.0 M LiFSI/DME, the SEI starts to form at around 1.5 V with a final thickness of about 20 nm. Our observations clearly indicate the inner and outer SEI layer formation and dissipation upon charging and discharging, implying a continued evolution of electrolyte structure with extended cycling.

14.
J Environ Manage ; 370: 122646, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366234

RESUMEN

A recent innovation in air phytoremediation is active green walls, which utilises biofiltration technology with airflow from mechanical ventilation. While this novel technology is gaining traction, the influence of irrigation on soil moisture, and subsequently the microbial communities that play a role in air filtration is untested. In this study, the application of drip irrigation techniques in active green walls were investigated for their influence on system performance. A modular green wall system was tested, with tests across 7 different plant species, as well as a substrate only control. Water distribution across the modules, the water-carrying capacity and airflow through the substrate were measured. The microbial community present, which is critical to the phytoremediation process, was quantified by identifying individual microbial phospholipid fatty acids (PLFA) within the substrate. Results demonstrated that the lower-speed drip irrigation reduced water consumption compared to the rapid system, and had generally more uniform moisture distribution. High flow drip irrigation resulted in a water pathway phenomenon, leading to uneven moisture distribution within the green wall, and this effect was accentuated with fibrous root plant species. Drip irrigation did not change microbial community composition across planted modules, apart from increasing fungi by 6%, but did wash out bacteria at the high flow rate used (-56.67%), thus low flow rate irrigation rate is more beneficial for both plant growth and microbial community composition. The current work provides evidence that drip irrigation has considerable effects on both substrate airflow rate and substrate microbial density: both key to system air cleaning performance.

15.
J Indian Assoc Pediatr Surg ; 29(1): 6-12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405248

RESUMEN

Background and Aims: Hirschsprung disease (HSCR) is a congenital disorder of unknown etiology affecting the enteric nervous system (ENS). Since the early gestational development of the ENS is dependent on the prenatal maternal metabolic environment, the objective of this pilot study was to explore the role of specific maternal plasma metabolites in the etiology of HSCR. Methods: In this cross-sectional study, postnatal (as a surrogate for prenatal) plasma samples were obtained from mothers of children diagnosed with HSCR (n = 7) and age-matched mothers of normal children (n = 6). The plasma metabolome was analyzed by ultra-high-pressure liquid chromatography and mass spectrometry. Metabolites were identified by mzCloud using Compound Discoverer software. Using an untargeted metabolomics workflow, metabolites with case versus control group differences were identified. Results: A total of 268 unique plasma metabolites were identified and annotated in maternal plasma. Of these, 57 were significantly different between case and control groups (P < 0.05, t-test). Using a false discovery rate corrected cutoff of 10% to adjust for multiple comparisons, 19 metabolites were significantly different in HSCR cases, including carnitines, medium-chain fatty acids, and glutamic acid. Pathways affected were for amino acid and lipid metabolism. Conclusion: Disordered prenatal metabolic pathways may be involved in the etiopathogenesis of HSCR in the developing fetus. This is the first study to assess maternal plasma metabolomics in HSCR.

16.
Trends Biochem Sci ; 44(6): 555-556, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30853244

RESUMEN

RNA folds to form diverse secondary and tertiary structures and often interacts with other biomolecules to function in cells. The technologies developed to map in vivo RNA structures and interactions can be broadly classified into four categories.


Asunto(s)
ARN/química , Análisis de Secuencia de ARN , ADN/química , Conformación de Ácido Nucleico
17.
Chemistry ; 29(60): e202302166, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37565666

RESUMEN

The internal electronic communication between two or more light-absorbers is fundamental for energy-transport processes, a field of large current interest. Here the intrinsic photophysics of homo- and heterodimers of rhodamine cations were studied where just two methylene units bridge the dyes. Gas-phase experiments were done on frozen molecular ions at cryogenic temperatures using the newly built LUNA2 mass spectroscopy setup in Aarhus. Both absorption (from fluorescence excitation) and dispersed-fluorescence spectra were measured. In the gas phase, there is no dielectric screening from solvent molecules, and the effect of charges on transition energies is maximum. Indeed, bands are redshifted compared to those of monomer dyes due to the electric field that each dye senses from the other in a dimer. Importantly, also, as two chemically identical dyes in a homodimer do not experience the same field along the long axis, each dye has separate absorption. At low temperatures, it is therefore possible to selectively excite one dye. Fluorescence is dominantly from the dye with the lowest transition energy no matter which dye is photoexcited. Hence this work unequivocally demonstrates Förster Resonance Energy Transfer even in homodimers where one dye acts as donor and the other as acceptor.

18.
Anal Biochem ; 683: 115363, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37866526

RESUMEN

A selective and sensitive method was evaluated for quantitation of meningococcal X (Men X) polysaccharide in pentavalent meningococcal A, C, W, Y and X conjugate vaccine using different acid hydrolysis conditions like HCl, TFA, HF, HF-TFA, and HF-HCl. High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) using CarboPac PA10 column was used to identify the hydrolyzed products based on retention time and its comparison with monosaccharide standards. Complete release of glucosamine (GlcN) from Men X in monovalent bulk and pentavalent vaccine samples was achieved using HF hydrolysis at 80 °C for 2 h. The Men X HF-hydrolyzed polysaccharide to glucosamine along with the reference standard was identified using collision-induced dissociation (CID) electrospray mass spectroscopy and the MS/MS fragments of m/z 162, m/z 144 and m/z 84. Meningococcal polysaccharide concentration was determined with a correlation coefficient r2 >0.99 using polysaccharide reference standard. The serogroups A, W, and Y were converted to their monosaccharides units and quantified using this method however, milder acid hydrolysis 0.1 M HCl 80 °C 2 h for release of sialic acid for Men C polysaccharide was found to be more suitable. These methods will provide necessary tools and prove to be beneficial to laboratories developing new saccharide-based vaccine combinations.


Asunto(s)
Vacunas Meningococicas , Neisseria meningitidis , Humanos , Polisacáridos Bacterianos/análisis , Polisacáridos Bacterianos/química , Vacunas Combinadas , Hidrólisis , Espectrometría de Masas en Tándem , Vacunas Meningococicas/análisis , Vacunas Meningococicas/química , Glucosamina , Cromatografía por Intercambio Iónico/métodos
19.
J Dairy Res ; 90(3): 287-291, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37622324

RESUMEN

We studied the genetic polymorphism of beta-lactoglobulin (ß-Lg) whey protein in Gangatiri zebu cows for this Research Communication. The polymorphic nature of milk protein fractions and their association with milk production traits, composition and quality has attracted several efforts in evaluating the allelic distribution of protein locus as a potential dairy trait marker. Genetic variants of ß-Lg have highly significant effects on casein number (B > A) and protein recovery (B > A) and also determine the yield of cheese dry matter (B > A). Molecular techniques of polyacrylamide gel electrophoresis and high-resolution accurate mass-spectroscopy were applied to characterize the ß-Lg protein obtained from the Gangatiri breed milk. Sequence analysis of ß-Lg showed the presence of variant B having UniProt database accession number P02754, coded on the PAEP gene. Our study can provide reference and guidance for the selection of superior milk (having ß-LgB) from this indigenous breed that could potentially give a good yield of ß-Lg for industrial applications.


Asunto(s)
Lactoglobulinas , Leche , Femenino , Bovinos/genética , Animales , Lactoglobulinas/genética , Leche/química , Proteínas de la Leche/análisis , Caseínas/genética , Caseínas/análisis , Genotipo , Espectrometría de Masas/veterinaria
20.
Sensors (Basel) ; 23(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37514589

RESUMEN

Food quality assurance is an important field that directly affects public health. The organoleptic aroma of food is of crucial significance to evaluate and confirm food quality and origin. The volatile organic compound (VOC) emissions (detectable aroma) from foods are unique and provide a basis to predict and evaluate food quality. Soybean and corn oils were added to sesame oil (to simulate adulteration) at four different mixture percentages (25-100%) and then chemically analyzed using an experimental 9-sensor metal oxide semiconducting (MOS) electronic nose (e-nose) and gas chromatography-mass spectroscopy (GC-MS) for comparisons in detecting unadulterated sesame oil controls. GC-MS analysis revealed eleven major VOC components identified within 82-91% of oil samples. Principle component analysis (PCA) and linear detection analysis (LDA) were employed to visualize different levels of adulteration detected by the e-nose. Artificial neural networks (ANNs) and support vector machines (SVMs) were also used for statistical modeling. The sensitivity and specificity obtained for SVM were 0.987 and 0.977, respectively, while these values for the ANN method were 0.949 and 0.953, respectively. E-nose-based technology is a quick and effective method for the detection of sesame oil adulteration due to its simplicity (ease of application), rapid analysis, and accuracy. GC-MS data provided corroborative chemical evidence to show differences in volatile emissions from virgin and adulterated sesame oil samples and the precise VOCs explaining differences in e-nose signature patterns derived from each sample type.


Asunto(s)
Aceite de Sésamo , Compuestos Orgánicos Volátiles , Aceite de Sésamo/análisis , Aceite de Sésamo/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Nariz Electrónica , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA