Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Appl Clin Med Phys ; 24(9): e14118, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37593834

RESUMEN

PURPOSE: To quantify the dose distribution effect of insufficient scattering conditions in keloid HDR brachytherapy with Freiburg fFlap (FF) applicator. MATERIALS AND METHODS: A phantom composed of FF applicator, MatriXX and solid water slices was designed and scanned for treatment planning. Bolus with different thicknesses were covered to offer different scatter conditions. Planar dose distributions were measured by MatriXX. The maximum value (Max), average value (Avg) and γ passing rate (3 mm/3%) were evaluated by the software MyQA Platform. RESULTS: The maximum and average doses measured by MatriXX were lower than the calculated values. The difference increased as field size decreased. The Max value, found at 0.86 cm level in the two tube case, was -20.0%, and the avg value was -11.9%. All the γ values were less than 95%. This difference gradually decreased with increasing bolus thickness and the γ values were significantly improved. CONCLUSION: MatriXX could be used for dose verification of HDR brachytherapy with an FF applicator. When the FF applicator was applied for keloid, insufficient scattering conditions would cause an insufficient target dose. This difference could be reduced by covering the bolus with different thicknesses on the applicator. The smaller the field, the thicker the bolus required.


Asunto(s)
Braquiterapia , Queloide , Humanos , Queloide/radioterapia , Rayos gamma , Fantasmas de Imagen , Programas Informáticos
2.
J Appl Clin Med Phys ; 24(9): e14106, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37593989

RESUMEN

PURPOSE: MatriXX ionization chamber array has been widely used for the composite dose verification of IMRT/VMAT plans. However, in addition to its dose response dependence on gantry angle, there seems to be an offset between the beam axis and measured dose profile by MatriXX for oblique beam incidence at various gantry angles, leading to unnecessary quality assurance (QA) fails. In this study, we investigated the offset at various setup conditions and how to eliminate or decrease it to improve the accuracy of MatriXX for IMRT/VMAT plan verification with original gantry angles. METHODS: We measured profiles for a narrow beam with MatriXX located at various depths in increments of 0.5 mm from the top to bottom of the sensitive volume of the array detectors and gantry angles from 0° to 360°. The optimal depth for QA measurement was determined at the depth where the measured profile had minimum offset. RESULTS: The measured beam profile offset varies with incident gantry angle, increasing from vertical direction to lateral direction, and could be over 3 cm at vendor-recommended depth for near lateral direction beams. The offset also varies with depth, and the minimum offset (almost 0 for most oblique beams) was found to be at a depth of ∼2.5 mm below the vendor suggested depth, which was chosen as the optimal depth for all QA measurements. Using the optimal depth we determined, QA results (3%/2 mm Gamma analysis) were largely improved with an average of 99.4% gamma passing rate (no fails for 95% criteria) for 10 IMRT and VMAT plans with original gantry angles compared to 94.1% using the vendor recommended depth. CONCLUSIONS: The improved accuracy and passing rate for QA measurement performed at the optimal depth with original gantry angles would lead to reduction in unnecessary repeated QA or plan changes due to QA system errors.


Asunto(s)
Radioterapia de Intensidad Modulada , Humanos , Rayos gamma , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
3.
J Appl Clin Med Phys ; 22(10): 120-135, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34453876

RESUMEN

PURPOSE: This paper proposes a model for the angular dependency of MatriXX response and investigates whether MatriXX, with the angular-model-based approach can be applied to true composite dose verification for IMRT plans. METHOD: This model attributes the angular dependence of MatriXX response to dynamical translation of its effective measurement plane (EMP) due to the change of beam angle. Considering this mechanism, true composite dose verifications for IMRT plans specified in AAPM TG 119 report using both MatriXX and Gafchromic EBT3 films were undertook and compared to validate the applicability of MatriXX for patient specific QA of composite beam IMRT plans. Dose verifications using MatriXX with and without angular-model-based approach were performed. RESULTS: MatriXX with angular-model-based approach achieved gamma passing rates with 3%/3 mm and 3%/2 mm criteria better than 98.3% and 98.1% respectively for true composite dose verification of plans in AAPM TG 119 report. The 3%/3 mm and 3%/2 mm gamma passing rates using MatriXX without angular-model-based approach ranged from 85.8% to 98.2% and from 81.3% to 96.5%, respectively. The p-values from the single sided paired t-test indicated no statistical difference between the passing rates from MatriXX with angular-model-based approach and from films, and significant difference between the passing rates from uncorrected MatriXX and from films. CONCLUSION: The proposed model for angular dependent MatriXX response is necessary and effective. Dose verification using MatriXX with angular-model-based approach is acceptable for true composite beam IMRT plans with required accuracy to simplify patient specific QA.


Asunto(s)
Radioterapia de Intensidad Modulada , Rayos gamma , Humanos , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
4.
Rep Pract Oncol Radiother ; 24(5): 462-471, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31406489

RESUMEN

AIM: This study focused on evaluating the sensitivity of integral quality monitoring (IQM®) system and MatriXX detectors. These two detectors are recommended for radiotherapy pre-treatment quality assurance (QA). BACKGROUND: IQM is a large wedged-shaped ionisation chamber mounted to the linear accelerator (linac) head in practice. MatriXX consists of an array of ionisation chambers also attached to the linac head. MATERIALS AND METHODS: In this study, the dosimetric performance and sensitivity of MatriXX and IQM detectors were evaluated using the following characteristics: reproducibility, linearity, error detection capability and three-dimensional conformal radiotherapy (3D-CRT) plans of the head and neck, thorax and pelvic regions. RESULTS: This study indicates that the signal responses of the large ionisation chamber device (IQM) and the small pixel array of ionisation chambers device (MatriXX) are reproducible, linear and sensitive to MLC positional errors, backup jaw positional errors and dose errors. The local percentage differences for dose errors of 1%, 2%, and 3% were, respectively, within 0.35-8.23%, 0.78-16.21%, and 1.10-24.41% for the IQM device. While for the MatriXX detector, the ranges were between 0.24-3.19, 0.57-6.43 and 0.81-12.95, respectively. Since IQM is essentially a double wedge-shaped large ionisation chamber, its reproducibility and detection capability are competitive to that of MatriXX. In addition, the sensitivity of the two QA systems increases with an increase in escalation percentage, and the signal responses are patient plan specific. CONCLUSIONS: The two detectors response signals have good correlations and they are accurate for pre-treatment QA. Statistically, (P < 0.05) there is a significant difference between the IQM and MatriXX response to dose errors.

5.
J Appl Clin Med Phys ; 18(5): 80-88, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28799273

RESUMEN

Using a MatriXX 2D ionization chamber array, we evaluated the detection sensitivity of systematically introduced MLC leaf positioning shifts to test whether the conventional IMRT QA method can be used for quality assurance of an MLC tracking algorithm. Because of finite special resolution, we first tested whether the detection sensitivity was dependent of the locations of leaf shifts and positions of ionization chambers. We then introduced the same systematic leaf shifts in two clinical intensity modulated radiotherapy plans (prostate and head and neck cancer). Our results reported differences between the measured planar doses with and without MLC shifts (errors). Independent of the locations of the leaf position shifts and positions of the detectors, for the simple rectangular fields, the MatriXX was able to detect ±2 mm MLC leaf positioning shifts with Gamma index of 3%/3 mm and ±1 mm MLC leaf position shifts with Gamma index of 2%/2 mm. For the clinical plans, measuring the fields individually, leaf positioning shifts of ±2 mm were detected using Gamma index of 3%/3 mm and a passing rate of 95%. When the fields were measured compositely, the Gamma index exhibited less sensitivity for the detection of leaf positioning shifts than when the fields were measured individually. In conclusion, if more than 2 mm MLC leaf shifts were required, the commercial detector array (MatriXX) is able to detect such MLC positioning shifts, otherwise a more sensitive quality assurance method should be used.


Asunto(s)
Algoritmos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Radioterapia de Intensidad Modulada/instrumentación , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Control de Calidad , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
6.
Rep Pract Oncol Radiother ; 17(3): 157-62, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24377018

RESUMEN

AIM: To compare the measured and calculated individual and composite field planar dose distribution of Intensity Modulated Radiotherapy plans. MATERIALS AND METHODS: The measurements were performed in Clinac DHX linear accelerator with 6 MV photons using Matrixx device and a solid water phantom. The 20 brain tumor patients were selected for this study. The IMRT plan was carried out for all the patients using Eclipse treatment planning system. The verification plan was produced for every original plan using CT scan of Matrixx embedded in the phantom. Every verification field was measured by the Matrixx. The TPS calculated and measured dose distributions were compared for individual and composite fields. RESULTS AND DISCUSSION: The percentage of gamma pixel match for the dose distribution patterns were evaluated using gamma histogram. The gamma pixel match was 95-98% for 41 fields (39%) and 98% for 59 fields (61%) with individual fields. The percentage of gamma pixel match was 95-98% for 5 patients and 98% for other 12 patients with composite fields. Three patients showed a gamma pixel match of less than 95%. The comparison of percentage gamma pixel match for individual and composite fields showed more than 2.5% variation for 6 patients, more than 1% variation for 4 patients, while the remaining 10 patients showed less than 1% variation. CONCLUSION: The individual and composite field measurements showed good agreement with TPS calculated dose distribution for the studied patients. The measurement and data analysis for individual fields is a time consuming process, the composite field analysis may be sufficient enough for smaller field dose distribution analysis with array detectors.

7.
Phys Med ; 32(6): 831-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27246359

RESUMEN

PURPOSE: The quality assurance (QA) procedures in particle therapy centers with active beam scanning make extensive use of films, which do not provide immediate results. The purpose of this work is to verify whether the 2D MatriXX detector by IBA Dosimetry has enough sensitivity to replace films in some of the measurements. METHODS: MatriXX is a commercial detector composed of 32×32 parallel plate ionization chambers designed for pre-treatment dose verification in conventional radiation therapy. The detector and GAFCHROMIC® films were exposed simultaneously to a 131.44MeV proton and a 221.45MeV/u carbon-ion therapeutic beam at the CNAO therapy center of Pavia - Italy, and the results were analyzed and compared. RESULTS: The sensitivity MatriXX on the beam position, beam width and field flatness was investigated. For the first two quantities, a method for correcting systematic uncertainties, dependent on the beam size, was developed allowing to achieve a position resolution equal to 230µm for carbon ions and less than 100µm for protons. The beam size and the field flatness measured using MatriXX were compared with the same quantities measured with the irradiated film, showing a good agreement. CONCLUSIONS: The results indicate that a 2D detector such as MatriXX can be used to measure several parameters of a scanned ion beam quickly and precisely and suggest that the QA would benefit from a new protocol where the MatriXX detector is added to the existing systems.


Asunto(s)
Radioterapia de Iones Pesados/normas , Terapia de Protones/normas , Garantía de la Calidad de Atención de Salud , Radiometría/instrumentación , Estudios de Factibilidad , Dosificación Radioterapéutica
8.
Z Med Phys ; 23(4): 270-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24113373

RESUMEN

One of the factors which influence the spatial resolution of a 2D detector array is the size of the single detector, another the transport of the secondary electrons from the walls into the measuring volume. In this study, the single ion chamber dose response function of an I'mRT MatriXX array was determined by comparison between slit beam dose profiles measured with the array and with EBT2 radiochromic film in a solid water-equivalent phantom at a shallow depth of 0.5cm and at a depth of 5cm beyond the depth dose maximum for a 6 MV photon beam. The dose response functions were obtained using two methods, the best fit method and the deconvolution method. At the shallow depth, a Lorentz function and at 5cm depth a Gaussian function, both with the same FWHM of 7.4mm within limits of uncertainty, were identified as the best suited dose response functions of the 4.5mm diameter single array chamber. These dose response functions were then tested on various dose profiles whose true shape had been determined with EBT2 film and with the IC03 ionization chamber. By convolving these with the Lorentz kernel (at shallow depth) and the Gaussian kernel (at 5cm depth) the signal profiles measured with the I'mRT MatriXX array were closely approximated. Thus, the convolution of TPS-calculated dose profiles with these dose response functions can minimize the differences between calculation and measurement which occur due to the limited spatial resolution of the I'mRT MatriXX detector.


Asunto(s)
Radiometría/instrumentación , Radioterapia Conformacional/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Fotones , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA