Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 66(10): e0074522, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36165630

RESUMEN

Ceftaroline represents an attractive therapy option for methicillin-resistant Staphylococcus aureus (MRSA). Little data is available, however, regarding the frequency of reduced susceptibility (RS) to ceftaroline among pediatric MRSA infections. We screened invasive MRSA isolates at a tertiary children's hospital for ceftaroline RS. Ceftaroline RS occurred in 2.9% of isolates and only among health care associated infections. Ceftaroline RS isolates were more often clindamycin-resistant. Sequencing data indicated the predominance of the CC5 lineage among ceftaroline RS isolates.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Niño , Staphylococcus aureus Resistente a Meticilina/genética , Clindamicina , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cefalosporinas/farmacología , Cefalosporinas/uso terapéutico , Genómica , Infecciones Estafilocócicas/tratamiento farmacológico , Ceftarolina
2.
J Biol Chem ; 295(32): 10870-10884, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32518158

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infections cause significant mortality and morbidity globally. MRSA resistance to ß-lactam antibiotics is mediated by two divergons that control levels of a ß-lactamase, PC1, and a penicillin-binding protein poorly acylated by ß-lactam antibiotics, PBP2a. Expression of genes encoding these proteins is controlled by two integral membrane proteins, BlaR1 and MecR1, which both have an extracellular ß-lactam-binding sensor domain. Here, we solved the X-ray crystallographic structures of the BlaR1 and MecR1 sensor domains in complex with avibactam, a diazabicyclooctane ß-lactamase inhibitor at 1.6-2.0 Å resolution. Additionally, we show that S. aureus SF8300, a clinically relevant strain from the USA300 clone of MRSA, responds to avibactam by up-regulating the expression of the blaZ and pbp2a antibiotic-resistance genes, encoding PC1 and PBP2a, respectively. The BlaR1-avibactam structure of the carbamoyl-enzyme intermediate revealed that avibactam is bound to the active-site serine in two orientations ∼180° to each other. Although a physiological role of the observed alternative pose remains to be validated, our structural results hint at the presence of a secondary sulfate-binding pocket that could be exploited in the design of future inhibitors of BlaR1/MecR1 sensor domains or the structurally similar class D ß-lactamases. The MecR1-avibactam structure adopted a singular avibactam orientation similar to one of the two states observed in the BlaR1-avibactam structure. Given avibactam up-regulates expression of blaZ and pbp2a antibiotic resistance genes, we suggest further consideration and research is needed to explore what effects administering ß-lactam-avibactam combinations have on treating MRSA infections.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Proteínas Bacterianas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Inhibidores de beta-Lactamasas/farmacología , Proteínas Bacterianas/química , Cristalografía por Rayos X , Farmacorresistencia Microbiana/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Simulación del Acoplamiento Molecular , Conformación Proteica , Estabilidad Proteica
3.
J Neurosci ; 38(45): 9781-9800, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30266742

RESUMEN

There has been a growing interest toward mitochondrial fatty acid synthesis (mtFAS) since the recent discovery of a neurodegenerative human disorder termed MEPAN (mitochondrial enoyl reductase protein associated neurodegeneration), which is caused by mutations in the mitochondrial enoyl-CoA/ACP (acyl carrier protein) reductase (MECR) carrying out the last step of mtFAS. We show here that MECR protein is highly expressed in mouse Purkinje cells (PCs). To elucidate mtFAS function in neural tissue, here, we generated a mouse line with a PC-specific knock-out (KO) of Mecr, leading to inactivation of mtFAS confined to this cell type. Both sexes were studied. The mitochondria in KO PCs displayed abnormal morphology, loss of protein lipoylation, and reduced respiratory chain enzymatic activities by the time these mice were 6 months of age, followed by nearly complete loss of PCs by 9 months of age. These animals exhibited balancing difficulties ∼7 months of age and ataxic symptoms were evident from 8-9 months of age on. Our data show that impairment of mtFAS results in functional and ultrastructural changes in mitochondria followed by death of PCs, mimicking aspects of the clinical phenotype. This KO mouse represents a new model for impaired mitochondrial lipid metabolism and cerebellar ataxia with a distinct and well trackable cellular phenotype. This mouse model will allow the future investigation of the feasibility of metabolite supplementation approaches toward the prevention of neurodegeneration due to dysfunctional mtFAS.SIGNIFICANCE STATEMENT We have recently reported a novel neurodegenerative disorder in humans termed MEPAN (mitochondrial enoyl reductase protein associated neurodegeneration) (Heimer et al., 2016). The cause of neuron degeneration in MEPAN patients is the dysfunction of the highly conserved mitochondrial fatty acid synthesis (mtFAS) pathway due to mutations in MECR, encoding mitochondrial 2-enoyl-CoA/ACP reductase. The report presented here describes the analysis of the first mouse model suffering from mtFAS-defect-induced neurodegenerative changes due to specific disruption of the Mecr gene in Purkinje cells. Our work sheds a light on the mechanisms of neurodegeneration caused by mtFAS deficiency and provides a test bed for future treatment approaches.


Asunto(s)
Cerebelo/metabolismo , Ácidos Grasos/biosíntesis , Mitocondrias/metabolismo , Degeneración Nerviosa/metabolismo , Animales , Animales Recién Nacidos , Cerebelo/patología , Ácidos Grasos/genética , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/biosíntesis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética
4.
Am J Med Genet B Neuropsychiatr Genet ; 171B(2): 257-65, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26531332

RESUMEN

Schizophrenia is regarded as a multifactorial and polygenic brain disorder that is attributed to different combinations of genetic and environmental risk factors. Recently, several genome-wide association studies (GWASs) of schizophrenia have identified numerous risk factors, but the replication results remain controversial and ambiguous. To identify schizophrenia susceptibility loci in the Korean population, we performed a GWAS using the Illumina HumanOmni1-Quad V1.0 Microarray. We genotyped 1,140,419 single nucleotide polymorphisms (SNPs) in 350 Korea schizophrenia patients and 700 control subjects, and approximately 620,001 autosomal SNPs were passed our quality control. In the case-control analysis, the rs9607195 A>G on intergenic area 250 kb away from the ISX gene and the rs12738007 A>G on the intron of the MECR gene were the most strongly associated SNPs with the risk of schizophrenia (P = 6.2 × 10(-8) , OR = 0.50 and P = 3.7 × 10(-7) , OR = 2.39, respectively). In subsequent fine-mapping analysis, 6 SNPs of MECR were genotyped with 310 schizophrenia patients and 604 control subjects. The association of the MECR rs12738007, a top ranked-SNP in GWAS, was replicated (P = 1.5 × 10(-2) , OR = 1.53 in fine mapping analysis, P = 1.5 × 10(-6) , OR = 1.90 in combined analysis). The identification of putative schizophrenia susceptibility loci could provide new insights into genetic factors related with schizophrenia and clues for the development of diagnosis strategies.


Asunto(s)
Pueblo Asiatico/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Esquizofrenia/genética , Adulto , Estudios de Casos y Controles , Simulación por Computador , Femenino , Humanos , Intrones/genética , Masculino , Persona de Mediana Edad , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple/genética , República de Corea , Factores de Riesgo
5.
Eur J Med Genet ; 68: 104917, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38296034

RESUMEN

MECR-related neurologic disorder, also known as mitochondrial enoyl CoA reductase protein-associated neurodegeneration (MEPAN) or dystonia with optic atrophy and basal ganglia abnormalities in childhood (MIM: #617282), is an autosomal recessive inherited disease characterized by a progressive childhood-onset movement disorder and optic atrophy. Here we report a 19-year-old male, presented with progressive visual failure, nystagmus, and right orbital pain, with no history of movement or eye disorder in his childhood. His visual decline started at age 18 years, whereas nystagmus emerged seven months later. Analysis of whole-exome sequencing (WES) revealed a homozygous recurrent variant (NM_016011.5:c.772C > T, p.Arg258Trp) in MECR. These findings suggest phenotypic heterogeneity in MECR-related neurologic disorder, thus, more relevant case screening, will help to delineate the genotype-phenotype correlation of the MECR gene.


Asunto(s)
Distonía , Trastornos Distónicos , Trastornos del Movimiento , Atrofia Óptica , Adolescente , Humanos , Masculino , Adulto Joven , Trastornos Distónicos/genética , Mutación , Atrofia Óptica/genética
6.
Pharmaceuticals (Basel) ; 17(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38794159

RESUMEN

Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) are classified as high-risk infections that can lead to death, particularly among older individuals. Nowadays, plant nanoparticles such as glycyrrhizic acid are recognized as efficient bactericides against a wide range of bacterial strains. Recently, scientists have shown interest in plant extract nanoparticles, derived from natural sources, which can be synthesized into nanomaterials. Interestingly, glycyrrhizic acid is rich in antioxidants as well as antibacterial agents, and it exhibits no adverse effects on normal cells. In this study, glycyrrhizic acid nanoparticles (GA-NPs) were synthesized using the hydrothermal method and characterized through physicochemical techniques such as UV-visible spectrometry, DLS, zeta potential, and TEM. The antimicrobial activity of GA-NPs was investigated through various methods, including MIC assays, anti-biofilm activity assays, ATPase activity assays, and kill-time assays. The expression levels of mecA, mecR1, blaR1, and blaZ genes were measured by quantitative RT-qPCR. Additionally, the presence of the penicillin-binding protein 2a (PBP2a) protein of S. aureus and MRSA was evaluated by a Western blot assay. The results emphasized the fabrication of GA nanoparticles in spherical shapes with a diameter in the range of 40-50 nm. The data show that GA nanoparticles exhibit great bactericidal effectiveness against S. aureus and MRSA. The treatment with GA-NPs remarkably reduces the expression levels of the mecA, mecR1, blaR1, and blaZ genes. PBP2a expression in MRSA was significantly reduced after treatment with GA-NPs. Overall, this study demonstrates that glycyrrhizic acid nanoparticles have potent antibacterial activity, particularly against MRSA. This research elucidates the inhibition mechanism of glycyrrhizic acid, which involves the suppressing of PBP2a expression. This work emphasizes the importance of utilizing plant nanoparticles as effective antimicrobial agents against a broad spectrum of bacteria.

7.
Biochem Biophys Res Commun ; 441(2): 418-24, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24161390

RESUMEN

Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.


Asunto(s)
Núcleo Celular/metabolismo , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Mitocondrias/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Activación Transcripcional , Animales , Núcleo Celular/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Redes y Vías Metabólicas , Mitocondrias/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Receptores Activados del Proliferador del Peroxisoma/genética
8.
Front Neurol ; 14: 1307595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38328756

RESUMEN

Introduction: Mitochondrial Enoyl CoA Reductase Protein-Associated Neurodegeneration (MEPAN) syndrome is a rare inherited metabolic condition caused by MECR gene mutations. This gene encodes a protein essential for fatty acid synthesis, and defects cause progressively worsening childhood-onset dystonia, optic atrophy, and basal ganglia abnormalities. Deep brain stimulation (DBS) has shown mixed improvement in other childhood-onset dystonia conditions. To the best of our knowledge, DBS has not been investigated as a treatment for dystonia in patients with MEPAN syndrome. Methods: Two children with MEPAN were identified as possible DBS candidates due to severe generalized dystonia unresponsive to pharmacotherapy. Temporary depth electrodes were placed in six locations bilaterally and tested during a 6-day hospitalization to determine the best locations for permanent electrode placement. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and Barry-Albright Dystonia Scale (BADS) were used for preoperative and postoperative testing to quantitatively assess dystonia severity changes. Patient 1 had permanent electrodes placed at the globus pallidus internus (GPi) and pedunculopontine nucleus (PPN). Patient 2 had permanent electrodes placed at the GPi and ventralis intermedius nucleus of the thalamus (VIM). Results: Both patients successfully underwent DBS placement with no perioperative complications and significant improvement in their BFMDRS score. Patient 2 also demonstrated improvement in the BADS. Discussion: We demonstrated a novel application of DBS in MEPAN syndrome patients with childhood-onset dystonia. These patients showed clinically significant improvements in dystonia following DBS, indicating that DBS can be considered for dystonia in patients with rare metabolic disorders that currently have no other proven treatment options.

9.
Ophthalmic Genet ; 44(5): 469-474, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36262091

RESUMEN

BACKGROUND: Mitochondrial enoyl CoA reductase protein-associated neurodegeneration (MEPAN) syndrome is an ultra-rare autosomal recessive disorder caused by loss-of-function mutations in the MECR gene. The syndrome is characterized by dystonia in early childhood, basal ganglia signal abnormalities on MRI, and subsequent optic atrophy, with relative sparing of cognition. We characterize the ophthalmic manifestations observed in a patient with MEPAN syndrome, as a detailed account of ocular findings has not been published to date. METHODS: Case study of a patient with genetically confirmed MEPAN syndrome, with full ophthalmic evaluation including slit-lamp exam, sensorimotor exam, fundus photography, retinal ocular coherence tomography (OCT), electroretinography, visual evoked potentials, and visual field testing. RESULTS: The patient exhibited decreased visual acuity of 20/150 in both eyes with moderate dyschromatopsia on pseudoisochromatic plate testing, while peripheral vision was largely intact on Goldmann visual field testing. Fundus exam revealed bilateral optic atrophy with pallor most pronounced temporally, corresponding to OCT findings of diffuse retinal nerve fiber layer thinning most prominent in the papillomacular bundle region and severe ganglion cell layer thinning in the maculae. She also displayed a high frequency horizontal end-gaze nystagmus and symmetric bilateral external ophthalmoplegia. CONCLUSIONS: The pattern of bilateral optic atrophy in our patient with MEPAN syndrome shows predilection for the papillomacular bundle, similar to that seen in other mitochondrial disorders with optic neuropathy, such as Leber Hereditary Optic Neuropathy and Dominant Optic Atrophy. Our patient's external ophthalmoplegia is another neuro-ophthalmic finding that may be seen in patients with heritable mitochondrial disease, either as an isolated ocular phenotype or within a constellation of systemic manifestations.


Asunto(s)
Enfermedades Mitocondriales , Atrofia Óptica Hereditaria de Leber , Atrofia Óptica , Enfermedades del Nervio Óptico , Femenino , Humanos , Preescolar , Potenciales Evocados Visuales , Retina , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Tomografía de Coherencia Óptica/métodos
10.
Mitochondrion ; 57: 222-229, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33401012

RESUMEN

Childhood-onset dystonia with optic atrophy and basal ganglia abnormalities is an extremely rare autosomal recessive mitochondrial disease caused by biallelic mutations in MECR. Using whole-exome sequencing, we identified a novel homozygous MECR mutation (c.910G > T, p.Asp304Tyr) in a Chinese patient with childhood-onset dystonia and basal ganglia abnormalities, without optic atrophy. With lipoic acid treatment, the disease progression was under control, and neither visual impairment nor optic atrophy was observed. To our knowledge, this is the first study about MECR-related mitochondrial disease in a Chinese patient and the first to report that supplementation with lipoic acid is a possible effective therapeutic strategy for this disease.


Asunto(s)
Ganglios Basales/anomalías , Distonía/diagnóstico , Secuenciación del Exoma/métodos , Mutación Missense , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Ganglios Basales/efectos de los fármacos , Células Cultivadas , Niño , China , Cristalografía por Rayos X , Distonía/tratamiento farmacológico , Distonía/genética , Distonía/patología , Homocigoto , Humanos , Masculino , Modelos Moleculares , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Linaje , Conformación Proteica , Ácido Tióctico/administración & dosificación , Ácido Tióctico/farmacología
11.
In Vitro Cell Dev Biol Anim ; 56(2): 103-111, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31912457

RESUMEN

MicroRNA (miRNA) has been proved to play a key role in lipid metabolism. In our previous study, miR-125b was validated to be differentially expressed in preadipocytes and adipocytes, which was also proved to involve in lipid metabolism. To explore the comprehensive targets of miR-125b in adipocytes, isobaric tag for relative and absolute quantitation (iTRAQ) analysis was performed to obtain differentially expressed proteins in adipocytes comparing negative control (NC) and miR-125b mimic, combining with digital gene expression (DGE) profiling of mRNA incorporated into RNA-induced silencing complex (RISC) pulled down by biotinylated miR-125b mimic and targets prediction of miR-125b by three algorithms, acyl-CoA dehydrogenase short chain (ACADS) and mitochondrial trans-2-enoyl-CoA reductase (MECR) were screened out as miR-125b direct targets. Luciferase reporter assay further validated that miR-125b mimic significantly inhibited the luciferase activity by targeting wild type (WT) 3'-UTR compared with NC. qPCR analysis of ACADS and MECR mRNA from adipose tissues of miR-125b knockout (KO) mice further confirmed the inhibition of miR-125b on ACADS and MECR expressions. Here we report miR-125b play a vital role in maintaining homeostasis of fatty acid metabolism by targeting key enzyme ACADS and MECR in the process of fatty acid elongation and degradation.


Asunto(s)
Adipocitos/metabolismo , Regulación de la Expresión Génica , MicroARNs/metabolismo , Porcinos/genética , Regiones no Traducidas 3'/genética , Algoritmos , Animales , Proteínas Argonautas/metabolismo , Secuencia de Bases , Ontología de Genes , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados
12.
Biosci Rep ; 40(6)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32440681

RESUMEN

Mitochondrial 2-enoyl-acyl-carrier protein reductase (MECR) is an enzyme in the mitochondrial fatty acid synthase (mtFAS) pathway. MECR activity remains unknown in the mechanism of insulin resistance in the pathogenesis of type 2 diabetes. In the present study, MECR activity was investigated in diet-induced obese (DIO) mice. Mecr mRNA was induced by insulin in cell culture, and was elevated in the liver of DIO mice in the presence hyperinsulinemia. However, MECR protein was decreased in the liver of DIO mice, and the reduction was blocked by treatment of the DIO mice with berberine (BBR). The mechanism of MECR protein regulation was investigated with a focus on ATP. The protein was decreased in the cell lysate and DIO liver by an increase in ATP levels. The ATP protein reduction was blocked in the liver of BBR-treated mice by suppression of ATP elevation. The MECR protein reduction was associated with insulin resistance and the protein restoration was associated with improvement of insulin sensitivity by BBR in the DIO mice. The data suggest that MECR protein is regulated in hepatocytes by ATP in association with insulin resistance. The study provides evidence for a relationship between MECR protein and insulin resistance.


Asunto(s)
Adenosina Trifosfato/metabolismo , Dieta Alta en Grasa , Hepatocitos/enzimología , Resistencia a la Insulina , Hígado/enzimología , Mitocondrias Hepáticas/enzimología , Obesidad/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Células 3T3-L1 , Animales , Berberina/farmacología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Hepatocitos/efectos de los fármacos , Insulina/farmacología , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética
13.
Biosci Trends ; 13(3): 234-244, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31178528

RESUMEN

Mitochondrial trans-2-enoyl-CoA reductase (MECR) is a protein-coding gene, and the protein encoded by this gene is an oxidoreductase that catalyzes the last step in mitochondrial fatty acid synthesis (mtFASII). Numerous studies have shown disorder of lipid metabolism is closely related with malignance, especially in liver cancer. Through pre-experiment, we found that the expression of MECR gene was highly expressed in hepatocelluar carcinoma (HCC) cell lines in vitro. This suggests that the MECR gene may play a role of oncogene in HCC. Therefore, we conducted a preliminary experimental study on the role of MECR gene in HCC cells in vitro. Objective to explore whether the MECR gene can affect the malignant biological behavior of HCC. We selected HCC cell line BEL-7404 as experimental cell, which involves the highest expression of MECR in the pre-experiment. We constructed MECR knockdwon lentivirus vector, and then infected HCC cell lines to down-regulate MECR expression, and establish negative control group (NC). Through various experiments of cytology, our study showed that knockdown of MECR inhibited cell proliferation and colony formation, promoted apoptosis, and inhibited metastasis in HCC cell lines BEL-7404. MECR might serve as a novel gene therapeutic target for the treatment of HCC. Further study is needed to elucidate the signaling pathway through which MECR functions in HCC.


Asunto(s)
Apoptosis/fisiología , Carcinoma Hepatocelular/metabolismo , Ciclo Celular/fisiología , Neoplasias Hepáticas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Apoptosis/genética , Western Blotting , Carcinoma Hepatocelular/genética , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Neoplasias Hepáticas/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología
14.
Eur J Med Chem ; 101: 313-25, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26160112

RESUMEN

A series of amine derivatives of 5-aromatic imidazolidine-4-ones (7-19), representing three subgroups: piperazine derivatives of 5-arylideneimidazolones (7-13), piperazine derivatives of 5-arylideneimidazolidine-2,4-dione (14-16) and primary amines of 5-naphthyl-5-methylimidazolidine-2,4-diones (17-19), was evaluated for their ability to improve antibiotics effectiveness in two strains of Gram-positive Staphylococcus aureus: ATCC 25923 (a reference strain) and MRSA (methicillin resistant S. aureus) HEMSA 5 (a resistant clinical isolate). The latter compounds (17-19) were obtained by 4-step synthesis using Bucherer-Bergs condensation, two-phase bromoalkylation and Gabriel reactions. The naphthalen derivative: (Z)-5-(naphthalen-2-ylmethylene)-2-(piperazin-1-yl)-3H-imidazol-4(5H)-one (10) was the most potent in combination with ß-lactam antibiotics and ciprofloxacin against the resistant strain. The high potency to increase efficacy of oxacillin was noted for (Z)-5-(anthracen-10-ylmethylene)-2-(piperazin-1-yl)-3H-imidazol-4(5H)one (12) too. In order to explain the mechanism of action of the compounds 10 and 12, docking studies with the use of crystal structures of a penicillin binding protein (PBP2a) and MecR1 were carried out. Their outcomes suggested that the most probable mechanism of action of the active compounds is the interaction with MecR1. Molecular dynamic experiments performed for the active compounds and compound 13 (structurally similar to 12) supported this hypothesis and provided possible explanation of activity dependencies of the tested compounds in terms of the restoration of antibiotic efficacy in S. aureus MRSA HEMSA 5.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Imidazolidinas/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Modelos Moleculares , Antibacterianos/síntesis química , Relación Dosis-Respuesta a Droga , Imidazolidinas/síntesis química , Imidazolidinas/química , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad
15.
Arch Med Sci ; 7(3): 414-22, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22295022

RESUMEN

INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) is caused by the production of low-affinity penicillin-binding protein 2a and ß-lactamases, which are encoded by mecA and blaZ, respectively. Expressions of the two key genes are mutually regulated by MecI and BlaI. The aim of this study was to design specific anti-mecR1 and anti-blaR1 deoxyribozymes and identify the restoration of susceptibility in MRSA isolates with mecI or blaI or no deletions by interfering with the mutual regulation of mecA and blaZ. MATERIAL AND METHODS: Specific deoxyribozymes were designed by using the program RNA structure 4.6. RNA substrates were obtained by transcription in vitro and used to assess the target cleavage of DNAzymes. Transcription of mecR1-mecA and blaR1-blaZ was analysed by real time RT-PCR. The susceptibility of MRSA was tested. RESULTS: Specific deoxyribozymes showed efficient catalytic activity to each own substrate mecR1 or blaR1 in vitro and caused the reduction of mecR1 and blaR1 transcription in vivo. Furthermore, simultaneous administration of two DNAzymes to knockdown mecR1 and blaR1 resulted in increased susceptibility of all MRSA strains tested in this study. CONCLUSIONS: These results demonstrated that combined use of the two specific phosphorothioate deoxyribozymes could be a viable and promising strategy to restore the susceptibility of almost all MRSA clinical isolates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA