RESUMEN
Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, ß-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited ß-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. ß-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.
Asunto(s)
Autofagia , Melanosomas , Melanosomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Xantonas , Melanoma Experimental , Animales , RatonesRESUMEN
Melanosomes are specialized membrane-bound organelles that are involved in melanin synthesis. Unlike melanosome biogenesis, the melanosome degradation pathway is poorly understood. Among the cellular processes, autophagy controls degradation of intracellular components by cooperating with lysosomes. In this study, we showed that ursolic acid inhibits skin pigmentation by promoting melanosomal autophagy, or melanophagy, in melanocytes. We found that B16F1 cells treated with ursolic acid suppressed alpha-melanocyte stimulating hormone (α-MSH) stimulated increase in melanin content and activated autophagy. In addition, we found that treatment with ursolic acid promotes melanosomal degradation, and bafilomycin A1 inhibition of autophagosome-lysosome fusion blocked the removal of melanosomes in α-MSH-stimulated B16F1 cells. Furthermore, depletion of the autophagy-related gene 5 (ATG5) resulted in significant suppression of ursolic acid-mediated anti-pigmentation activity and autophagy in α-MSH-treated B16F1 cells. Taken together, our results suggest that ursolic acid inhibits skin pigmentation by increasing melanosomal degradation in melanocytes.
Asunto(s)
Autofagia/efectos de los fármacos , Melanoma Experimental/patología , Melanosomas/patología , Pigmentación de la Piel/efectos de los fármacos , Triterpenos/farmacología , Animales , Línea Celular Tumoral , Melaninas/biosíntesis , Melanosomas/efectos de los fármacos , Ratones , Triterpenos/química , alfa-MSH/farmacología , Ácido UrsólicoRESUMEN
Dysregulation of melanin homeostasis is implicated in causing skin pigmentation disorders, such as melasma due to hyperpigmentation and vitiligo due to hypopigmentation. Although the synthesis of melanin has been well studied, the removal of the formed skin pigment requires more research. We determined that ß-mangostin, a plant-derived metabolite, induces the degradation of already-formed melanin in the mouse B16F10 cell line. The whitening effect of ß-mangostin is mediated by macroautophagy/autophagy, as it was abolished by the knockdown of ATG5 or RB1CC1/FIP200, and by treatment with 3-methyladenine, a phosphatidylinositol 3-kinase complex inhibitor. However, the exact autophagy mechanism of melanosome degradation remains unknown. Selective autophagy for a specific cellular organelle requires specific E3-ligases and autophagic receptors for the target organelle. In this study, an E3-ligase, RCHY1, and an autophagy receptor, OPTN (optineurin), were identified as being essential for melanophagy in the ß-mangostin-treated B16F10 cell line. As per our knowledge, this is the first report of a specific mechanism for the degradation of melanosomes, the target organelle of melanophagy. These findings are expected to broaden the scope of melanin homeostasis research and can be exploited for the development of therapeutics for skin pigmentation disorders.
Asunto(s)
Autofagia , Melaninas , Ubiquitina-Proteína Ligasas , Animales , Ratones , Autofagia/fisiología , Autofagia/efectos de los fármacos , Melaninas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Melanosomas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Macroautofagia/fisiología , Macroautofagia/efectos de los fármacos , Línea Celular Tumoral , Humanos , Xantonas/farmacologíaRESUMEN
Melanosomes play a pivotal role in skin color and photoprotection. In contrast to the well-elucidated pathway of melanosome biogenesis, the process of melanosome degradation, referred to as melanophagy, is largely unexplored. Previously, we discovered that 3,4,5-trimethoxycinnamate thymol ester (TCTE) effectively inhibits skin pigmentation by activating melanophagy. In this study, we discovered a new regulatory signaling cascade that controls melanophagy in TCTE-treated melanocytes. ITCH (itchy E3 ubiquitin protein ligase) facilitates ubiquitination of the melanosome membrane protein MLANA (melan-A) during TCTE-induced melanophagy. This ubiquitinated MLANA is then recognized by an autophagy receptor protein, OPTN (optineurin). Additionally, a phospho-kinase antibody array revealed that TCTE activates PTK2 (protein tyrosine kinase 2), which phosphorylates ITCH, enhancing the ubiquitination of MLANA. Furthermore, inhibition of either PTK2 or ITCH disrupts the ubiquitination of MLANA and the MLANA-OPTN interaction in TCTE-treated cells. Taken together, our findings highlight the critical role of the PTK2-ITCH-MLANA-OPTN cascade in orchestrating melanophagy progression.
RESUMEN
Selective autophagy controls cellular homeostasis by degrading unnecessary or damaged cellular components. Melanosomes are specialized organelles that regulate the biogenesis, storage, and transport of melanin in melanocytes. However, the mechanisms underlying melanosomal autophagy, known as the melanophagy pathway, are poorly understood. To better understand the mechanism of melanophagy, we screened an endocrine-hormone chemical library and identified nalfurafine hydrochlorides, a κ-opioid receptor agonist, as a potent inducer of melanophagy. Treatment with nalfurafine hydrochloride increased autophagy and reduced melanin content in alpha-melanocyte-stimulating hormone (α-MSH)-treated cells. Furthermore, inhibition of autophagy blocked melanosomal degradation and reversed the nalfurafine hydrochloride-induced decrease in melanin content in α-MSH-treated cells. Consistently, treatment with other κ-opioid receptor agonists, such as MCOPPB or mianserin, inhibited excessive melanin production but induced autophagy in B16F1 cells. Furthermore, nalfurafine hydrochloride inhibited protein kinase A (PKA) activation, which was notably restored by forskolin, a PKA activator. Additionally, forskolin treatment further suppressed melanosomal degradation as well as the anti-pigmentation activity of nalfurafine hydrochloride in α-MSH-treated cells. Collectively, our data suggest that stimulation of κ-opioid receptors induces melanophagy by inhibiting PKA activation in α-MSH-treated B16F1 cells.