Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.282
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 179(5): 1222-1238.e17, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730859

RESUMEN

Mitochondrial dysfunction is associated with a spectrum of human conditions, ranging from rare, inborn errors of metabolism to the aging process. To identify pathways that modify mitochondrial dysfunction, we performed genome-wide CRISPR screens in the presence of small-molecule mitochondrial inhibitors. We report a compendium of chemical-genetic interactions involving 191 distinct genetic modifiers, including 38 that are synthetic sick/lethal and 63 that are suppressors. Genes involved in glycolysis (PFKP), pentose phosphate pathway (G6PD), and defense against lipid peroxidation (GPX4) scored high as synthetic sick/lethal. A surprisingly large fraction of suppressors are pathway intrinsic and encode mitochondrial proteins. A striking example of such "intra-organelle" buffering is the alleviation of a chemical defect in complex V by simultaneous inhibition of complex I, which benefits cells by rebalancing redox cofactors, increasing reductive carboxylation, and promoting glycolysis. Perhaps paradoxically, certain forms of mitochondrial dysfunction may best be buffered with "second site" inhibitors to the organelle.


Asunto(s)
Genes Modificadores , Mitocondrias/genética , Mitocondrias/patología , Autoantígenos/metabolismo , Muerte Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Epistasis Genética/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Genoma , Glutatión Peroxidasa/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos , Células K562 , Mitocondrias/efectos de los fármacos , Oligomicinas/toxicidad , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/genética , Especies Reactivas de Oxígeno/metabolismo , Ribonucleoproteínas/metabolismo , Antígeno SS-B
2.
Cell ; 178(6): 1299-1312.e29, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474368

RESUMEN

Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Agmatina/metabolismo , Animales , Caenorhabditis elegans/microbiología , Proteína Receptora de AMP Cíclico , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Humanos , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Longevidad/efectos de los fármacos , Metformina/farmacología , Nutrientes/metabolismo
3.
Cell ; 175(5): 1418-1429.e9, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454649

RESUMEN

We report here a simple and global strategy to map out gene functions and target pathways of drugs, toxins, or other small molecules based on "homomer dynamics" protein-fragment complementation assays (hdPCA). hdPCA measures changes in self-association (homomerization) of over 3,500 yeast proteins in yeast grown under different conditions. hdPCA complements genetic interaction measurements while eliminating the confounding effects of gene ablation. We demonstrate that hdPCA accurately predicts the effects of two longevity and health span-affecting drugs, the immunosuppressant rapamycin and the type 2 diabetes drug metformin, on cellular pathways. We also discovered an unsuspected global cellular response to metformin that resembles iron deficiency and includes a change in protein-bound iron levels. This discovery opens a new avenue to investigate molecular mechanisms for the prevention or treatment of diabetes, cancers, and other chronic diseases of aging.


Asunto(s)
Hierro/metabolismo , Metaloproteínas/metabolismo , Metformina/farmacología , Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Prueba de Complementación Genética , Humanos , Metaloproteínas/genética , Saccharomyces cerevisiae/genética
4.
Cell ; 167(7): 1705-1718.e13, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984722

RESUMEN

Metformin has utility in cancer prevention and treatment, though the mechanisms for these effects remain elusive. Through genetic screening in C. elegans, we uncover two metformin response elements: the nuclear pore complex (NPC) and acyl-CoA dehydrogenase family member-10 (ACAD10). We demonstrate that biguanides inhibit growth by inhibiting mitochondrial respiratory capacity, which restrains transit of the RagA-RagC GTPase heterodimer through the NPC. Nuclear exclusion renders RagC incapable of gaining the GDP-bound state necessary to stimulate mTORC1. Biguanide-induced inactivation of mTORC1 subsequently inhibits growth through transcriptional induction of ACAD10. This ancient metformin response pathway is conserved from worms to humans. Both restricted nuclear pore transit and upregulation of ACAD10 are required for biguanides to reduce viability in melanoma and pancreatic cancer cells, and to extend C. elegans lifespan. This pathway provides a unified mechanism by which metformin kills cancer cells and extends lifespan, and illuminates potential cancer targets. PAPERCLIP.


Asunto(s)
Metformina/farmacología , Acil-CoA Deshidrogenasa/genética , Envejecimiento , Animales , Tamaño Corporal , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Humanos , Longevidad , Diana Mecanicista del Complejo 1 de la Rapamicina , Mitocondrias/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Neoplasias/tratamiento farmacológico , Poro Nuclear/metabolismo , Fosforilación Oxidativa , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
5.
Immunity ; 54(7): 1463-1477.e11, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34115964

RESUMEN

Acute respiratory distress syndrome (ARDS), an inflammatory condition with high mortality rates, is common in severe COVID-19, whose risk is reduced by metformin rather than other anti-diabetic medications. Detecting of inflammasome assembly in post-mortem COVID-19 lungs, we asked whether and how metformin inhibits inflammasome activation while exerting its anti-inflammatory effect. We show that metformin inhibited NLRP3 inflammasome activation and interleukin (IL)-1ß production in cultured and alveolar macrophages along with inflammasome-independent IL-6 secretion, thus attenuating lipopolysaccharide (LPS)- and SARS-CoV-2-induced ARDS. By targeting electron transport chain complex 1 and independently of AMP-activated protein kinase (AMPK) or NF-κB, metformin blocked LPS-induced and ATP-dependent mitochondrial (mt) DNA synthesis and generation of oxidized mtDNA, an NLRP3 ligand. Myeloid-specific ablation of LPS-induced cytidine monophosphate kinase 2 (CMPK2), which is rate limiting for mtDNA synthesis, reduced ARDS severity without a direct effect on IL-6. Thus, inhibition of ATP and mtDNA synthesis is sufficient for ARDS amelioration.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Mitocondrial/biosíntesis , Inflamasomas/efectos de los fármacos , Metformina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neumonía/prevención & control , Animales , COVID-19/metabolismo , COVID-19/prevención & control , Citocinas/genética , Citocinas/metabolismo , ADN Mitocondrial/metabolismo , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Metformina/uso terapéutico , Ratones , Nucleósido-Fosfato Quinasa/metabolismo , Neumonía/metabolismo , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/prevención & control , SARS-CoV-2/patogenicidad
6.
Mol Cell ; 77(5): 951-969.e9, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31995728

RESUMEN

AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Metabolismo Energético , Galectinas/metabolismo , Lisosomas/enzimología , Ubiquitina/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adolescente , Adulto , Animales , Autofagia/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Femenino , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Hipoglucemiantes/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/microbiología , Lisosomas/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Metformina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/patogenicidad , Transducción de Señal , Células THP-1 , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Adulto Joven
7.
Genes Dev ; 34(19-20): 1330-1344, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32912901

RESUMEN

Despite being the frontline therapy for type 2 diabetes, the mechanisms of action of the biguanide drug metformin are still being discovered. In particular, the detailed molecular interplays between the AMPK and the mTORC1 pathway in the hepatic benefits of metformin are still ill defined. Metformin-dependent activation of AMPK classically inhibits mTORC1 via TSC/RHEB, but several lines of evidence suggest additional mechanisms at play in metformin inhibition of mTORC1. Here we investigated the role of direct AMPK-mediated serine phosphorylation of RAPTOR in a new RaptorAA mouse model, in which AMPK phospho-serine sites Ser722 and Ser792 of RAPTOR were mutated to alanine. Metformin treatment of primary hepatocytes and intact murine liver requires AMPK regulation of both RAPTOR and TSC2 to fully inhibit mTORC1, and this regulation is critical for both the translational and transcriptional response to metformin. Transcriptionally, AMPK and mTORC1 were both important for regulation of anabolic metabolism and inflammatory programs triggered by metformin treatment. The hepatic transcriptional response in mice on high-fat diet treated with metformin was largely ablated by AMPK deficiency under the conditions examined, indicating the essential role of this kinase and its targets in metformin action in vivo.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metformina/farmacología , Proteína Reguladora Asociada a mTOR/genética , Transducción de Señal/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Genotipo , Hipoglucemiantes/farmacología , Inflamación , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metabolismo/efectos de los fármacos , Metformina/uso terapéutico , Ratones , Fosforilación/efectos de los fármacos , Proteína Reguladora Asociada a mTOR/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(10): e2312652121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408229

RESUMEN

Metformin is the first-line treatment for type II diabetes patients and a pervasive pollutant with more than 180 million kg ingested globally and entering wastewater. The drug's direct mode of action is currently unknown but is linked to effects on gut microbiomes and may involve specific gut microbial reactions to the drug. In wastewater treatment plants, metformin is known to be transformed by microbes to guanylurea, although genes encoding this metabolism had not been elucidated. In the present study, we revealed the function of two genes responsible for metformin decomposition (mfmA and mfmB) found in isolated bacteria from activated sludge. MfmA and MfmB form an active heterocomplex (MfmAB) and are members of the ureohydrolase protein superfamily with binuclear metal-dependent activity. MfmAB is nickel-dependent and catalyzes the hydrolysis of metformin to dimethylamine and guanylurea with a catalytic efficiency (kcat/KM) of 9.6 × 103 M-1s-1 and KM for metformin of 0.82 mM. MfmAB shows preferential activity for metformin, being able to discriminate other close substrates by several orders of magnitude. Crystal structures of MfmAB show coordination of binuclear nickel bound in the active site of the MfmA subunit but not MfmB subunits, indicating that MfmA is the active site for the MfmAB complex. Mutagenesis of residues conserved in the MfmA active site revealed those critical to metformin hydrolase activity and its small substrate binding pocket allowed for modeling of bound metformin. This study characterizes the products of the mfmAB genes identified in wastewater treatment plants on three continents, suggesting that metformin hydrolase is widespread globally in wastewater.


Asunto(s)
Diabetes Mellitus Tipo 2 , Guanidina/análogos & derivados , Metformina , Microbiota , Urea/análogos & derivados , Humanos , Metformina/metabolismo , Aguas Residuales , Níquel , Hidrolasas/genética , Preparaciones Farmacéuticas
10.
Mol Cell ; 71(4): 606-620.e7, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30118680

RESUMEN

Metformin has been reported to possess antitumor activity and maintain high cytotoxic T lymphocyte (CTL) immune surveillance. However, the functions and detailed mechanisms of metformin's role in cancer immunity are not fully understood. Here, we show that metformin increases CTL activity by reducing the stability and membrane localization of programmed death ligand-1 (PD-L1). Furthermore, we discover that AMP-activated protein kinase (AMPK) activated by metformin directly phosphorylates S195 of PD-L1. S195 phosphorylation induces abnormal PD-L1 glycosylation, resulting in its ER accumulation and ER-associated protein degradation (ERAD). Consistently, tumor tissues from metformin-treated breast cancer patients exhibit reduced PD-L1 levels with AMPK activation. Blocking the inhibitory signal of PD-L1 by metformin enhances CTL activity against cancer cells. Our findings identify a new regulatory mechanism of PD-L1 expression through the ERAD pathway and suggest that the metformin-CTLA4 blockade combination has the potential to increase the efficacy of immunotherapy.


Asunto(s)
Antineoplásicos/farmacología , Antígeno B7-H1/genética , Antígeno CTLA-4/genética , Regulación Neoplásica de la Expresión Génica , Hipoglucemiantes/farmacología , Metformina/farmacología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/inmunología , Animales , Antígeno B7-H1/inmunología , Antígeno CTLA-4/inmunología , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Femenino , Glicosilación , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/efectos de los fármacos , Glándulas Mamarias Humanas/inmunología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos NOD , Fosforilación , Serina/metabolismo , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología
11.
Mol Cell ; 69(2): 279-291.e5, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29351847

RESUMEN

Sustained energy starvation leads to activation of AMP-activated protein kinase (AMPK), which coordinates energy status with numerous cellular processes including metabolism, protein synthesis, and autophagy. Here, we report that AMPK phosphorylates the histone methyltransferase EZH2 at T311 to disrupt the interaction between EZH2 and SUZ12, another core component of the polycomb repressive complex 2 (PRC2), leading to attenuated PRC2-dependent methylation of histone H3 at Lys27. As such, PRC2 target genes, many of which are known tumor suppressors, were upregulated upon T311-EZH2 phosphorylation, which suppressed tumor cell growth both in cell culture and mouse xenografts. Pathologically, immunohistochemical analyses uncovered a positive correlation between AMPK activity and pT311-EZH2, and higher pT311-EZH2 correlates with better survival in both ovarian and breast cancer patients. Our finding suggests that AMPK agonists might be promising sensitizers for EZH2-targeting cancer therapies.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Animales , Carcinogénesis/genética , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Epigénesis Genética , Femenino , Histonas/metabolismo , Humanos , Ratones , Proteínas de Neoplasias , Proteínas Nucleares/metabolismo , Oncogenes , Neoplasias Ováricas/metabolismo , Fosforilación , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/fisiología , Factores de Transcripción , Regulación hacia Arriba
12.
Proc Natl Acad Sci U S A ; 120(4): e2211933120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656866

RESUMEN

Metformin is the most prescribed drug for DM2, but its site and mechanism of action are still not well established. Here, we investigated the effects of metformin on basolateral intestinal glucose uptake (BIGU), and its consequences on hepatic glucose production (HGP). In diabetic patients and mice, the primary site of metformin action was the gut, increasing BIGU, evaluated through PET-CT. In mice and CaCo2 cells, this increase in BIGU resulted from an increase in GLUT1 and GLUT2, secondary to ATF4 and AMPK. In hyperglycemia, metformin increased the lactate (reducing pH and bicarbonate in portal vein) and acetate production in the gut, modulating liver pyruvate carboxylase, MPC1/2, and FBP1, establishing a gut-liver crosstalk that reduces HGP. In normoglycemia, metformin-induced increases in BIGU is accompanied by hypoglycemia in the portal vein, generating a counter-regulatory mechanism that avoids reductions or even increases HGP. In summary, metformin increases BIGU and through gut-liver crosstalk influences HGP.


Asunto(s)
Tracto Gastrointestinal , Glucosa , Hígado , Metformina , Animales , Humanos , Ratones , Células CACO-2 , Diabetes Mellitus Tipo 2 , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Hígado/metabolismo , Metformina/farmacología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tracto Gastrointestinal/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(41): e2221653120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788309

RESUMEN

Fatty acid oxidation (FAO) fuels many cancers. However, knowledge of pathways that drive FAO in cancer remains unclear. Here, we revealed that valosin-containing protein (VCP) upregulates FAO to promote colorectal cancer growth. Mechanistically, nuclear VCP binds to histone deacetylase 1 (HDAC1) and facilitates its degradation, thus promoting the transcription of FAO genes, including the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). FAO is an alternative fuel for cancer cells in environments exhibiting limited glucose availability. We observed that a VCP inhibitor blocked the upregulation of FAO activity and CPT1A expression triggered by metformin in colorectal cancer (CRC) cells. Combined VCP inhibitor and metformin prove more effective than either agent alone in culture and in vivo. Our study illustrates the molecular mechanism underlying the regulation of FAO by nuclear VCP and demonstrates the potential therapeutic utility of VCP inhibitor and metformin combination treatment for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Metformina , Humanos , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Procesos Neoplásicos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ácidos Grasos/metabolismo , Metformina/farmacología , Carnitina O-Palmitoiltransferasa/metabolismo , Oxidación-Reducción
14.
Proc Natl Acad Sci U S A ; 120(8): e2205186120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787363

RESUMEN

Chemiluminescence (CL) with the elimination of excitation light and minimal autofluorescence interference has been wieldy applied in biosensing and bioimaging. However, the traditional emission of CL probes was mainly in the range of 400 to 650 nm, leading to undesired resolution and penetration in a biological object. Therefore, it was urgent to develop CL molecules in the near-infrared window [NIR, including NIR-I (650 to 900 nm) and near-infrared-II (900 to 1,700 nm)], coupled with unique advantages of long-time imaging, sensitive response, and high resolution at depths of millimeters. However, no NIR-II CL unimolecular probe has been reported until now. Herein, we developed an H2S-activated NIR-II CL probe [chemiluminiscence donor 950, (CD-950)] by covalently connecting two Schaap's dioxetane donors with high chemical energy to a NIR-II fluorophore acceptor candidate via intramolecular CL resonance energy transfer strategy, thereby achieving high efficiency of 95%. CD-950 exhibited superior capacity including long-duration imaging (~60 min), deeper tissue penetration (~10 mm), and specific H2S response under physiological conditions. More importantly, CD-950 showed detection capability for metformin-induced hepatotoxicity with 2.5-fold higher signal-to-background ratios than that of NIR-II fluorescence mode. The unimolecular NIR-II CL probe holds great potential for the evaluation of drug-induced side effects by tracking its metabolites in vivo, further facilitating the rational design of novel NIR-II CL-based detection platforms.


Asunto(s)
Luminiscencia , Sondas Moleculares , Colorantes Fluorescentes/química , Imagen Óptica/métodos , Espectroscopía Infrarroja Corta/métodos
15.
Annu Rev Pharmacol Toxicol ; 62: 85-108, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34449247

RESUMEN

Metformin has been extensively used for the treatment of type 2 diabetes, and it may also promote healthy aging. Despite its widespread use and versatility, metformin's mechanisms of action remain elusive. The gut typically harbors thousands of bacterial species, and as the concentration of metformin is much higher in the gut as compared to plasma, it is plausible that microbiome-drug-host interactions may influence the functions of metformin. Detrimental perturbations in the aging gut microbiome lead to the activation of the innate immune response concomitant with chronic low-grade inflammation. With the effectiveness of metformin in diabetes and antiaging varying among individuals, there is reason to believe that the gut microbiome plays a role in the efficacy of metformin. Metformin has been implicated in the promotion and maintenance of a healthy gut microbiome and reduces many age-related degenerative pathologies. Mechanistic understanding of metformin in the promotion of a healthy gut microbiome and aging will require a systems-level approach.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Envejecimiento , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/microbiología , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico
16.
Genes Cells ; 29(3): 183-191, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311861

RESUMEN

Metformin is an anti-diabetic drug. Metformin mainly inhibits gluconeogenesis in the liver and reduces blood sugar. In addition to the anti-diabetic effects, many studies have revealed that metformin has anti-inflammatory effects. Various molecules were suggested to be the target of the metformin's anti-inflammatory effects. However, the conclusion is not clear. Metformin is related to a number of molecules and the identification of the main target in anti-inflammatory effects leads to the understanding of inflammation and metformin. In this article, I discuss each suggested molecule, involved mechanisms, and their relationship with various diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Metformina/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Gluconeogénesis , Hígado/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo
17.
FASEB J ; 38(5): e23549, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38446465

RESUMEN

Apical periodontitis (AP) is a disease caused by pathogenic microorganisms and featured with the degradation of periapical hard tissue. Our recent research showed the crucial role of Z-DNA binding protein 1 (ZBP1)-mediated necroptosis and apoptosis in the pathogenesis of AP. However, the specific regulatory mechanisms of ZBP1 in AP are not fully elucidated. It was found that metformin has a regulatory role in cell necroptosis and apoptosis. But whether and how metformin regulates necroptosis and apoptosis through the ZBP1 in the context of AP remains unknown. This study provided evidence that lipopolysaccharide (LPS) promotes the synthesis of left-handed Z-nucleic acids (Z-NA), which in turn activates ZBP1. Knockout of Zbp1 by CRISPR/Cas9 technology significantly reduced LPS-induced necroptosis and apoptosis in vitro. By using Zbp1-knockout mice, periapical bone destruction was alleviated. Moreover, type I interferon induced the expression of interferon-stimulated genes (ISGs), which serve as a major source of Z-NA. In addition, the RNA-editing enzyme Adenosine Deaminase RNA specific 1 (ADAR1) prevented the accumulation of endogenous Z-NA. Meanwhile, metformin suppressed the ZBP1-mediated necroptosis by inhibiting the expression of ZBP1 and the accumulation of ISGs. Metformin also promoted mitochondrial apoptosis, which is critical for the elimination of intracellular bacterial infection. The enhanced apoptosis further promoted the healing of infected apical bone tissues. In summary, these results demonstrated that the recognition of Z-NA by ZBP1 plays an important role in AP pathogenesis. Metformin suppressed ZBP1-mediated necroptosis and promoted apoptosis, thereby contributing to the soothing of inflammation and bone healing in AP.


Asunto(s)
Interferón Tipo I , Metformina , Periodontitis Periapical , Ratones , Animales , Ratones Noqueados , Lipopolisacáridos , Muerte Celular , Metformina/farmacología , ARN , Proteínas de Unión al ARN , Adenosina Desaminasa
18.
FASEB J ; 38(9): e23654, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38717442

RESUMEN

Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.


Asunto(s)
Factores de Transcripción del Choque Térmico , Metformina , Miocitos Cardíacos , Respuesta de Proteína Desplegada , Animales , Masculino , Ratas , Angiotensina II/farmacología , Cardiomegalia/metabolismo , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción del Choque Térmico/efectos de los fármacos , Factores de Transcripción del Choque Térmico/metabolismo , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Metformina/farmacología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Respuesta de Proteína Desplegada/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
19.
Brain ; 147(4): 1474-1482, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37878862

RESUMEN

This study aimed to investigate the controversial association between metformin use and diabetes-associated dementia in elderly patients with type 2 diabetes mellitus (T2DM) and evaluate the potential protective effects of metformin, as well as its intensity of use and dose-dependency, against dementia in this population. The study used a time-dependent Cox hazards model to evaluate the effect of metformin use on the incidence of dementia. The case group included elderly patients with T2DM (≥60 years old) who received metformin, while the control group consisted of elderly patients with T2DM who did not receive metformin during the follow-up period. Our analysis revealed a significant reduction in the risk of dementia among elderly individuals using metformin, with an adjusted hazard ratio of 0.34 (95% confidence interval: 0.33 to 0.36). Notably, metformin users with a daily intensity of 1 defined daily dose (DDD) or higher had a lower risk of dementia, with an adjusted hazard ratio (95% confidence interval) of 0.46 (0.22 to 0.6), compared to those with a daily intensity of <1 DDD. Additionally, the analysis of cumulative DDDs of metformin showed a dose-response relationship, with progressively lower adjusted hazard ratio across quartiles (0.15, 0.21, 0.28, and 0.53 for quartiles 4, 3, 2 and 1, respectively), compared to never metformin users (P for trend < 0.0001). Metformin use in elderly patients with T2DM is significantly associated with a substantial reduction in the risk of dementia. Notably, the protective effect of metformin demonstrates a dose-dependent relationship, with higher daily and cumulative dosages of metformin showing a greater risk reduction.


Asunto(s)
Demencia , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Anciano , Persona de Mediana Edad , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Hipoglucemiantes , Incidencia , Conducta de Reducción del Riesgo , Demencia/epidemiología , Demencia/prevención & control
20.
Proc Natl Acad Sci U S A ; 119(14): e2122217119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344434

RESUMEN

SignificanceA clear mechanistic understanding of metformin's antidiabetic effects is lacking. This is because suprapharmacological concentrations of metformin have been used in most studies. Using mouse models and human primary hepatocytes, we show that metformin, at clinically relevant doses, suppresses hepatic glucose production by activating a conserved regulatory pathway encompassing let-7, TET3, and a fetal isoform of hepatocyte nuclear factor 4 alpha (HNF4α). We demonstrate that metformin no longer has potent antidiabetic actions in a liver-specific let-7 loss-of-function mouse model and that hepatic delivery of let-7 ameliorates hyperglycemia and improves glucose homeostasis. Our results thus reveal an important role of the hepatic let-7/TET3/HNF4α axis in mediating the therapeutic effects of metformin and suggest that targeting this axis may be a potential therapeutic for diabetes.


Asunto(s)
Hiperglucemia , Metformina , Animales , Modelos Animales de Enfermedad , Glucosa/metabolismo , Hepatocitos/metabolismo , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hígado/metabolismo , Metformina/uso terapéutico , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA