Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 87(18): 719-729, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38884257

RESUMEN

Corn is the second most cultivated crop in Brazil, the number-one country in pesticide consumption. Chemical control of weeds is performed using herbicides such as S-metolachlor with pre- and post-emergence action and thus the toxicity of herbicides constitutes a matter of great concern. The present investigation aimed to examine the effects of an S-metolachlor-based herbicide on Lactuca sativa L. (lettuce) and Zea mays L. (maize) utilizing various bioassays. The test solutions were prepared from commercial products containing the active ingredient. Seeds from the plant models were exposed in petri dishes and maintained under biochemical oxygen demand (BOD) at 24°C. Distilled water was negative and aluminium positive control. Macroscopic analyses (germination and growth) were conducted for both plant species, and microscopic analysis (cell cycle and chromosomal alterations) were performed for L. sativa root tip cells. Detrimental interference of S-metolachlor-based herbicide was noted with lettuce for all parameters tested reducing plant germination by over 50% and the germination speed by over 45% and showing a significant decrease in mitotic index, from 16.25% to 9,28% even on the lowest concentration tested. In maize, there was no significant interference in plant germination; however, speed of germination was significantly hampered, reaching a 51.22% reduction for the highest concentration tested. Data demonstrated that the herbicide was toxic as evidenced by its phyto- and cytotoxicity in L. sativa L. and Z. mays L.


Asunto(s)
Acetamidas , Herbicidas , Lactuca , Zea mays , Zea mays/efectos de los fármacos , Herbicidas/toxicidad , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Acetamidas/toxicidad , Germinación/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
2.
Ecotoxicology ; 33(2): 190-204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38386230

RESUMEN

Extensive pesticide use for agriculture can diffusely pollute aquatic ecosystems through leaching and runoff events and has the potential to negatively affect non-target organisms. Atrazine and S-metolachlor are two widely used herbicides often detected in high concentrations in rivers that drain nearby agricultural lands. Previous studies focused on concentration-response exposure of algal monospecific cultures, over a short exposure period, with classical descriptors such as cell density, mortality or photosynthetic efficiency as response variables. In this study, we exposed algal biofilms (periphyton) to a concentration gradient of atrazine and S-metolachlor for 14 days. We focused on fatty acid composition as the main concentration-response descriptor, and we also measured chlorophyll a fluorescence. Results showed that atrazine increased cyanobacteria and diatom chlorophyll a fluorescence. Both herbicides caused dissimilarities in fatty acid profiles between control and high exposure concentrations, but S-metolachlor had a stronger effect than atrazine on the observed increase or reduction in saturated fatty acids (SFAs) and very long-chain fatty acids (VLCFAs), respectively. Our study demonstrates that two commonly used herbicides, atrazine and S-metolachlor, can negatively affect the taxonomic composition and fatty acid profiles of stream periphyton, thereby altering the nutritional quality of this resource for primary consumers.


Asunto(s)
Acetamidas , Atrazina , Herbicidas , Perifiton , Contaminantes Químicos del Agua , Atrazina/toxicidad , Clorofila A , Ríos , Ecosistema , Ácidos Grasos , Herbicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad
3.
Pestic Biochem Physiol ; 202: 105930, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879323

RESUMEN

Due to the widespread use of metolachlor (MET), the accumulation of MET and its metabolites in the environment has brought serious health problems to aquatic organisms. At present, the toxicity of MET on the physiological metabolism of aquatic animals mainly focused on the role of enzymes. There is still a lack of research on the molecular mechanisms of MET hepatotoxicity, especially on antagonizing MET toxicity. Therefore, this study focuses on grass carp hepatocytes (L8824 cells) closely related to toxin accumulation. By establishing a MET exposed L8824 cells model, it is determined that MET exposure induces pyrolytic inflammation of L8824 cells. Subsequent mechanistic studies found that MET exposure induces pyroptosis in L8824 cells through mitochondrial dysfunction, and siCaspase-1 inhibits the MET induced ROS production, suggesting a regulation of ROS-NLRP3- Caspase-1 pyroptotic inflammation cycling center in MET induced injury to L8824 cells. Molecular docking revealed a strong binding energy between melatonin (MT) and Caspase-1. Finally, a model of L8824 cells with MT intervention in MET exposure was established. MT can antagonize the pyroptosis induced by MET exposure in L8824 cells by targeting Caspase-1, thereby restoring mitochondrial function and inhibiting the ROS-pyroptosis cycle. This study discovered targets and mechanisms of MT regulating pyroptosis in MET exposed-L8824 cells, and the results are helpful to provide new targets for the design of MET antidotes.


Asunto(s)
Acetamidas , Carpas , Hepatocitos , Melatonina , Simulación del Acoplamiento Molecular , Animales , Carpas/metabolismo , Melatonina/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Acetamidas/toxicidad , Acetamidas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Piroptosis/efectos de los fármacos , Caspasa 1/metabolismo , Herbicidas/toxicidad , Simulación por Computador , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
4.
J Environ Sci Health B ; 59(4): 192-201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433648

RESUMEN

The adsorption mechanism of S-Metolachlor in an aqueous solution by sawdust biochar derived from Acacia auriculiformis (SAB) was studied. SAB was manufactured at 500 °C for 4 h under oxygen-limited conditions and characterized for SEM, EDS, pHpzc, BET, and FTIR. The adsorption kinetics, isotherm, and diffusion studies of S-Metolachlor and SAB were further explored. Moreover, the effects of the solution pH were examined on the adsorption of S-Metolachlor by SAB. The BET analysis of SAB was achieved at 106.74 m2.g-1 and the solution pH did not significantly influence the S-Metolachlor adsorption. The adsorption data were fitted into a Langmuir isotherm and the PSO model. The film diffusion coefficient Df (4.93 × 10-11 to 8.17 × 10-11 m2.s-1) and the particle diffusion coefficient Dp (1.68 × 10-11 to 2.65 × 10-11 m2.s-1) were determined and the rate-limiting step of S-Metolachlor adsorption and SAB was governed by liquid film diffusion. The S-Metolachlor adsorption process onto SAB was controlled by multiple mechanisms, including pore filling, H-bonding, hydrophobic interaction, and π-π EDA interactions. H-bonding is the main interaction for the adsorption of S-Metolachlor and SAB. Conclusively, the study illustrates that biochar produced from Acacia auriculiformis sawdust possessed effective adsorption properties for S-Metolachlor herbicide.


Asunto(s)
Acacia , Acetamidas , Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Cinética
5.
Ecotoxicol Environ Saf ; 267: 115656, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944463

RESUMEN

Although it is known that microplastics (MPs) in soils cause a threat to this complex environment, the actual effects of MPs on soil microorganisms and their catabolic activities, particularly with the biodegradation of herbicides, remain unclear. Hence, the objective of this study was to investigate the effects of a simultaneous presence of metolachlor and low-density polyethylene (LDPE) microplastics on growth inhibition and adaptive responses of Trichoderma harzianum in soil microcosms. Using ergosterol content as an indicator of fungal biomass, it was observed that MPs alone had a marginal inhibitory effect on the growth of the fungus, whereas MET exhibited a dose-dependent inhibitory effect on T. harzianum. However, the presence of MPs did not influence the fungal transforming activity toward the herbicide. Conversely, analysis of lipid profiles in the presence of MPs and herbicides revealed a reduction in the overall fluidity of phospholipid fatty acids, primarily attributed to an increase in lysophospholipids. The activities of six extracellular enzymes in the soil, measured using methylumbelliferone-linked substrates, were significantly enhanced in the presence of MET. These findings contribute to a broader understanding of the alterations in fungal activity in soil resulting from the influence of MPs and MET.


Asunto(s)
Herbicidas , Hypocreales , Microplásticos , Plásticos , Polietileno , Herbicidas/toxicidad , Suelo
6.
Pestic Biochem Physiol ; 197: 105692, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072547

RESUMEN

The extensive use of herbicides has raised concerns about crop damage, necessitating the development of effective herbicide safeners. Fluxofenim has emerged as a promising herbicide safener; however, it's underlying mechanism remains unclear. Here, we screened two inbred lines 407B and HYZ to investigate the detoxication of fluxofenim in mitigating metolachlor damage in sorghum. Metolachlor inhibited seedling growth in both 407B and HYZ, while, fluxofenim could significantly restore the growth of 407B, but not effectively complement the growth of HYZ. Fluxofenim significantly increased the activities of glutathione-S-transferase (GST) to decrease metolachlor residue in 407B, but not in HYZ. This implys that fluxofenim may reduce metolachlor toxicity by regulating its metabolism. Furthermore, metolachlor suppressed AUX-related and JA-related genes expression, while up-regulated the expression of SA-related genes. Fluxofenim also restored the expression of AUX-related and JA-related genes inhibited by metolachlor and further increased expression of SA-related genes. Moreover, we noted a significant increase in the content of trans-zeatin O-glucoside (tZOG) and Gibberellin1 (GA1) after the fluxofenim treatment. In conclusion, fluxofenim may reduce the injury of herbicide by affecting herbicide metabolism and regulating hormone signaling pathway.


Asunto(s)
Herbicidas , Sorghum , Herbicidas/toxicidad , Herbicidas/metabolismo , Sorghum/genética , Transcriptoma , Glutatión Transferasa/metabolismo , Grano Comestible
7.
Environ Res ; 204(Pt A): 111919, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34480949

RESUMEN

In this study, we investigated a highly efficient adsorbent that can be recycled from the soil. Walnut shells were used as raw materials to prepare original ecological biochar (OBC), illite modified biochar (IBC), FeCl3 modified biochar (magnetic biochar; MBC), and illite and FeCl3 modified biochar (IMBC), which were tested as low-cost adsorbents. The agents were used to remove metolachlor (MET) from soil. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, magnetic sensitivity curve analysis, and a series of adsorption experiments were conducted to study the interaction between illite and MBC, and the effect on MET adsorption. Compared with OBC, IMBC had more adsorption sites on the surface. IMBC improved the hole filling effect during the adsorption process. IMBC had more oxygen-containing functional groups and it performed better at removing organic matter through π-π interactions. According to the Langmuir model, the Q0 values for IBC, MBC, and IMBC were 91.74 mg g-1, 107.53 mg g-1, and 129.87 mg g-1, respectively, which were significantly higher than that for OBC (72.99 mg g-1). The response surface model was used to explore the optimal adsorption conditions for IMBC. After three regeneration cycles, the MET adsorption rate with IMBC was still 81.38% and the MET recovery rate was 98.12%. Therefore, IMBC was characterized as an adsorbent with high efficiency, low cost, and good recyclability. In addition, we propose a suitable agricultural system for recovering MBC on site in the field.


Asunto(s)
Suelo , Contaminantes Químicos del Agua , Acetamidas , Adsorción , Carbón Orgánico , Cinética , Fenómenos Magnéticos , Minerales , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
8.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361770

RESUMEN

While there has been intensive research on the influence of microplastics (MPs) on aquatic organisms and humans, their effect on microorganisms is relatively little-known. The present study describes the response of the Trichoderma harzianum strain to low-density polyethylene (LDPE) microparticles. MPs, either separately or with metolachlor (MET), were added to the cultures. Initially, MP was not found to have a negative effect on fungal growth and MET degradation. After 72 h of cultivation, the content of fungal biomass in samples with MPs was almost three times higher than that in the cultures without MPs. Additionally, a 75% degradation of the initial MET was observed. However, due to the qualitative and quantitative changes in individual classes of phospholipids, cell membrane permeability was increased. Additionally, MPs induced the overproduction of reactive oxygen species. The activity of superoxide dismutase and catalase was also increased in response to MPs. Despite these defense mechanisms, there was enhanced lipid peroxidation in the cultures containing the LDPE microparticles. The results of the study may fill the knowledge gap on the influence of MPs on filamentous fungi. The findings will be helpful in future research on the biodegradation of contaminants coexisting with MPs in soil.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Polietileno/farmacología , Estrés Oxidativo , Hongos , Contaminantes Químicos del Agua/farmacología
9.
Environ Sci Technol ; 55(8): 4772-4782, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33729766

RESUMEN

Determining whether aqueous diffusion and dispersion lead to significant isotope fractionation is important for interpreting the isotope ratios of organic contaminants in groundwater. We performed diffusion experiments with modified Stokes diaphragm cells and transverse-dispersion experiments in quasi-two-dimensional flow-through sediment tank systems to explore isotope fractionation for benzene, toluene, ethylbenzene, 2,6-dichlorobenzamide, and metolachlor at natural isotopic abundance. We observed very small to negligible diffusion- and transverse-dispersion-induced isotope enrichment factors (ε < -0.4 ‰), with changes in carbon and nitrogen isotope values within ±0.5‰ and ±1‰, respectively. Isotope effects of diffusion did not show a clear correlation with isotopologue mass with calculated power-law exponents ß close to zero (0.007 < ß < 0.1). In comparison to ions, noble gases, and labeled compounds, three aspects stand out. (i) If a mass dependence is derived from collision theory, then isotopologue masses of polyatomic molecules would be affected by isotopes of multiple elements resulting in very small expected effects. (ii) However, collisions do not necessarily lead to translational movement but can excite molecular vibrations or rotations minimizing the mass dependence. (iii) Solute-solvent interactions like H-bonds can further minimize the effect of collisions. Modeling scenarios showed that an inadequate model choice, or erroneous choice of ß, can greatly overestimate the isotope fractionation by diffusion and, consequently, transverse dispersion. In contrast, available data for chlorinated solvent and gasoline contaminants at natural isotopic abundance suggest that in field scenarios, a potential additional uncertainty from aqueous diffusion or dispersion would add to current instrumental uncertainties on carbon or nitrogen isotope values (±1‰) with an additional ±1‰ at most.


Asunto(s)
Agua Subterránea , Biodegradación Ambiental , Isótopos de Carbono/análisis , Fraccionamiento Químico , Difusión , Tolueno , Agua
10.
Bioorg Chem ; 108: 104645, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33493931

RESUMEN

One strategy for solving the phytotoxicity of herbicides is to apply herbicide safeners that can efficiently alleviate the injuries of agricultural crops caused by herbicides. When metolachlor, a chloroacetamide herbicide, is applied with paddy rice, for example, the mechanisms associated with metolachlor and its residue negatively impact on the growth and yields of rice. To identify novel high-activity herbicide safener candidates for metolachlor, a series of (E)-4-(2-substituted hydrazinyl)-6-chloro-2-phenyl pyrimidines were synthesized and their structures were confirmed using IR (infrared radiation), 1H NMR, 13C NMR, and HRMS (high resolution mass spectrometry). The herbicide safener activities were then evaluated via primary tests. Compounds 3i and 3t were found to have the best herbicide activity on plant height. These compounds were then further screened for their activities at lower concentrations and showed better or similar activities compared to the positive control fenclorim, a commercial herbicide safener. The compounds 3i and 3t significantly enhanced glutathione S-transferase (GST) activity related with the herbicide safener activity in both shoots and roots tissues. Moreover, a qPCR (Real-time quantitative polymerase chain reaction) analysis found that the 3i and 3t treatments enhanced the expressions of OsGSTU3, OsGsTU39, and OsGSTF5. Finally, the results of an acute toxicity assessment with zebrafish (Danio rerio) embryos using treatments 3i and 3t indicated they are relatively safe to aquatic organisms.


Asunto(s)
Acetamidas/antagonistas & inhibidores , Hidrazonas/farmacología , Oryza/efectos de los fármacos , Sustancias Protectoras/farmacología , Pirimidinas/farmacología , Plantones/efectos de los fármacos , Acetamidas/farmacología , Relación Dosis-Respuesta a Droga , Hidrazonas/química , Estructura Molecular , Oryza/metabolismo , Sustancias Protectoras/síntesis química , Sustancias Protectoras/química , Pirimidinas/síntesis química , Pirimidinas/química , Plantones/metabolismo , Relación Estructura-Actividad
11.
Ecotoxicol Environ Saf ; 189: 109926, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31780207

RESUMEN

Synergistic biodegradation of earthworms and soil microorganisms plays a key role in the removal of organic pollutants in soil, yet microbially mediated processes remain unclear, especially regarding the succession of soil microbial interactions. Herein, soil biochemical evaluation, microbial community characterization, and interaction network construction were combined to understand the mechanisms dominating microbial community succession during synergistic bioremediation of metolachlor-polluted soils. The results of the network analysis indicated that metolachlor could render more complex relations but weaker connection strength among soil microorganisms. The addition of earthworms significantly alleviated the stress of metolachlor on soil microbial interactions and resulted in the restoration of interactions to a great extent. Additionally, the soil physicochemical properties, enzyme activities, and microbial community changed greatly with the addition of metolachlor and earthworms. Some soil microorganisms became significantly correlated with soil properties, metolachlor concentrations, and enzyme activities. These results, dominated by the succession of soil microbial communities, provide a new perspective for assessing the remediation effect of contaminated soil by organic pollutants.


Asunto(s)
Acetamidas/metabolismo , Biodegradación Ambiental , Microbiota , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Acetamidas/toxicidad , Animales , Bacterias/metabolismo , Micobioma , Oligoquetos/efectos de los fármacos , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
12.
Pestic Biochem Physiol ; 163: 216-226, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31973860

RESUMEN

Due to the increasing use of chlorinated organic compounds, environmental pollution is a key issue in agricultural and industrial areas. In this study, biodegradation of chloroacetanilide herbicides, such as alachlor and metolachlor, by eight fungal strains of Trichoderma spp. originating from different microorganism collections was investigated. The tested fungi converted 80-99% of alachlor and 40-79% of metolachlor after 7 days of incubation. Biotransformation of herbicides was performed mainly by dechlorination and hydroxylation reactions. Eight alachlor metabolites and four byproducts of metolachlor conversion were detected in Trichoderma cultures, including two metolachlor intermediates for the first time identified in fungi. Moreover, in the cultures of six Trichoderma strains supplemented with chloroacetanilides, a decrease in toxicity was observed toward tested Artemia franciscana crustaceans. Simultaneously, 7 days after the application of the spores of T. koningii IM 0956, T. citrinoviride IM 6325, T. harzianum KKP 534, T. viride KKP 792 and T. virens DSM 1963 the length of roots and shoots of rapeseed seedlings treated with alachlor or metolachlor significantly increased. All tested strains exhibited plant growth-promoting traits, such as siderophore production, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity, and phosphate solubilization, even in the presence of chloroacetanilide herbicides.


Asunto(s)
Herbicidas , Trichoderma , Acetamidas , Biodegradación Ambiental , Biotransformación
13.
Ecotoxicol Environ Saf ; 173: 293-304, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30776562

RESUMEN

S-metolachlor (SMOC) and terbuthylazine (TBA) are herbicides that commonly appear as active ingredients (a.i.) in the composition of plant protection products. In a previous work, experimental bioassays were performed using those chemicals to find suitable molecular biomarkers to assess its toxicity to the non-target species Scrobicularia plana. The results obtained showed that the pollutants produce mortality and biochemical changes at the species, namely in protein contents and enzymatic activity levels. Thus, for a better understanding of the total biochemical impacts of those pollutants in S. plana, the composition of fatty acids (FA) and carbohydrates (CH) of the survival organisms are investigated here. In addition, since this species is edible its biochemical profile is directly related to its nutritious quality, which is analysed in this study. Furthermore, the analyses were performed in two types of tissue - the muscle and visceral mass of each survival organism. The greatest changes in FA composition are observable in small size class, being the most sensitive size class both at the toxicological and biochemical level. FA contents are higher in small organisms, both at the field and under laboratory conditions, being the disparity between size classes higher in visceral masses than in muscles. Indeed, muscles adequately represent the FA profile since those molecules appear in higher content in this tissue compared to visceral masses, becoming the better indicator tissue of biochemical changes. Besides, using muscles, less amount of biomass is needed, so it turns out to be the most cost-effective tissue to be used as endpoint in future studies. FA profiles observed at SMOC and TBA exposure are different, organisms from TBA exposure presenting a lower nutritious quality, in terms of FA abundance and diversity, than the organisms exposed to SMOC. Still, SMOC produces reductions of HUFA, essential fatty acids that cannot be synthesized by the species. Moreover, HUFA (mostly EPA and DHA) occupied the greatest part of the FA composition of organisms exposed to the control treatments and to TBA; however, the decreases of HUFA caused by the SMOC exposure change the profiles and make SFA the most dominant group. These findings represent a risk of low occurrence of essential fatty acids in entire aquatic environments exposed to the chemicals studied. Regarding CH, glucose is the only monosaccharide found in S. plana which was expected since glycogen is the main polysaccharide in animal tissues. In general, the glucose content increases with a concentration of pollutants, whereas the glycogen concentration decreases, suggesting that the glucose is being released as a response to chemical stress. Thus, this work presents tools to assess biochemical impacts of S-metolachlor and terbuthylazine in aquatic systems and to goes deeper in the knowledge of these pollutants' toxicity to non-target species to predict its propagation through aquatic trophic webs.


Asunto(s)
Acetamidas/efectos adversos , Bivalvos/efectos de los fármacos , Metabolismo de los Hidratos de Carbono , Ácidos Grasos/metabolismo , Herbicidas/efectos adversos , Triazinas/efectos adversos , Contaminantes Químicos del Agua/efectos adversos , Animales , Estuarios , Portugal
14.
Bull Environ Contam Toxicol ; 102(3): 439-445, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30734056

RESUMEN

The unfounded use of chiral pesticides has caused widespread concern. In this study, the enantioselective effects of S- and racemic (Rac)-metolachlor on the oxidative stress of wheat seedlings was determined based on physiological and gene transcription differences. Growth inhibition increased with increasing concentrations of tested metolachlor, and S-metolachlor had a stronger inhibitory effect than did Rac-metolachlor. Root growth was also significantly inhibited, but no enantioselective effects from the tested concentrations of the metolachlor enantiomers were observed. At a concentration of 5 mg L-1, the maximal fresh weight inhibition reached 63.7% and 53.8% for S-metolachlor and Rac-metolachlor, respectively. In response to the S-metolachlor treatment, the maximum level of superoxide anions and malondialdehyde (MDA) increased to 1.73 and 2.55 times that in response to the control treatment, both of which were greater than those in response to the Rac-metolachlor treatment. The activity of superoxide dismutase (SOD) also increased in response to the S-metolachlor treatment, but the activity of peroxidase (POD) decreased. Real-time polymerase chain reaction (PCR) revealed that, compared with the Rac-metolachlor treatment, the S-metolachlor treatment attenuated the expression of several antioxidant genes. Together, these results demonstrate that S-metolachlor has a greater effect than does Rac-metolachlor on wheat seedlings.


Asunto(s)
Acetamidas/toxicidad , Herbicidas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Plantones/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Triticum/efectos de los fármacos , Acetamidas/química , Antioxidantes/metabolismo , Herbicidas/química , Plantones/metabolismo , Contaminantes del Suelo/química , Estereoisomerismo , Triticum/metabolismo
15.
Antonie Van Leeuwenhoek ; 111(11): 1977-1984, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29713912

RESUMEN

Strain ZZ-8T, a Gram-negative, aerobic, non-spore-forming, non-motile, yellow-pigmented, rod-shaped bacterium, was isolated from metolachlor-contaminated soil in China. The taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ZZ-8T is a member of the genus Flavobacterium and shows high sequence similarity to Flavobacterium humicola UCM-46T (97.2%) and Flavobacterium pedocola UCM-R36T (97.1%), and lower (< 97%) sequence similarity to other known Flavobacterium species. Chemotaxonomic analysis revealed that strain ZZ-8T possessed MK-6 as the major respiratory quinone; and iso-C15:0 (28.5%), summed feature 9 (iso-C17:1 w9c/C16:0 10-methyl, 22.9%), iso-C17:0 3-OH (17.0%), iso-C15:0 3-OH (8.9%), iso-C15:1 G (8.6%) and summed feature 3 (C16:1 w7c/C16:1 w6c, 5.7%) as the predominant fatty acids. The polar lipids of strain ZZ-8T were determined to be lipids, a glycolipid, aminolipids and phosphatidylethanolamine. Strain ZZ-8T showed low DNA-DNA relatedness with F. pedocola UCM-R36T (43.23 ± 4.1%) and F. humicola UCM-46T (29.17 ± 3.8%). The DNA G+C content was 43.3 mol%. Based on the phylogenetic and phenotypic characteristics, chemotaxonomic data and DNA-DNA hybridization, strain ZZ-8T is considered a novel species of the genus Flavobacterium, for which the name Flavobacterium zaozhuangense sp. nov. (type strain ZZ-8T = KCTC 62315 T = CCTCC AB 2017243T) is proposed.


Asunto(s)
Acetamidas/química , Flavobacterium/aislamiento & purificación , Contaminación Ambiental , Flavobacterium/genética , Flavobacterium/metabolismo , Glucolípidos/metabolismo , Fosfatidiletanolaminas/metabolismo , ARN Ribosómico 16S/genética , Microbiología del Suelo
16.
Biodegradation ; 29(2): 117-128, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29285669

RESUMEN

The influence of soil environmental factors such as aeration on the ecology of microorganisms involved in the mineralization and degradation of the popular soil-applied pre-emergent herbicide, metolachlor is unknown. To address this knowledge gap, we utilized DNA-based stable isotope probing (SIP) where soil microcosms were incubated aerobically or anaerobically and received herbicide treatments with unlabeled metolachlor or 13C-metolachlor. Mineralization of metolachlor was confirmed as noted from the evolution of 14CO2 from 14C-metolachlor-treated microcosms and clearly demonstrated the efficient utilization of the herbicide as a carbon source. Terminal restriction fragment length polymorphisms (T-RFLP) bacterial community profiling performed on soil DNA extracts indicated that fragment 307 bp from aerobic soil and 212 bp from anaerobic soil were detected only in the herbicide-treated (both unlabeled metolachlor and 13C-metolachlor) soils when compared to the untreated control microcosms. T-RFLP profiles from the ultracentrifugation fractions illustrated that these individual fragments experienced an increase in relative abundance at a higher buoyant density (BD) in the labeled fractions when compared to the unlabeled herbicide amendment fractions. The shift in BD of individual T-RFLP fragments in the density-resolved fractions suggested the incorporation of 13C from labeled herbicide into the bacterial DNA and enabled the identification of organisms responsible for metolachlor uptake from the soil. Subsequent cloning and 16S rRNA gene sequencing of the 13C-enriched fractions implicated the role of organisms closely related to Bacillus spp. in aerobic mineralization and members of Acidobacteria phylum in anaerobic mineralization of metolachlor in soil.


Asunto(s)
Acetamidas/metabolismo , Bacterias/metabolismo , ADN Bacteriano/metabolismo , Marcaje Isotópico/métodos , Microbiología del Suelo , Aerobiosis , Anaerobiosis , Bacterias/genética , Biodegradación Ambiental , Isótopos de Carbono/metabolismo , ADN Bacteriano/genética , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Suelo , Contaminantes del Suelo/metabolismo
17.
Regul Toxicol Pharmacol ; 83: 109-116, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27871869

RESUMEN

This paper describes the further development of a read-across approach applicable to the toxicological assessment of structurally-related xenobiotic metabolites. The approach, which can be applied in the absence of definitive identification of all the individual metabolites, draws on the use of chemical descriptors and multi-variate statistical analysis to define a composite "chemical space" and to classify and characterize closely-related subgroups within this. In this example, consideration of the descriptors driving grouping, combined with empirical evidence for lack of significant further biotransformation of metabolites, leads to the conclusion that, in the absence of any specific structural alerts, the relative toxicity of metabolites within a single grouping will be determined by their relative systemic exposure as described by their ADME characteristics. The in vivo testing of a smaller number of exemplars, selected to have representative ADME properties for each grouping, is sufficient, therefore, to evaluate the toxicity of the remainder. The approach is exemplified using the metabolites of the herbicide S-metolachlor, detected in the leachate of a soil lysimeter.


Asunto(s)
Acetamidas/toxicidad , Monitoreo del Ambiente/instrumentación , Contaminantes del Suelo/farmacocinética , Contaminantes del Suelo/toxicidad , Pruebas de Toxicidad/métodos , Toxicocinética , Xenobióticos/toxicidad , Acetamidas/química , Acetamidas/clasificación , Acetamidas/farmacocinética , Animales , Biotransformación , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo del Ambiente/métodos , Humanos , Modelos Químicos , Modelos Estadísticos , Estructura Molecular , Análisis Multivariante , Análisis de Componente Principal , Medición de Riesgo , Contaminantes del Suelo/química , Contaminantes del Suelo/clasificación , Relación Estructura-Actividad , Xenobióticos/química , Xenobióticos/clasificación , Xenobióticos/farmacocinética
18.
Pestic Biochem Physiol ; 143: 265-271, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29183603

RESUMEN

Glutathione S-transferases (GSTs) have been widely studied in relation to their role in herbicide tolerance and detoxification. However, a detailed characterization of GSTs from herbicide tolerant and sensitive maize cultivars is still lacking. In this study, we determined the mechanism of differential tolerance between two maize cultivars which had 4-fold difference tolerance to metolachlor. The metabolism rate of metolachlor was more rapid in the tolerant cultivar (Zea mays L. cv Nongda86) than the susceptible one (Zea mays L. cv Zhengda958). Addition of the GST inhibitor ethacrynic acid reduced the metabolism of metolachlor indicating the involvement of GSTs in the differential detoxification of metolachlor. The expression profiles of 32 GST isozymes were measured using quantitative RT-PCR. The results showed the expression of GST genes were slightly up-regulated in Nongda86, but severely inhibited in Zhengdan958 24h after metolachlor treatment. The genes GSTI, GSTIII, GSTIV, GST5, GST6 and GST7, which can detoxify chloroacetanilide herbicides, were all expressed higher in Nongda86 compared to Zhendgan958. The result of GST activity was consistent with the gene expression profiles. Collectively, higher-level expression of GST genes, leading to higher GST activity and faster herbicide detoxification, appears to be responsible for the difference in tolerance to metolachlor in two maize cultivars.


Asunto(s)
Acetamidas/toxicidad , Glutatión Transferasa/genética , Resistencia a los Herbicidas/genética , Herbicidas/toxicidad , Zea mays/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inactivación Metabólica , Isoenzimas/genética , Proteínas de Plantas/genética , Especificidad de la Especie , Zea mays/genética
19.
Environ Monit Assess ; 189(7): 355, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28656556

RESUMEN

The present study aimed at evaluating the dissipation of S-metolachlor (S-MET) at three doses in maize growing on diverse physico-chemical properties of soil. The effect of herbicide on dehydrogenase (DHA) and acid phosphatase (ACP) activity was estimated. A modified QuEChERS method using LC-MS/MS has been developed. The limit of quantification (0.001 mg kg-1) and detection (0.0005 mg kg-1) were very low for soil and maize samples. The mean recoveries and RSDs for the six spiked levels (0.001-0.5 mg kg-1) were 91.3 and 5.8%. The biggest differences in concentration of S-MET in maize were observed between the 28th and 63rd days. The dissipation of S-MET in the alkaline soil was the slowest between the 2nd and 7th days, and in the acidic soil between the 5th and 11th days. DT50 of S-MET calculated according to the first-order kinetics model was 11.1-14.7 days (soil) and 9.6-13.9 days (maize). The enzymatic activity of soil was higher in the acidic environment. One observed the significant positive correlation of ACP with pH of soil and contents of potassium and magnesium and negative with contents of phosphorus and organic carbon. The results indicated that at harvest time, the residues of S-MET in maize were well below the safety limit for maize. The findings of this study will foster the research on main parameters influencing the dissipation in maize ecosystems.


Asunto(s)
Acetamidas/análisis , Monitoreo del Ambiente , Herbicidas/análisis , Contaminantes del Suelo/análisis , Cromatografía Liquida , Ecosistema , Cinética , Suelo/química , Microbiología del Suelo , Espectrometría de Masas en Tándem , Zea mays/química
20.
Environ Monit Assess ; 189(4): 162, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28293813

RESUMEN

Agrochemicals can be transported from agricultural fields into streams where they might have adverse effects on water quality and ecosystems. Three enrichment experiments were conducted in a central Indiana stream to quantify pesticide and nitrogen transport dynamics. In an enrichment experiment, a compound solution is added at a constant rate into a stream to increase compound background concentration. A conservative tracer (e.g., bromide) is added to determine discharge. Water and sediment samples are taken at several locations downstream to measure uptake metrics. We assessed transport of nitrate, atrazine, metolachlor, and carbaryl through direct measurement of uptake length (S w ), uptake velocity (V f ), and areal uptake (U). S w measures the distance traveled by a nutrient along the stream reach. V f measures the velocity a nutrient moves from the water column to immobilization sites. U represents the amount of nutrient immobilized in an area of streambed per unit of time. S w varied less than one order of magnitude across pesticides. The highest S w for atrazine suggests greater transport to downstream ecosystems. Across compounds, pesticide S w was longest in August relative to October and July. V f varied less than one order of magnitude across pesticides with the highest V f for metolachlor. U varied three orders of magnitude across pesticides with the highest U associate with sediment-bound carbaryl. Increasing nitrate S w suggests a lower nitrate demand of biota in this stream. Overall, pesticide transport was best predicted by compound solubility which can complement and improve models of pesticide abundance used by water quality programs and risk assessments.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Nitratos/análisis , Plaguicidas/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Agroquímicos , Atrazina , Ecosistema , Indiana , Nitrógeno , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA