Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Adv Exp Med Biol ; 1460: 595-627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287866

RESUMEN

In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.


Asunto(s)
Adipogénesis , Epigénesis Genética , MicroARNs , Obesidad , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/genética , Obesidad/metabolismo , Adipogénesis/genética , Animales , Adipocitos/metabolismo , Exosomas/metabolismo , Exosomas/genética , Regulación de la Expresión Génica
2.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357412

RESUMEN

Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical point, which is associated with hypoxia, inflammation, insulin resistance as well as lipodystrophy and adipogenesis modulation by Krüppel-like factors and miRNAs.


Asunto(s)
Adipogénesis , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Adipogénesis/fisiología , Tejido Adiposo/citología , Tejido Adiposo/inmunología , Animales , Susceptibilidad a Enfermedades , Metabolismo Energético , Humanos , Lipogénesis , Paniculitis/etiología , Paniculitis/metabolismo , Paniculitis/patología
3.
Front Immunol ; 13: 941982, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958584

RESUMEN

Micro ribonucleic acids (miRNAs), as a category of post-transcriptional gene inhibitors, have a wide range of biological functions, are involved in many pathological processes, and are attractive therapeutic targets. Considerable evidence in ophthalmology indicates that miRNAs play an important role in diabetic retinopathy (DR), especially in inflammation, oxidative stress, and neurodegeneration. Targeting specific miRNAs for the treatment of DR has attracted much attention. This is a review focusing on the pathophysiological roles of miRNAs in DR, diabetic macular edema, and proliferative DR complex multifactorial retinal diseases, with particular emphasis on how miRNAs regulate complex molecular pathways and underlying pathomechanisms. Moreover, the future development potential and application limitations of therapy that targets specific miRNAs for DR are discussed.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Edema Macular , MicroARNs , Retinopatía Diabética/patología , Humanos , Inflamación , Edema Macular/genética , MicroARNs/metabolismo , Estrés Oxidativo
4.
Int J Cardiol ; 289: 101-106, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31085080

RESUMEN

BACKGROUND: Secondary prevention of atherosclerotic vascular diseases represents a cascade of procedures to reduce the risk of future fatal and non-fatal cardiovascular events. We sought to determine whether the expression of selected microRNAs influenced mortality of stable chronic cardiovascular patients. METHODS: The plasma concentrations of five selected microRNAs (miR-1, miR-19, miR-126, miR-133 and miR-223) were quantified in 826 patients (mean age 65.2 years) with stable vascular disease (6-36 months after acute coronary syndrome, coronary revascularization or first-ever ischemic stroke). All-cause and cardiovascular mortality rates were followed during our prospective study. RESULTS: Low expression (bottom quartile) of all five miRNAs was associated with a significant increase in five-year all-cause death, even when adjusted for conventional risk factors, treatment, raised troponin I and brain natriuretic protein levels [hazard risk ratios (HRRs) were as follows: miR-1, 1.65 (95% CI: 1.16-2.35); miR-19a, 2.27 (95% CI: 1.59-3.23); miR-126, 1.64 (95% CI: 1.15-2.33); miR-133a, 1.46 (95% CI: 1.01-2.12) and miR-223, 2.05 (95% CI: 1.45-2.91)]. Nearly similar results were found if using five-year cardiovascular mortality as the outcome. However, if entering all five miRNAs (along with other covariates) into a single regression model, only low miR-19a remained a significant mortality predictor; and only in patients with coronary artery disease [3.00 (95% CI: 1.77-5.08)], but not in post-stroke patients [1.63 (95% CI: 0.94-2.86)]. CONCLUSIONS: In stable chronic coronary artery disease patients, low miR-19a expression was associated with a substantial increase in mortality risk independently of other conventional cardiovascular risk factors.


Asunto(s)
Aterosclerosis/sangre , MicroARNs/biosíntesis , Medición de Riesgo/métodos , Anciano , Anciano de 80 o más Años , Aterosclerosis/genética , Aterosclerosis/mortalidad , Biomarcadores/sangre , República Checa/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Tasa de Supervivencia/tendencias , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA