Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(5): 4701-4720, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38785552

RESUMEN

A crucial feature of life is its spatial organization and compartmentalization on the molecular, cellular, and tissue levels. Spatial transcriptomics (ST) technology has opened a new chapter of the sequencing revolution, emerging rapidly with transformative effects across biology. This technique produces extensive and complex sequencing data, raising the need for computational methods for their comprehensive analysis and interpretation. We developed the ST browser web tool for the interactive discovery of ST images, focusing on different functional aspects such as single gene expression, the expression of functional gene sets, as well as the inspection of the spatial patterns of cell-cell interactions. As a unique feature, our tool applies self-organizing map (SOM) machine learning to the ST data. Our SOM data portrayal method generates individual gene expression landscapes for each spot in the ST image, enabling its downstream analysis with high resolution. The performance of the spatial browser is demonstrated by disentangling the intra-tumoral heterogeneity of melanoma and the microarchitecture of the mouse brain. The integration of machine-learning-based SOM portrayal into an interactive ST analysis environment opens novel perspectives for the comprehensive knowledge mining of the organization and interactions of cellular ecosystems.

2.
J Anat ; 245(2): 271-288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38613211

RESUMEN

Auditory sensitivity and frequency resolution depend on the optimal transfer of sound-induced vibrations from the basilar membrane (BM) to the inner hair cells (IHCs), the principal auditory receptors. There remains a paucity of information on how this is accomplished along the frequency range in the human cochlea. Most of the current knowledge is derived either from animal experiments or human tissue processed after death, offering limited structural preservation and optical resolution. In our study, we analyzed the cytoarchitecture of the human cochlear partition at different frequency locations using high-resolution microscopy of uniquely preserved normal human tissue. The results may have clinical implications and increase our understanding of how frequency-dependent acoustic vibrations are carried to human IHCs. A 1-micron-thick plastic-embedded section (mid-modiolar) from a normal human cochlea uniquely preserved at lateral skull base surgery was analyzed using light and transmission electron microscopy (LM, TEM). Frequency locations were estimated using synchrotron radiation phase-contrast imaging (SR-PCI). Archival human tissue prepared for scanning electron microscopy (SEM) and super-resolution structured illumination microscopy (SR-SIM) were also used and compared in this study. Microscopy demonstrated great variations in the dimension and architecture of the human cochlear partition along the frequency range. Pillar cell geometry was closely regulated and depended on the reticular lamina slope and tympanic lip angle. A type II collagen-expressing lamina extended medially from the tympanic lip under the inner sulcus, here named "accessory basilar membrane." It was linked to the tympanic lip and inner pillar foot, and it may contribute to the overall compliance of the cochlear partition. Based on the findings, we speculate on the remarkable microanatomic inflections and geometric relationships which relay different sound-induced vibrations to the IHCs, including their relevance for the evolution of human speech reception and electric stimulation with auditory implants. The inner pillar transcellular microtubule/actin system's role of directly converting vibration energy to the IHC cuticular plate and ciliary bundle is highlighted.


Asunto(s)
Cóclea , Órgano Espiral , Humanos , Cóclea/anatomía & histología , Cóclea/fisiología , Órgano Espiral/anatomía & histología , Órgano Espiral/fisiología , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Transducción de Señal/fisiología , Membrana Basilar/anatomía & histología , Membrana Basilar/fisiología
3.
Muscle Nerve ; 70(2): 265-272, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38877775

RESUMEN

INTRODUCTION/AIMS: The development of high-resolution ultrasound (HRUS) has enabled the depiction of peripheral nerve microanatomy in vivo. This study compared HRUS fascicle differentiation to the structural depiction in histological cross-sections (HCS). METHODS: A human cadaveric sciatic nerve was marked with 10 surgical sutures, and HRUS image acquisition was performed with a 22-MHz probe. The nerve was excised and cut into five segments for HCS preparation. Selected HCS were cross-referenced to HRUS, with sutures to improve orientation. Sciatic nerve and fascicle contouring were performed to assess nerve and fascicular cross-sectional area (CSA), fascicle count, and interfascicular distances. Three groups were defined based on HRUS fascicle differentiation in comparison to HCS, namely single fascicle (SF), fascicular cluster (FC), and no depiction (ND) group. RESULTS: On cross-referenced HRUS to HCS images, 58% of fascicles were differentiated. On HRUS, significantly larger fascicle CSA and smaller fascicle count were observed compared with HCS. Group analysis showed that 41% of fascicles were defined as SF, 47% as FC, and 12% as ND. The mean fascicle CSA in the ND group was 0.05 mm2. Compared with the SF, the FC had significantly larger fascicle CSA (1.2 ± 0.7 vs. 0.6 ± 0.4 mm2; p < .001) and shorter interfascicular distances (0.1 ± 0.04 vs. 0.5 ± 0.3 µm; p < .001). DISCUSSION: While HRUS can depict fascicular anatomy, only half of the fascicles visualized on HRUS directly correspond to single fascicles observed on HCS. The amount of interfascicular epineurium appears to influence the ability of HRUS to differentiate individual fascicles.


Asunto(s)
Nervio Ciático , Ultrasonografía , Humanos , Nervio Ciático/diagnóstico por imagen , Nervio Ciático/anatomía & histología , Ultrasonografía/métodos , Cadáver , Masculino
4.
Neurosurg Rev ; 47(1): 331, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008189

RESUMEN

To determine a rapid and accurate method for locating the keypoint and "keyhole" in the suboccipital retrosigmoid keyhole approach. (1) Twelve adult skull specimens were selected to locate the anatomical landmarks on the external surface of the skull.The line between the infraorbital margin and superior margin of the external acoustic meatus was named the baseline. A coordinate system was established using the baseline and its perpendicular line through the top point of diagastric groove.The perpendicular distance (x), and the horizontal distance (y) between the central point of the "keyhole" and the top point of the digastric groove in that coordinate system were measured. The method was applied to fresh cadaveric specimens and 53 clinical cases to evaluate its application value. (1) x and y were 14.20 ± 2.63 mm and 6.54 ± 1.83 mm, respectively (left) and 14.95 ± 2.53 mm and 6.65 ± 1.61 mm, respectively (right). There was no significant difference between the left and right sides of the skull (P > 0.05). (2) The operative area was satisfactorily exposed in the fresh cadaveric specimens, and no venous sinus injury was observed. (3) In clinical practice, drilling did not cause injury to venous sinuses, the mean diameter of the bone windows was 2.0-2.5 cm, the mean craniotomy time was 26.01 ± 3.46 min, and the transverse and sigmoid sinuses of 47 patients were well-exposed. We propose a "one point, two lines, and two distances" for "keyhole" localization theory, that is we use the baseline between the infraorbital margin and superior margin of the external acoustic meatus and the perpendicular line to the baseline through the top point of the digastric groove to establish a coordinate system. And the drilling point was 14.0 mm above and 6.5 mm behind the top point of the digastric groove in the coordinate system.


Asunto(s)
Cadáver , Senos Craneales , Craneotomía , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Senos Craneales/anatomía & histología , Senos Craneales/cirugía , Craneotomía/métodos , Procedimientos Neuroquirúrgicos/métodos , Anciano , Adulto Joven , Senos Transversos/anatomía & histología , Senos Transversos/cirugía , Cráneo/anatomía & histología , Cráneo/cirugía
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 290-296, 2024 Mar 20.
Artículo en Zh | MEDLINE | ID: mdl-38645855

RESUMEN

Objective: To study the microanatomic structure of the subtemporal transtentorial approach to the lateral side of the brainstem, and to provide anatomical information that will assist clinicians to perform surgeries on the lateral, circumferential, and petroclival regions of the brainstem. Methods: Anatomical investigations were conducted on 8 cadaveric head specimens (16 sides) using the infratemporal transtentorial approach. The heads were tilted to one side, with the zygomatic arch at its highest point. Then, a horseshoe incision was made above the auricle. The incision extended from the midpoint of the zygomatic arch to one third of the mesolateral length of the transverse sinus, with the flap turned towards the temporal part. After removing the bone, the arachnoid and the soft meninges were carefully stripped under the microscope. The exposure range of the surgical approach was observed and the positional relationships of relevant nerves and blood vessels in the approach were clarified. Important structures were photographed and the relevant parameters were measured. Results: The upper edge of the zygomatic arch root could be used to accurately locate the base of the middle cranial fossa. The average distances of the star point to the apex of mastoid, the star point to the superior ridge of external auditory canal, the anterior angle of parietomastoid suture to the superior ridge of external auditory canal, and the anterior angle of parietomastoid suture to the star point of the 10 adult skull specimens were 47.23 mm, 45.27 mm, 26.16 mm, and 23.08 mm, respectively. The subtemporal approach could fully expose the area from as high as the posterior clinoid process to as low as the petrous ridge and the arcuate protuberance after cutting through the cerebellar tentorium. The approach makes it possible to handle lesions on the ventral or lateral sides of the middle clivus, the cistern ambiens, the midbrain, midbrain, and pons. In addition, the approach can significantly expand the exposure area of the upper part of the tentorium cerebelli through cheekbone excision and expand the exposure range of the lower part of the tentorium cerebelli through rock bone grinding technology. The total length of the trochlear nerve, distance of the trochlear nerve to the tentorial edge of cerebellum, length of its shape in the tentorial mezzanine, and its lower part of entering into the tentorium cerebelli to the petrosal ridge were (16.95±4.74) mm, (1.27±0.73) mm, (5.72±1.37) mm, and (4.51±0.39) mm, respectively. The cerebellar tentorium could be safely opened through the posterior clinoid process or arcuate protrusion for localization. The oculomotor nerve could serve as an anatomical landmark to locate the posterior cerebral artery and superior cerebellar artery. Conclusion: Through microanatomic investigation, the exposure range and intraoperative difficulties of the infratemporal transtentorial approach can be clarified, which facilitates clinicians to accurately and safely plan surgical methods and reduce surgical complications.


Asunto(s)
Cadáver , Humanos , Tronco Encefálico/anatomía & histología , Tronco Encefálico/cirugía , Hueso Temporal/anatomía & histología , Hueso Temporal/cirugía , Fosa Craneal Media/anatomía & histología , Fosa Craneal Media/cirugía , Craneotomía/métodos
6.
J Anat ; 242(5): 891-916, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36807199

RESUMEN

The water-to-land transition by the first tetrapod vertebrates represents a key stage in their evolution. Selection pressures exerted by this new environment on animals led to the emergence of new locomotor and postural strategies that favoured access to different ecological niches and contributed to their evolutionary success. Today, amniotes show great locomotor and postural diversity, particularly among Reptilia, whose extant representatives include parasagittally locomoting erect and crouched bipeds (birds), sub-parasagittal 'semi-erect' quadrupeds (crocodylians) and sprawling quadrupeds (squamates and turtles). But the different steps leading to such diversity remain enigmatic and the type of locomotion adopted by many extinct species raises questions. This is notably the case of certain Triassic taxa such as Euparkeria and Marasuchus. The exploration of the bone microanatomy in reptiles could help to overcome these uncertainties. Indeed, this locomotor and postural diversity is accompanied by great microanatomical disparity. On land, the bones of the appendicular skeleton support the weight of the body and are subject to multiple constraints that partly shape their external and internal morphology. Here we show how microanatomical parameters measured in cross-section, such as bone compactness or the position of the medullocortical transition, can be related to locomotion. We hypothesised that this could be due to variations in cortical thickness. Using statistical methods that take phylogeny into account (phylogenetic flexible discriminant analyses), we develop different models of locomotion from a sample of femur cross-sections from 51 reptile species. We use these models to infer locomotion and posture in 7 extinct reptile taxa for which they remain debated or not fully clear. Our models produced reliable inferences for taxa that preceded and followed the quadruped/biped and sprawling/erect transitions, notably within the Captorhinidae and Dinosauria. For taxa contemporary with these transitions, such as Terrestrisuchus and Marasuchus, the inferences are more questionable. We use linear models to investigate the effect of body mass and functional ecology on our inference models. We show that body mass seems to significantly impact our model predictions in most cases, unlike the functional ecology. Finally, we illustrate how taphonomic processes can impact certain microanatomical parameters, especially the eccentricity of the section, while addressing some other potential limitations of our methods. Our study provides insight into the evolution of enigmatic locomotion in various early reptiles. Our models and methods could be used by palaeontologists to infer the locomotion and posture in other extinct reptile taxa, especially when considered in combination with other lines of evidence.


Asunto(s)
Dinosaurios , Reptiles , Animales , Filogenia , Reptiles/anatomía & histología , Fémur/anatomía & histología , Locomoción , Dinosaurios/anatomía & histología , Evolución Biológica , Fósiles
7.
J Evol Biol ; 36(8): 1150-1165, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37363887

RESUMEN

Extant amniotes show remarkable postural diversity. Broadly speaking, limbs with erect (strongly adducted, more vertically oriented) posture are found in mammals that are particularly heavy (graviportal) or show good running skills (cursorial), while crouched (highly flexed) limbs are found in taxa with more generalized locomotion. In Reptilia, crocodylians have a "semi-erect" (somewhat adducted) posture, birds have more crouched limbs and lepidosaurs have sprawling (well-abducted) limbs. Both synapsids and reptiles underwent a postural transition from sprawling to more erect limbs during the Mesozoic Era. In Reptilia, this postural change is prominent among archosauriforms in the Triassic Period. However, limb posture in many key Triassic taxa remains poorly known. In Synapsida, the chronology of this transition is less clear, and competing hypotheses exist. On land, the limb bones are subject to various stresses related to body support that partly shape their external and internal morphology. Indeed, bone trabeculae (lattice-like bony struts that form the spongy bone tissue) tend to orient themselves along lines of force. Here, we study the link between femoral posture and the femoral trabecular architecture using phylogenetic generalized least squares. We show that microanatomical parameters measured on bone cubes extracted from the femoral head of a sample of amniote femora depend strongly on body mass, but not on femoral posture or lifestyle. We reconstruct ancestral states of femoral posture and various microanatomical parameters to study the "sprawling-to-erect" transition in reptiles and synapsids, and obtain conflicting results. We tentatively infer femoral posture in several hypothetical ancestors using phylogenetic flexible discriminant analysis from maximum likelihood estimates of the microanatomical parameters. In general, the trabecular network of the femoral head is not a good indicator of femoral posture. However, ancestral state reconstruction methods hold great promise for advancing our understanding of the evolution of posture in amniotes.


Asunto(s)
Cabeza Femoral , Fémur , Animales , Cabeza Femoral/anatomía & histología , Filogenia , Fémur/anatomía & histología , Locomoción , Reptiles , Postura , Mamíferos
8.
Biol Lett ; 19(8): 20230245, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37607578

RESUMEN

Palaeoecological deductions are vital for understanding the evolution and diversification of species within prehistoric environments. This review highlights the multitude of ways in which the microanatomy and microscopic structure of bones enables palaeoecological deductions. The occurrence of growth marks in bones is discussed, and their usefulness in deducing the ontogenetic status and age of individuals is considered, as well as how such marks in bones permit the assessment of the growth dynamics of individuals and species. Here osteohistology is shown to provide insight into the structure of past populations, as well as ecological relationships between individuals. In addition, the response of bones to trauma, disease and moulting is considered. Finally, I explore how osteohistology can give insight into ecomorphological adaptations, such as filter feeding, probe feeding and saltatorial locomotion. Methodological advances in three-dimensional microtomography and synchrotron scanning bodes well for future studies in osteohistology and despite some compromises in terms of tissue identity, circumvents the crucial issue of destructive analyses.


Asunto(s)
Locomoción , Muda , Humanos
9.
Childs Nerv Syst ; 39(1): 67-72, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36161522

RESUMEN

PURPOSE: Microsurgical anatomy of the Sylvian fissure is still a popular research topic for neurosurgeons. It is important for surgeons who perform skull base and Sylvian fissure surgical procedures to master the anatomy of the region. In our study, we aimed to review the current literature on the subject. METHODS: We reviewed the literature concerning the Sylvian fissure. In addition, we made a microdissection of four human cadaveric brains in order to take images of relevant anatomic structures. RESULTS: The Sylvian fissure includes both superficial and deep compartments. From the beginning of the surface structures and variable thickened subarachnoid membrane to the vascular structures located at the operculo-insular compartment, the surgical technique requires meticulous dissection in all stages of the surgery. CONCLUSIONS: From the view of neurosurgery, novel anatomical knowledge should enhance the success of the surgery. From the view of neuroscience, the Sylvian fissure and the Sylvian cistern have unique anatomical, vascular, and genotypical properties to the other areas of the cerebrum, making them complex and special.


Asunto(s)
Corteza Cerebral , Cerebro , Humanos , Corteza Cerebral/cirugía , Procedimientos Neuroquirúrgicos/métodos , Base del Cráneo
10.
Adv Exp Med Biol ; 1431: 107-144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37644290

RESUMEN

Over the past 50 years technology has made teaching and learning more interesting and has been a useful tool to motivate students to learn.Students today can learn using computers, iPads and mobile devices to access increasing numbers of educational websites and many eLearning apps. E-learning is now an integral component of most teaching delivery. There have been many innovations utilising both technology-enhanced and interactive learning strategies to revolutionise histology teaching. Now learning resources can be successfully delivered via the Internet, so students can complete all learning outcomes away from the traditional histology classroom environment (i.e. study histology online).The rapid developments in technologies and computer-based learning opportunities coincided with the appearance of Teaching and Learning Centres in Universities promoting teaching practices and supporting more improved learning strategies.This chapter describes how assessments in histology have become an important tool for student learning. A chronological documentation of various assessment opportunities enabled by the increasing use of technology will be described. In particular, assessment packages that engage students and return immediate feedback make histology learning efficient and significantly improve students' performance on examinations.Assessment strategies described here may be useful for "early career" histology teachers engaging eLearning and/or new teaching departments at new universities embarking on presenting curricula in newly established medical, dental and biomedical/health science programmes.This chapter is also an historical account of at least some assessment practices in histology over the past 50 years. Perhaps similar practices were used to assess student learning in other closely related disciplines such as anatomy including neuroanatomy.


Asunto(s)
Aprendizaje , Estudiantes , Humanos , Escolaridad , Curriculum , Computadoras de Mano
11.
Adv Exp Med Biol ; 1431: 177-212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37644293

RESUMEN

Histology or microanatomy is the science of the structure and function of tissues and organs in metazoic organisms at the cellular level. By definition, histology is dependent on a variety of microscope techniques, usually light or more recently virtual, as well as electron microscopy. Since its inception more than two centuries ago, histology has been an integral component of biomedical education, specifically for medical, dental, and veterinary students. Traditionally, histology has been taught in two sequential phases, first a didactic transfer of information to learners and secondly a laboratory segment in which students develop the skill of analyzing micrographic images. In this chapter, the authors provide an overview of how histology is currently taught in different global regions. This overview also outlines which educational strategies and technologies are used, and how the local and cultural environment influences the histology education of medical and other students in different countries and continents. Also discussed are current trends that change the teaching of this basic science subject.


Asunto(s)
Técnicas Histológicas , Estudiantes , Humanos , Escolaridad , Laboratorios , Microscopía
12.
Adv Exp Med Biol ; 1421: 125-160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37524986

RESUMEN

Teaching histology is expensive, particularly in some universities with limited or ageing resources such as microscope equipment and inadequate histological slide collections. Increasing numbers of student enrolments have required duplications of laboratory classes. Such practical classes are staff intensive and so teaching hours are increased. Technology can now solve many of these issues but perhaps, more importantly, can also cater to the self-directed and independent learning needs of today's learners.This chapter will describe and evaluate distinct innovations available on a global scale, utilising both technology-enhanced and interactive learning strategies to revolutionise histology teaching via successful online delivery of learning resources. Histology students can access these innovations to maximise their learning and enable them to complete all learning outcomes away from the traditional classroom environment (i.e., online). Most appropriately, all of these innovations address and help solve cognitive challenges that students experience in histology learning.Lecture recording platforms with engaging functionalities have enabled students to view lectures online. Using new innovative histology resources has eliminated the need for students to attend practical histology laboratory sessions. Instead, students can now study histology successfully and enjoyably in their own time. Learners can interact with unlimited numbers of high-quality images and click on hyperlinked text to identify key features of histological structures. Students can now use virtual microscopy to view digitised histological sections (virtual microscopy) at increasing levels of magnification. Consequently, there is no requirement for academic staff to be present when directing students through their learning objectives, which therefore eliminates formal, scheduled practical classes. The learning platforms offer a variety of formative assessment formats. On completion of a quiz, instant feedback can be provided for students, which makes histology learning efficient and can significantly improve student performance in examinations.However, there remains the issue that three-dimensional (3D) interpretation from traditional two-dimensional (2D) representations of cell, tissue, and organ structure can be cognitively challenging for many students. The popularity of using animations and 3D reconstructions to help learners understand and remember information has greatly increased since the advent of powerful graphics-oriented computers. This technology allows animations to be produced much more easily and cheaply than in previous years, whilst Cinema 4D technology has enhanced a new paradigm shift in teaching histology. 3D reconstruction and animations can meet the educational need and solve the dilemma.


Asunto(s)
Educación de Pregrado en Medicina , Aprendizaje , Humanos , Escolaridad , Estudiantes , Retroalimentación , Educación de Pregrado en Medicina/métodos
13.
J Fish Biol ; 102(4): 992-995, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36651288

RESUMEN

The occurrence of smooth muscle sphincters around gastric gland tubules in the cardiac stomach of some elasmobranch species is reported for the first time. These "microsphincters" took the form of a twisted torus, approximately 12-16 muscle fibres thick, that could fully constrict the gland tubules. However, their inconsistent positioning does not suggest a role in partitioning the tubules from the stomach lumen or in modulating secretory activity. Further research is required to ascertain the full taxonomic occurrence of these structures across the Elasmobranchii and to elucidate their function.


Asunto(s)
Elasmobranquios , Rajidae , Animales , Elasmobranquios/fisiología , Mucosa Gástrica , Estómago , Músculo Liso
14.
Eur J Neurosci ; 55(3): 827-845, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34984748

RESUMEN

This review summarizes recent findings on the lateralization of communicative sound processing in the auditory cortex (AC) of humans, non-human primates and rodents. Functional imaging in humans has demonstrated a left hemispheric preference for some acoustic features of speech, but it is unclear to which degree this is caused by bottom-up acoustic feature selectivity or top-down modulation from language areas. Although non-human primates show a less pronounced functional lateralization in AC, the properties of AC fields and behavioural asymmetries are qualitatively similar. Rodent studies demonstrate microstructural circuits that might underlie bottom-up acoustic feature selectivity in both hemispheres. Functionally, the left AC in the mouse appears to be specifically tuned to communication calls, whereas the right AC may have a more 'generalist' role. Rodents also show anatomical AC lateralization, such as differences in size and connectivity. Several of these functional and anatomical characteristics are also lateralized in human AC. Thus, complex vocal communication processing shares common features among rodents and primates. We argue that a synthesis of results from humans, non-human primates and rodents is necessary to identify the neural circuitry of vocal communication processing. However, data from different species and methods are often difficult to compare. Recent advances may enable better integration of methods across species. Efforts to standardize data formats and analysis tools would benefit comparative research and enable synergies between psychological and biological research in the area of vocal communication processing.


Asunto(s)
Corteza Auditiva , Estimulación Acústica/métodos , Animales , Percepción Auditiva , Comunicación , Lateralidad Funcional , Ratones , Primates , Roedores
15.
J Anat ; 240(1): 50-65, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34402049

RESUMEN

The patella is the largest sesamoid bone of the skeleton. It is strongly involved in the knee, improving output force and velocity of the knee extensors, and thus plays a major role in locomotion and limb stability. However, the relationships between its structure and functional constraints, that would enable a better understanding of limb bone functional adaptations, are poorly known. This contribution proposes a comparative analysis, both qualitative and quantitative, of the microanatomy of the whole patella in perissodactyls, which show a wide range of morphologies, masses, and locomotor abilities, in order to investigate how the microanatomy of the patella adapts to evolutionary constraints. The inner structure of the patella consists of a spongiosa surrounded by a compact cortex. Contrary to our expectations, there is no increase in compactness with bone size, and thus body size and weight, but only an increase in the tightness of the spongiosa. No particular thickening of the cortex associated with muscle insertions is noticed but a strong thickening is observed anteriorly at about mid-length, where the strong intermediate patellar ligament inserts. The trabeculae are mainly oriented perpendicularly to the posterior articular surface, which highlights that the main stress is anteroposteriorly directed, maintaining the patella against the femoral trochlea. Conversely, anteriorly, trabeculae are rather circumferentially oriented, following the insertion of the patellar ligament and, possibly also, of the quadriceps tendon. A strong variation is observed among perissodactyl families but also intraspecifically, which is in accordance with previous studies suggesting a higher variability in sesamoid bones. Clear trends are nevertheless observed between the three families. Equids have a much thinner cortex than ceratomorphs. Rhinos and equids, both characterized by a development of the medial border, show an increase in trabecular density laterally suggesting stronger stresses laterally. The inner structure in tapirs is more homogeneous despite the absence of medial development of the medial border with no "compensation" of the inner structure, which suggests different stresses on their knees associated with a different morphology of their patellofemoral joint.


Asunto(s)
Rótula , Articulación Patelofemoral , Animales , Cadáver , Humanos , Articulación de la Rodilla , Rótula/anatomía & histología , Articulación Patelofemoral/anatomía & histología , Perisodáctilos , Tendones/anatomía & histología
16.
J Anat ; 241(1): 145-167, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35266144

RESUMEN

The long bones and associated musculature play a prominent role in the support and movement of the body and are expected to reflect the associated mechanical demands. But in addition to the functional response to adaptive changes, the conjoined effects of phylogenetic, structural and developmental constraints also shape the animal's body. In order to minimise the effect of the aforementioned constraints and to reveal the biomechanical adaptations in the musculoskeletal system to locomotor mode, we here study the forelimb of two closely related martens: the arboreal pine marten (Martes martes) and the more terrestrial stone marten (Martes foina), focusing on their forelimb muscle anatomy and long bone microanatomy; and, especially, on their covariation. To do so, we quantified muscle data and bone microanatomical parameters and created 3D and 2D maps of the cortical thickness distribution for the three long bones of the forelimb. We then analysed the covariation of muscle and bone data, both qualitatively and quantitatively. Our results reveal that species-specific muscular adaptations are not clearly reflected in the microanatomy of the bones. Yet, we observe a global thickening of the bone cortex in the radius and ulna of the more arboreal pine marten, as well a stronger flexor muscle inserting on its elbow. We attribute these differences to variation in their locomotor modes. Analyses of our 2D maps revealed a shift of cortical thickness distribution pattern linked to ontogeny, rather than species-specific patterns. We found that although intraspecific variation is not negligible, species distinction was possible when taking muscular and bone microanatomical data into consideration. Results of our covariation analyses suggest that the muscle-bone correlation is linked to ontogeny rather than to muscular strength at zones of insertion. Indeed, if we find a correlation between cortical thickness distribution and the strength of some muscles in the humerus, that is not the case for the others and in the radius and ulna. Cortical thickness distribution appears rather linked to bone contact zones and ligament insertions in the radius and ulna, and to some extent in the humerus. We conclude that inference on muscle from bone microanatomy is possible only for certain muscles in the humerus.


Asunto(s)
Mustelidae , Animales , Miembro Anterior/anatomía & histología , Húmero/anatomía & histología , Mustelidae/anatomía & histología , Filogenia , Extremidad Superior
17.
Clin Anat ; 35(3): 392-403, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35112392

RESUMEN

Although the general functionality and structures of acupoints have been studied, there has been little insight into their underlying morphology and physical characteristics. We describe the microanatomical structures surrounding acupoints, the electron microscopic appearance of the needles, and the physical effects of acupuncture needling on the fascia. We injected heparinized blood solution through thin needles at seven known and commonly used "sweat acupoints" in eight fresh, unembalmed, cryopreserved human cadavers to mark the needle positions, and later, during histological examination, to identify them. After the solution was injected, samples were dissected and prepared for histological examination. We examined 350 cross-sections of five different paraffin wax sections from each acupoint microscopically. Acupuncture needles were photographed and superimposed on the cross-sectioned tissues at similar magnifications. Needles were also examined under a scanning electron microscope to judge the roughness or smoothness of their surfaces. A greater conglomeration of nerve endings surrounded the acupoints than in tissues more than 1-3 cm distant from them. Nerve endings and blood vessels were in close contact with a complex network of membranes formed by interlacing collagen fibers, and were always enclosed within those collagen membranes. Nerve endings were found within hypodermis, muscles, or both. Scanning electron microscopy demonstrated the three-dimensional shapes and sizes of the needles, and the degree of roughness or smoothness of their polished external surfaces. We demonstrate a delicate arrangement of nerve endings and blood vessels enclosed within complex collagen membrane networks at acupoints within the hypodermis and muscle. This arrangement could explain why needling is an essential step in the acupuncture process that provides favorable outcomes in clinical practice.


Asunto(s)
Puntos de Acupuntura , Terapia por Acupuntura , Terapia por Acupuntura/métodos , Electrones , Humanos , Microscopía Electrónica , Agujas
18.
Surg Radiol Anat ; 44(6): 877-882, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35715572

RESUMEN

PURPOSE: Few reports have been published regarding the microanatomy of the dura mater located at the craniovertebral junction (CVJ). In clinic, the precise microanatomy of the CVJ dura mater would be taken into account, for reducing surgical complications and ineffective surgical outcomes. The main objective of the present investigation was to further elucidate the fiber composition and sources of the cervical spinal dura mater. METHODS: The formalin-fixed adult head and neck specimens (n = 21) were obtained and P45 plastinated section method was utilized for the present study. The fibers of the upper cervical spinal dura mater (SDM) were examined in the P45 sagittal sections in the CVJ area. All photographic documentation was performed via a Canon EOS 7D Mark camera. RESULTS: The posterior wall of the SDM sac at CVJ was found to be composed of stratified fibers, which are derived from three sources: the cerebral dura mater, the occipital periosteum, and the myodural bridge (MDB). The proper layer of the cerebral dura mater passes over the brim of the foramen magnum and enters the vertebral canal to form the inner layer of the SDM, and the fibers originating from the periosteum of the brim of the foramen magnum form the middle layer. The fibers of the MDB are inserted into the SDM and form its outer layer. It was found that the total number of fibers from each origin varied in humans. CONCLUSION: At the CVJ, the posterior wall of the SDM is a multi-layered structure composed of three different originated fibers. The cerebral dura mater, the periosteum located at the brim of the foramen magnum, and MDB contribute to the formation of the SDM. The present study would be beneficial to the choice of surgical approach at the CVJ and the protection of the SDB.


Asunto(s)
Músculos del Cuello , Plastinación , Vértebras Cervicales/anatomía & histología , Duramadre/anatomía & histología , Humanos , Cuello/anatomía & histología , Músculos del Cuello/anatomía & histología
19.
Am J Physiol Renal Physiol ; 320(3): F492-F504, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33491562

RESUMEN

Although macula densa (MD) cells are chief regulatory cells in the nephron with unique microanatomical features, they have been difficult to study in full detail due to their inaccessibility and limitations in earlier microscopy techniques. The present study used a new mouse model with a comprehensive imaging approach to visualize so far unexplored microanatomical features of MD cells, their regulation, and functional relevance. MD-GFP mice with conditional and partial induction of green fluorescent protein (GFP) expression, which specifically and intensely illuminated only single MD cells, were used with fluorescence microscopy of fixed tissue and live MD cells in vitro and in vivo with complementary electron microscopy of the rat, rabbit, and human kidney. An elaborate network of major and minor cell processes, here named maculapodia, were found at the cell base, projecting toward other MD cells and the glomerular vascular pole. The extent of maculapodia showed upregulation by low dietary salt intake and the female sex. Time-lapse imaging of maculapodia revealed highly dynamic features including rapid outgrowth and an extensive vesicular transport system. Electron microscopy of rat, rabbit, and human kidneys and three-dimensional volume reconstruction in optically cleared whole-mount MD-GFP mouse kidneys further confirmed the presence and projections of maculapodia into the extraglomerular mesangium and afferent and efferent arterioles. The newly identified dynamic and secretory features of MD cells suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD cells and between MD and other target cells.NEW & NOTEWORTHY This study illuminated a physiologically regulated dense network of basal cell major and minor processes (maculapodia) in macula densa (MD) cells. The newly identified dynamic and secretory features of these microanatomical structures suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD and other target cells. Detailed characterization of the function and molecular details of MD cell intercellular communications and their role in physiology and disease warrant further studies.


Asunto(s)
Mesangio Glomerular/ultraestructura , Aparato Yuxtaglomerular/ultraestructura , Glomérulos Renales/ultraestructura , Túbulos Renales/ultraestructura , Animales , Comunicación Celular/fisiología , Células Epiteliales/citología , Células Epiteliales/ultraestructura , Mesangio Glomerular/citología , Glomérulos Renales/citología , Túbulos Renales/citología , Ratones , Conejos , Ratas
20.
Ann Bot ; 127(4): 451-459, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32780105

RESUMEN

BACKGROUND AND AIMS: Andropogon gerardii is a highly productive C4 grass species with a large geographic range throughout the North American Great Plains, a biome characterized by a variable temperate climate. Plant traits are often invoked to explain growth rates and competitive abilities within broad climate gradients. For example, plant competition models typically predict that species with large geographic ranges benefit from variation in traits underlying high growth potential. Here, we examined the relationship between climate variability and leaf-level traits in A. gerardii, emphasizing how leaf-level microanatomical traits serve as a mechanism that may underlie variation in commonly measured traits, such as specific leaf area (SLA). METHODS: Andropogon gerardii leaves were collected in August 2017 from Cedar Creek Ecosystem Science Reserve (MN), Konza Prairie Biological Station (KS), Platte River Prairie (NE) and Rocky Mountain Research Station (SD). Leaves from ten individuals from each site were trimmed, stained and prepared for fluorescent confocal microscopy to analyse internal leaf anatomy. Leaf microanatomical data were compared with historical and growing season climate data extracted from PRISM spatial climate models. KEY RESULTS: Microanatomical traits displayed large variation within and across sites. According to AICc (Akaike's information criterion adjusted for small sample sizes) selection scores, the interaction of mean precipitation and temperature for the 2017 growing season was the best predictor of variability for the anatomical and morphological traits measured here. Mesophyll area and bundle sheath thickness were directly correlated with mean temperature (annual and growing season). Tissues related to water-use strategies, such as bulliform cell and xylem area, were significantly correlated with one another. CONCLUSIONS: The results indicate that (1) microanatomical trait variation exists within this broadly distributed grass species, (2) microanatomical trait variability appears likely to impact leaf-level carbon and water use strategies, and (3) microanatomical trait values vary across climate gradients, and may underlie variation in traits measured at larger ecological scales.


Asunto(s)
Ecosistema , Poaceae , Clima , Fenotipo , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA