Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Metab Eng ; 85: 145-158, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39074544

RESUMEN

Steroidal alkaloids are FDA-approved drugs (e.g., Zytiga) and promising drug candidates/leads (e.g., cyclopamine); yet many of the ≥697 known steroidal alkaloid natural products remain underutilized as drugs because it can be challenging to scale their biosynthesis in their producing organisms. Cyclopamine is a steroidal alkaloid produced by corn lily (Veratrum spp.) plants, and it is an inhibitor of the Hedgehog (Hh) signaling pathway. Therefore, cyclopamine is an important drug candidate/lead to treat human diseases that are associated with dysregulated Hh signaling, such as basal cell carcinoma and acute myeloid leukemia. Cyclopamine and its semi-synthetic derivatives have been studied in (pre)clinical trials as Hh inhibitor-based drugs. However, challenges in scaling the production of cyclopamine have slowed efforts to improve its efficacy and safety profile through (bio)synthetic derivatization, often limiting drug development to synthetic analogs of cyclopamine such as the FDA-approved drugs Odomzo, Daurismo, and Erivedge. If a platform for the scalable and sustainable production of cyclopamine were established, then its (bio)synthetic derivatization, clinical development, and, ultimately, widespread distribution could be accelerated. Ongoing efforts to achieve this goal include the biosynthesis of cyclopamine in Veratrum plant cell culture and the semi-/total chemical synthesis of cyclopamine. Herein, this work advances efforts towards a promising future approach: the biosynthesis of cyclopamine in engineered microorganisms. We completed the heterologous microbial production of verazine (biosynthetic precursor to cyclopamine) from simple sugars (i.e., glucose and galactose) in engineered Saccharomyces cerevisiae (S. cerevisiae) through the inducible upregulation of the native yeast mevalonate and lanosterol biosynthetic pathways, diversion of biosynthetic flux from ergosterol (i.e., native sterol in S. cerevisiae) to cholesterol (i.e., biosynthetic precursor to verazine), and expression of a refactored five-step verazine biosynthetic pathway. The engineered S. cerevisiae strain that produced verazine contains eight heterologous enzymes sourced from seven different species. Importantly, S. cerevisiae-produced verazine was indistinguishable via liquid chromatography-mass spectrometry from both a commercial standard (Veratrum spp. plant-produced) and Nicotiana benthamiana-produced verazine. To the best of our knowledge, this is the first report describing the heterologous production of a steroidal alkaloid in an engineered yeast. Verazine production was ultimately increased through design-build-test-learn cycles to a final titer of 83 ± 3 µg/L (4.1 ± 0.1 µg/g DCW). Together, this research lays the groundwork for future microbial biosynthesis of cyclopamine, (bio)synthetic derivatives of cyclopamine, and other steroidal alkaloid natural products.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Alcaloides de Veratrum , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Alcaloides de Veratrum/metabolismo , Azúcares/metabolismo
2.
New Phytol ; 240(2): 757-769, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37518950

RESUMEN

Mitragynine, an analgesic alkaloid from the plant Mitragyna speciosa (kratom), offers a safer alternative to clinical opioids such as morphine, owing to its more favorable side effect profile. Although kratom has been traditionally used for stimulation and pain management in Southeast Asia, the mitragynine biosynthesis pathway has remained elusive. We embarked on a search for mitragynine biosynthetic genes from the transcriptomes of kratom and other members of the Rubiaceae family. We studied their functions in vitro and in vivo. Our investigations led to the identification of several reductases and an enol methyltransferase that forms a new clade within the SABATH methyltransferase family. Furthermore, we discovered a methyltransferase from Hamelia patens (firebush), which catalyzes the final step. With the tryptamine 4-hydroxylase from the psychedelic mushroom Psilocybe cubensis, we accomplished the four-step biosynthesis for mitragynine and its stereoisomer, speciogynine in both yeast and Escherichia coli when supplied with tryptamine and secologanin. Although we have yet to pinpoint the authentic hydroxylase and methyltransferase in kratom, our discovery completes the mitragynine biosynthesis. Through these breakthroughs, we achieved the microbial biosynthesis of kratom opioids for the first time. The remarkable enzyme promiscuity suggests the possibility of generating derivatives and analogs of kratom opioids in heterologous systems.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Analgésicos Opioides , Mitragyna/genética , Extractos Vegetales , Triptaminas , Oxigenasas de Función Mixta
3.
Crit Rev Food Sci Nutr ; 63(28): 9409-9424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35486571

RESUMEN

Anthocyanins are widely distributed in nature and exhibit brilliant colors and multiple health-promoting effects; therefore, they are extensively incorporated into foods, pharmaceuticals, and cosmetic industries. Anthocyanins have been traditionally produced by plant extraction, which is characterized by high expenditure, low production rates, and rather complex processes, and hence cannot meet the increasing market demand. In addition, the emerging environmental issues resulting from traditional solvent extraction technologies necessitate a more efficient and eco-friendly alternative strategy for producing anthocyanins. This review summarizes the efficient approach for green extraction and introduces a novel strategy for microbial biosynthesis of anthocyanins, emphasizing the technological changes in production.


Asunto(s)
Antocianinas , Plantas , Extractos Vegetales
4.
Appl Microbiol Biotechnol ; 107(15): 4717-4725, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37326681

RESUMEN

Serotonin, as a monoamine neurotransmitter, modulates the activity of the nervous system. Due to its importance in the coordination of movement and regulation of mood, impairments in the synthesis and homeostasis of serotonin are involved in numerous disorders, including depression, Parkinson's disease, and anxiety. Currently, serotonin is primarily obtained via natural extraction. But this method is time-consuming and low yield, as well as unstable supply of raw materials. With the development of synthetic biology, researchers have established the method of microbial synthesis of serotonin. Compared with natural extraction, microbial synthesis has the advantages of short production cycle, continuous production, not limited by season and source, and environment-friendly; hence, it has garnered considerable research attention. However, the yield of serotonin is still too low to industrialization. Therefore, this review provides the latest progress and examples that illustrate the synthesis pathways of serotonin as well as proposes strategies for increasing the production of serotonin. KEY POINTS: • Two biosynthesis pathways of serotonin are introduced. • L-tryptophan hydroxylation is the rate-limiting step in serotonin biosynthesis. • Effective strategies are proposed to improve serotonin production.


Asunto(s)
Serotonina , Triptófano Hidroxilasa , Serotonina/metabolismo , Triptófano Hidroxilasa/metabolismo , Triptófano/metabolismo , Hidroxilación , Neurotransmisores
5.
Molecules ; 26(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834021

RESUMEN

Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign organisms. Metallocluster enzymes are one of the most ubiquitous family of enzymes involved in natural product biosynthesis and are of great biotechnological importance. However, the functional expression of recombinant metallocluster enzymes in live cells is often challenging and represents a major bottleneck. The activity of metallocluster enzymes requires essential supporting pathways, involved in protein maturation, electron supply, and/or enzyme stability. Proper function of these supporting pathways involves specific protein-protein interactions that remain poorly characterized and are often overlooked by traditional synthetic biology approaches. Consequently, engineering approaches that focus on enzymatic expression and carbon flux alone often overlook the particular needs of metallocluster enzymes. This review highlights the biotechnological relevance of metallocluster enzymes and discusses novel synthetic biology strategies to advance their industrial application, with a particular focus on iron-sulfur cluster enzymes. Strategies to enable functional heterologous expression and enhance recombinant metallocluster enzyme activity in industrial hosts include: (1) optimizing specific maturation pathways; (2) improving catalytic stability; and (3) enhancing electron transfer. In addition, we suggest future directions for developing microbial cell factories that rely on metallocluster enzyme catalysis.


Asunto(s)
Vías Biosintéticas , Enzimas/química , Ingeniería Metabólica , Metaloproteínas/química , Biología Sintética , Catálisis
6.
Metab Eng ; 54: 1-11, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30844431

RESUMEN

Pathway balancing is a critical and common challenge for microbial biosynthesis using metabolic engineering approaches. Non-linear biosynthetic pathways, such as diverging and converging pathways, are particularly difficult for bioproduction optimization, because they require delicate balancing between all interconnected constituent pathway modules. The emergence of modular co-culture engineering offers a new perspective for biosynthetic pathways modularization and balancing, as the biosynthetic capabilities of individual pathway modules can be coordinated by flexible adjustment of the subpopulation ratio of the co-culture strains carrying the designated modules. This study developed microbial co-cultures composed of multiple metabolically engineered E. coli strains for heterologous biosynthesis of complex natural product rosmarinic acid (RA) whose biosynthesis involves a complex diverging-converging pathway. Our results showed that, compared with the conventional mono-culture strategy, the engineered two-strain co-cultures significantly improved the RA production. Further pathway modularization and balancing in the context of three-strain co-cultures resulted in additional production improvement. Moreover, metabolically engineered co-culture strains utilizing different carbon substrates were recruited to improve the three-strain co-culture stability. The optimized co-culture based on these efforts produced 172 mg/L RA, exhibiting 38-fold biosynthesis improvement over the parent strain used in mono-culture biosynthesis. The findings of this work demonstrate the strong potentials of modular co-culture engineering for overcoming the challenges of complex natural product biosynthesis involving non-linear pathways.


Asunto(s)
Cinamatos/metabolismo , Depsidos/metabolismo , Escherichia coli , Ingeniería Metabólica , Microorganismos Modificados Genéticamente , Técnicas de Cocultivo , Escherichia coli/genética , Escherichia coli/metabolismo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Ácido Rosmarínico
7.
Molecules ; 24(12)2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31238565

RESUMEN

Pinocembrin is one of the most abundant flavonoids in propolis, and it may also be widely found in a variety of plants. In addition to natural extraction, pinocembrin can be obtained by biosynthesis. Biosynthesis efficiency can be improved by a metabolic engineering strategy and a two-phase pH fermentation strategy. Pinocembrin poses an interest for its remarkable pharmacological activities, such as neuroprotection, anti-oxidation, and anti-inflammation. Studies have shown that pinocembrin works excellently in treating ischemic stroke. Pinocembrin can reduce nerve damage in the ischemic area and reduce mitochondrial dysfunction and the degree of oxidative stress. Given its significant efficacy in cerebral ischemia, pinocembrin has been approved by China Food and Drug Administration (CFDA) as a new treatment drug for ischemic stroke and is currently in progress in phase II clinical trials. Research has shown that pinocembrin can be absorbed rapidly in the body and easily cross the blood-brain barrier. In addition, the absorption/elimination process of pinocembrin occurs rapidly and shows no serious accumulation in the body. Pinocembrin has also been found to play a role in Parkinson's disease, Alzheimer's disease, and specific solid tumors, but its mechanisms of action require in-depth studies. In this review, we summarized the latest 10 years of studies on the biosynthesis, pharmacological activities, and pharmacokinetics of pinocembrin, focusing on its effects on certain diseases, aiming to explore its targets, explaining possible mechanisms of action, and finding potential therapeutic applications.


Asunto(s)
Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Flavanonas/biosíntesis , Flavanonas/farmacología , Animales , Productos Biológicos/química , Productos Biológicos/farmacocinética , Vías Biosintéticas , Evaluación Preclínica de Medicamentos , Fermentación , Flavanonas/química , Flavanonas/farmacocinética , Humanos , Relación Estructura-Actividad
8.
Appl Microbiol Biotechnol ; 102(8): 3439-3451, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29497793

RESUMEN

The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.


Asunto(s)
Microbiología Industrial/métodos , Modelos Biológicos , Biomasa , Vías Biosintéticas , Fermentación
9.
Pharm Res ; 34(3): 591-598, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27995524

RESUMEN

BACKGROUND: The use of microorganisms for the synthesis of nanoparticles (NPs) is relatively new in basic research and technology areas. PURPOSE: This work was conducted to optimized the biosynthesis of iron NPs intra- and extracellular by Escherichia coli or Pseudomonas aeruginosa and to evaluate their anticoagulant activity. STUDY DESIGN/METHODS: The structures and properties of the iron NPs were investigated by Ultraviolet-visible (UV-vis) spectroscopy, Zeta potential, Dynamic light scattering (DLS), Field emission scanning electron microscope (FESEM)/ Energy dispersive X-ray (EDX) and transmission electron microscopy (TEM). Anticoagulant activity was determined by conducting trials of Thrombin Time (TT), Activated Partial Prothrombin Time (APTT) and Prothrombin Time (PT). RESULTS: UV-vis spectrum of the aqueous medium containing iron NPs showed a peak at 275 nm. The forming of iron NPs was confirmed by FESEM/ EDX, and TEM. The morphology was spherical shapes mostly with low polydispersity and the average particle diameter was 23 ± 1 nm. Iron NPs showed anticoagulant activity by the activation of extrinsic pathway. CONCLUSION: The eco-friendly process of biosynthesis of iron NPs employing prokaryotic microorganisms presents a good anticoagulant activity. This could be explored as promising candidates for a variety of biomedical and pharmaceutical applications.


Asunto(s)
Anticoagulantes/química , Hierro/química , Nanopartículas del Metal/química , Anticoagulantes/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Humanos , Tamaño de la Partícula , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo
10.
Metab Eng ; 37: 114-121, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27242132

RESUMEN

With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Vías Biosintéticas/fisiología , Técnicas de Cocultivo/métodos , Escherichia coli/fisiología , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/fisiología
11.
Biotechnol Rep (Amst) ; 42: e00839, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38633817

RESUMEN

A bacterium, Acinetobacter soli ANG344B, isolated from river water, exhibited an exceptional capacity to produce 2-phenylethanol (2-PE) using L-phenylalanine (L-Phe) as a precursor-a capability typically observed in yeasts rather than bacteria. Bioreactor experiments were conducted to evaluate the production performance, using glucose as the carbon source for cellular growth and L-Phe as the precursor for 2-PE production. Remarkably, A. soli ANG344B achieved a 2-PE concentration of 2.35 ± 0.26 g/L in just 24.5 h of cultivation, exhibiting a global volumetric productivity of 0.10 ± 0.01 g/L.h and a production yield of 0.51 ± 0.01 g2-PE/gL-Phe, a result hitherto reported only for yeasts. These findings position A. soli ANG344B as a highly promising microorganism for 2-PE production. Whole-genome sequencing of A. soli strain ANG344 revealed a genome size of 3.52 Mb with a GC content of 42.7 %. Utilizing the Rapid Annotation using Subsystem Technology (RAST) server, 3418 coding genes were predicted, including genes coding for enzymes previously associated with the metabolic pathway of 2-PE production in other microorganisms, yet unreported in Acinetobacter species. Through gene mapping, 299 subsystems were identified, exhibiting 30 % subsystem coverage. The whole genome sequence data was submitted to NCBI GeneBank with the BioProject ID PRJNA982713. These draft genome data offer significant potential for exploiting the biotechnological capabilities of A. soli strain ANG344 and for conducting further comparative genomic studies.

12.
Polymers (Basel) ; 16(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125176

RESUMEN

Waste cooking oil is a common byproduct in the culinary industry, often posing disposal challenges. This study explores its conversion into the valuable bioplastic material, medium-chain-length polyhydroxyalkanoate (mcl-PHA), through microbial biosynthesis in controlled bioreactor conditions. Twenty-four bacterial isolates were obtained from oil-contaminated soil and waste materials in Mahd Ad-Dahab, Saudi Arabia. The best PHA-producing isolates were identified via 16S rDNA analysis as Neobacillus niacini and Metabacillus niabensis, with the sequences deposited in GenBank (accession numbers: PP346270 and PP346271). This study evaluated the effects of various carbon and nitrogen sources, as well as environmental factors, such as pH, temperature, and shaking speed, on the PHA production titer. Neobacillus niacini favored waste cooking oil and yeast extract, achieving a PHA production titer of 1.13 g/L, while Metabacillus niabensis preferred waste olive oil and urea, with a PHA production titer of 0.85 g/L. Both strains exhibited optimal growth at a neutral pH of 7, under optimal shaking -flask conditions. The bioreactor performance showed improved PHA production under controlled pH conditions, with a final titer of 9.75 g/L for Neobacillus niacini and 4.78 g/L for Metabacillus niabensis. Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) confirmed the biosynthesized polymer as mcl-PHA. This research not only offers a sustainable method for transforming waste into valuable materials, but also provides insights into the optimal conditions for microbial PHA production, advancing environmental science and materials engineering.

13.
J Agric Food Chem ; 72(25): 14264-14273, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38860833

RESUMEN

Ergothioneine (EGT) is a naturally occurring derivative of histidine with diverse applications in the medicine, cosmetic, and food industries. Nevertheless, its sustainable biosynthesis faces hurdles due to the limited biosynthetic pathways, complex metabolic network of precursors, and high cost associated with fermentation. Herein, efforts were made to address these limitations first by reconstructing a novel EGT biosynthetic pathway from Methylobacterium aquaticum in Escherichia coli and optimizing it through plasmid copy number. Subsequently, the supply of precursor amino acids was promoted by engineering the global regulator, recruiting mutant resistant to feedback inhibition, and blocking competitive pathways. These metabolic modifications resulted in a significant improvement in EGT production, increasing from 35 to 130 mg/L, representing a remarkable increase of 271.4%. Furthermore, an economical medium was developed by replacing yeast extract with corn steep liquor, a byproduct of wet milling of corn. Finally, the production of EGT reached 595 mg/L with a productivity of 8.2 mg/L/h by exploiting fed-batch fermentation in a 10 L bioreactor. This study paves the way for exploring and modulating a de novo biosynthetic pathway for efficient and low-cost fermentative production of EGT.


Asunto(s)
Vías Biosintéticas , Ergotioneína , Escherichia coli , Fermentación , Ingeniería Metabólica , Ergotioneína/biosíntesis , Ergotioneína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Reactores Biológicos
14.
Microorganisms ; 11(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37512982

RESUMEN

The biological synthesis of nanocomposites has become cost-effective and environmentally friendly and can achieve sustainability with high efficiency. Recently, the biological synthesis of semiconductor and metal-doped semiconductor nanocomposites with enhanced photocatalytic degradation efficiency, anticancer, and antibacterial properties has attracted considerable attention. To this end, for the first time, we biosynthesized zinc oxide (ZnO) and silver/ZnO nanocomposites (Ag/ZnO NCs) as semiconductor and metal-doped semiconductor nanocomposites, respectively, using the cell-free filtrate (CFF) of the bacterium Lysinibacillus sphaericus. The biosynthesized ZnO and Ag/ZnO NCs were characterized by various techniques, such as ultraviolet-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The photocatalytic degradation potential of these semiconductor NPs and metal-semiconductor NCs was evaluated against thiazine dye, methylene blue (MB) degradation, under simulated solar irradiation. Ag/ZnO showed 90.4 ± 0.46% photocatalytic degradation of MB, compared to 38.18 ± 0.15% by ZnO in 120 min. The cytotoxicity of ZnO and Ag/ZnO on human cervical HeLa cancer cells was determined using an MTT assay. Both nanomaterials exhibited cytotoxicity in a concentration- and time-dependent manner on HeLa cells. The antibacterial activity was also determined against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus). Compared to ZnO, Ag/ZnO NCs showed higher antibacterial activity. Hence, the biosynthesis of semiconductor nanoparticles could be a promising strategy for developing hybrid metal/semiconductor nanomaterials for different biomedical and environmental applications.

15.
J Adv Res ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38092299

RESUMEN

BACKGROUND: The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW: Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.

16.
Biotechnol Adv ; 62: 108075, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36502965

RESUMEN

Microbial conversion of bioenergy-derived waste glycerol into value-added chemicals has emerged as an important bioprocessing technology due to its eco-friendliness, feasible technoeconomics, and potential to provide sustainability in biodiesel and bioethanol production. Glycerol is an abundant liquid waste from bioenergy plants with a projected volume of 6 million tons by 2025, accounting for about 10% of biodiesel and 2.5% of bioethanol yields. 3-Hydroxypropionic acid (3-HP) is a major product of glycerol bioconversion, which is the third largest biobased platform compound with expected market size and value of 3.6 million tons/year and USD 10 billion/year, respectively. Despite these biorefinery values, 3-HP biosynthesis from glycerol is still at an immature stage of commercial exploitation. The main challenges behind this immaturity are the toxic effects of 3-HPA on cells, the distribution of carbon flux to undesirable pathways, low tolerance of cells to glycerol and 3-HP, co-factor dependence of enzymes, low enzyme activity and stability, and the problems of substrate inhibition and specificity of enzymes. To address these challenges, it is necessary to understand the fundamentals of glycerol bioconversion and 3-HP production in terms of metabolic pathways, related enzymes, cell factories, midstream process configurations, and downstream 3-HP recovery, as discussed in this review critically and comprehensively. It is equally important to know the current challenges and limitations in 3-HP production, which are discussed in detail along with recent research efforts and remaining gaps. Finally, possible research strategies are outlined considering the recent technological advances in microbial biosynthesis, aiming to attract further research efforts to achieve a sustainable and industrially exploitable 3-HP production technology. By discussing the use of advanced tools and strategies to overcome the existing challenges in 3-HP biosynthesis, this review will attract researchers from many other similar biosynthesis technologies and provide a common gateway for their further development.


Asunto(s)
Biocombustibles , Glicerol , Glicerol/metabolismo , Proyectos de Investigación , Ingeniería Metabólica
17.
Bioresour Technol ; 319: 124218, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33049440

RESUMEN

The necessity of costly co-enzyme B12 for the activity of glycerol dehydratase (GDHt) is considered as a major bottleneck in sustainable bioproduction of 1,3-propanediol (1,3-PD) from glycerol. Here, an E. coil Rosetta-dhaB1-dhaB2 strain was constructed by overexpressing a B12-independent GDHt (dhaB1) and its activating factor (dhaB2) from Clostridium butyricum. Subsequently, it was used in designing a co-culture with E. coli BL21-dhaT that overexpressed 1,3-PD oxidoreductase (dhaT), to produce 1,3-PD during co-fermentation of glycerol and glucose. The optimum initial ratio of BL21-dhaT to Rosetta-dhaB1-dhaB2 strains in the co-culture was 1.5. Compared to the fermentation of glycerol alone, co-fermentation approach provided 1.3-folds higher 1,3-PD. Finally, co-fermentation was done in a 10 L bioreactor that produced 41.65 g/L 1,3-PD, which corresponded to 0.69 g/L/h productivity and 0.67 mol/mol yield of 1,3-PD. Hence, the developed co-culture could produce 1,3-PD cost-effectively without requiring vitamin B12.


Asunto(s)
Escherichia coli , Glicerol , Técnicas de Cocultivo , Suplementos Dietéticos , Fermentación , Glucosa , Glicoles de Propileno , Vitamina B 12 , Vitaminas
18.
Metab Eng Commun ; 9: e00095, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31720211

RESUMEN

Recent advances in metabolic engineering enable the production of high-value chemicals via expressing complex biosynthetic pathways in a single microbial host. However, many engineered strains suffer from poor product yields due to redox imbalance and excess metabolic burden, and require compartmentalization of the pathway for optimal function. To address this problem, significant developments have been made towards co-cultivation of more than one engineered microbial strains to distribute metabolic burden between the co-cultivation partners and improve the product yield. In this emerging approach, metabolic pathway modules can be optimized separately in suitable hosts that will then be combined to enable optimal functionality of the complete pathway. This modular approach broadens the possibilities to fine tune sophisticated production platforms and thus achieve the biosynthesis of very complex compounds. Here, we review the different applications and the overall potential of natural and artificial co-cultivation systems in metabolic engineering in order to improve bioproduction/bioconversion. In addition to the several advantages over monocultures, major challenges and opportunities associated with co-cultivation are also discussed in this review.

19.
Eng Life Sci ; 19(5): 389-395, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-32625017

RESUMEN

Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment-friendly, and cost-effective production of these value-added products without the reliance on petroleum. In this study, rationally designed E. coli-E. coli co-culture systems were established for converting glycerol to 3-hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineered E. coli strains. The co-culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co-culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with the E. coli mono-culture, the optimized co-culture showed 5.3-fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co-culture engineering for addressing the challenges of aromatic compound biosynthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA