Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 851
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(31): e2322834121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042694

RESUMEN

We developed a generally applicable method, CRISPR/Cas9-targeted long-read sequencing (CTLR-Seq), to resolve, haplotype-specifically, the large and complex regions in the human genome that had been previously impenetrable to sequencing analysis, such as large segmental duplications (SegDups) and their associated genome rearrangements. CTLR-Seq combines in vitro Cas9-mediated cutting of the genome and pulse-field gel electrophoresis to isolate intact large (i.e., up to 2,000 kb) genomic regions that encompass previously unresolvable genomic sequences. These targets are then sequenced (amplification-free) at high on-target coverage using long-read sequencing, allowing for their complete sequence assembly. We applied CTLR-Seq to the SegDup-mediated rearrangements that constitute the boundaries of, and give rise to, the 22q11.2 Deletion Syndrome (22q11DS), the most common human microdeletion disorder. We then performed de novo assembly to resolve, at base-pair resolution, the full sequence rearrangements and exact chromosomal breakpoints of 22q11.2DS (including all common subtypes). Across multiple patients, we found a high degree of variability for both the rearranged SegDup sequences and the exact chromosomal breakpoint locations, which coincide with various transposons within the 22q11.2 SegDups, suggesting that 22q11DS can be driven by transposon-mediated genome recombination. Guided by CTLR-Seq results from two 22q11DS patients, we performed three-dimensional chromosomal folding analysis for the 22q11.2 SegDups from patient-derived neurons and astrocytes and found chromosome interactions anchored within the SegDups to be both cell type-specific and patient-specific. Lastly, we demonstrated that CTLR-Seq enables cell-type specific analysis of DNA methylation patterns within the deletion haplotype of 22q11DS.


Asunto(s)
Síndrome de DiGeorge , Humanos , Síndrome de DiGeorge/genética , Sistemas CRISPR-Cas , Puntos de Rotura del Cromosoma , Cromosomas Humanos Par 22/genética , Genoma Humano , Reordenamiento Génico , Análisis de Secuencia de ADN/métodos , Deleción Cromosómica
2.
Am J Hum Genet ; 110(12): 2103-2111, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37924809

RESUMEN

Hereditary spastic parapareses (HSPs) are clinically heterogeneous motor neuron diseases with variable age of onset and severity. Although variants in dozens of genes are implicated in HSPs, much of the genetic basis for pediatric-onset HSP remains unexplained. Here, we re-analyzed clinical exome-sequencing data from siblings with HSP of unknown genetic etiology and identified an inherited nonsense mutation (c.523C>T [p.Arg175Ter]) in the highly conserved RAB1A. The mutation is predicted to produce a truncated protein with an intact RAB GTPase domain but without two C-terminal cysteine residues required for proper subcellular protein localization. Additional RAB1A mutations, including two frameshift mutations and a mosaic missense mutation (c.83T>C [p.Leu28Pro]), were identified in three individuals with similar neurodevelopmental presentations. In rescue experiments, production of the full-length, but not the truncated, RAB1a rescued Golgi structure and cell proliferation in Rab1-depleted cells. In contrast, the missense-variant RAB1a disrupted Golgi structure despite intact Rab1 expression, suggesting a dominant-negative function of the mosaic missense mutation. Knock-down of RAB1A in cultured human embryonic stem cell-derived neurons resulted in impaired neuronal arborization. Finally, RAB1A is located within the 2p14-p15 microdeletion syndrome locus. The similar clinical presentations of individuals with RAB1A loss-of-function mutations and the 2p14-p15 microdeletion syndrome implicate loss of RAB1A in the pathogenesis of neurodevelopmental manifestations of this microdeletion syndrome. Our study identifies a RAB1A-related neurocognitive disorder with speech and motor delay, demonstrates an essential role for RAB1a in neuronal differentiation, and implicates RAB1A in the etiology of the neurodevelopmental sequelae associated with the 2p14-p15 microdeletion syndrome.


Asunto(s)
Haploinsuficiencia , Paraplejía Espástica Hereditaria , Niño , Humanos , Haploinsuficiencia/genética , Mutación , Mutación Missense/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Aparato de Golgi/metabolismo , Paraplejía Espástica Hereditaria/genética
3.
Am J Hum Genet ; 110(6): 998-1007, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207645

RESUMEN

While common obesity accounts for an increasing global health burden, its monogenic forms have taught us underlying mechanisms via more than 20 single-gene disorders. Among these, the most common mechanism is central nervous system dysregulation of food intake and satiety, often accompanied by neurodevelopmental delay (NDD) and autism spectrum disorder. In a family with syndromic obesity, we identified a monoallelic truncating variant in POU3F2 (alias BRN2) encoding a neural transcription factor, which has previously been suggested as a driver of obesity and NDD in individuals with the 6q16.1 deletion. In an international collaboration, we identified ultra-rare truncating and missense variants in another ten individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity. Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperphagia during childhood. Except for a variant leading to early truncation of the protein, identified variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promotor activation. In a cohort with common non-syndromic obesity, we independently observed a negative correlation of POU3F2 gene expression with BMI, suggesting a role beyond monogenic obesity. In summary, we propose deleterious intragenic variants of POU3F2 to cause transcriptional dysregulation associated with hyperphagic obesity of adolescent onset with variable NDD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Síndrome de Prader-Willi , Adolescente , Humanos , Trastorno del Espectro Autista/genética , Hiperfagia/genética , Hiperfagia/complicaciones , Trastornos del Neurodesarrollo/genética , Obesidad/complicaciones , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/genética , Proteínas
4.
Am J Med Genet C Semin Med Genet ; : e32095, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022906

RESUMEN

Neurofibromatosis type 1 (NF-1) microdeletion syndrome accounts for 5 to 11% of individuals with NF-1. The aim of our study was to characterize a large cohort of individuals with NF-1 microdeletion syndrome and expand its natural history. We conducted a retrospective chart review from 1994 to 2024 of individuals with NF-1 microdeletion syndrome followed at two large Neurofibromatosis Clinics. This cohort consists of 57 individuals with NF-1 microdeletion syndrome (28 type-1, 4 type-2, 2 type-3, 9 atypical deletions, and 14 indeterminate). We note 38/56 (67.9%) with describable facial features, 25/57 (43.8%) with plexiform neurofibromas, and 3/57 (5.2%) with malignant peripheral nerve sheath tumors within the observed period. The most reported neurodevelopmental manifestations from school-age or older individuals included 39/49 (79.6%) with developmental delays, 35/49 (71.4%) with expressive and/or receptive speech delays, 33/41 (80.5%) with learning difficulties, and 23/42 (54.8%) with attention-deficit/hyperactivity disorder. Full-scale IQ testing data was available for 22 individuals (range: 50-96). Of the 21 adults in this cohort, 14/21 (66.7%) graduated from high school, and 4/21 (19.0%) had some college experience. Many individuals received academic support (i.e., special education, individual education plan). In this cohort, neurocognitive outcomes in adults varied more than typically reported in the literature.

5.
Clin Genet ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012202

RESUMEN

15q24.1 microdeletion syndrome is a recently described condition often resulting from non-allelic homologous recombination (NAHR). Typical clinical features include pre and post-natal growth retardation, facial dysmorphism, developmental delay and intellectual disability. Nonspecific urogenital, skeletal, and digit abnormalities may be present, although other congenital malformations are less frequent. Consequently, only one case was reported prenatally, complicating the genotype-phenotype correlation and the genetic counseling. We identified prenatally a second case, presenting with cerebral abnormalities including hydrocephaly, macrocephaly, cerebellum hypoplasia, vermis hypoplasia, rhombencephalosynapsis, right kidney agenesis with left kidney duplication and micropenis. Genome-wide aCGH assay allowed a diagnosis at 26 weeks of amenorrhea revealing a 1.6 Mb interstitial deletion on the long arm of chromosome 15 at 15q24.1-q24.2 (arr[GRCh37] 15q24.1q24.2(74,399,112_76,019,966)x1). A deep review of the literature was undertaken to further delineate the prenatal clinical features and the candidate genes involved in the phenotype. Cerebral malformations are typically nonspecific, but microcephaly appears to be the most frequent in postnatal cases. Our case is the first reported with a frank cerebellar involvement.

6.
Am J Med Genet A ; 194(3): e63456, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37916923

RESUMEN

Previous studies have shown that the 22q11.2 microdeletion, associated with 22q11.2 deletion syndrome (22q11.2DS), conveys an increased risk of chronic otitis media, and hearing loss at young age. This study reports on hearing loss and history of otolaryngological conditions in adults with 22q11.2DS. We conducted a retrospective study of 60 adults with 22q11.2DS (41.7% male) at median age 25 (range 16-74) years who had visited an otolaryngologist and audiologist for routine assessment at a 22q11.2 expert center. Demographic, genetic, audiometric, and otolaryngological data were systematically extracted from the medical files. Regression analysis was used to evaluate the effect of age, sex, full-scale intelligence quotient, and history of chronic otitis media on the severity of hearing loss. Hearing loss, mostly high-frequency sensorineural, was found in 78.3% of adults. Higher age and history of chronic otitis media were associated with more severe hearing loss. Otolaryngological conditions with possible treatment implications included chronic otitis media (56.7%), globus pharyngeus (18.3%), balance problems (16.7%), and obstructive sleep apnea (8.3%). The results suggest that  in 22q11.2DS, high-frequency hearing loss appears to be common from a young adult age, and often unrecognized. Therefore, we recommend periodic audiometric screening in all adults, including high-frequency ranges.


Asunto(s)
Sordera , Síndrome de DiGeorge , Pérdida Auditiva , Otitis Media , Adulto Joven , Humanos , Masculino , Adolescente , Adulto , Persona de Mediana Edad , Anciano , Femenino , Síndrome de DiGeorge/complicaciones , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/diagnóstico , Estudios Retrospectivos , Pérdida Auditiva/complicaciones , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Oído , Otitis Media/complicaciones , Otitis Media/genética
7.
Mol Biol Rep ; 51(1): 804, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001960

RESUMEN

Schizophrenia is a neuropsychiatric disorder characterized by various symptoms such as hallucinations, delusions, and disordered thinking. The etiology of this disease is unknown; however, it has been linked to many microdeletion syndromes that are likely to contribute to the pathology of schizophrenia. In this review we have comprehensively analyzed the role of various microdeletion syndromes, like 3q29, 15q13.3, and 22q11.2, which are known to be involved with schizophrenia. A variety of factors lead to schizophrenia phenotypes, but copy number variants that disrupt gene regulation and impair brain function and cognition are one of the causes that have been identified. Multiple case studies have shown that loss of one or more genes in the microdeletion regions lead to brain activity defects. In this article, we present a coherent paradigm that connects copy number variations (CNVs) to numerous neurological and behavioral abnormalities associated with schizophrenia. It would be helpful in understanding the different aspects of the microdeletions and how they contribute in the pathophysiology of schizophrenia.


Asunto(s)
Deleción Cromosómica , Variaciones en el Número de Copia de ADN , Esquizofrenia , Humanos , Esquizofrenia/genética , Variaciones en el Número de Copia de ADN/genética , Fenotipo , Cromosomas Humanos Par 15/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Trastornos de los Cromosomas/genética , Discapacidades del Desarrollo , Cromosomas Humanos Par 3 , Convulsiones
8.
Mol Biol Rep ; 51(1): 577, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664339

RESUMEN

BACKGROUND: Chromosomal microarray analysis is an essential tool for copy number variants detection in patients with unexplained developmental delay/intellectual disability, autism spectrum disorders, and multiple congenital anomalies. The study aims to determine the clinical significance of chromosomal microarray analysis in this patient group. Another crucial aspect is the evaluation of copy number variants detected in terms of the diagnosis of patients. METHODS AND RESULTS: A Chromosomal microarray analysis was was conducted on a total of 1227 patients and phenotype-associated etiological diagnosis was established in 135 patients. Phenotype-associated copy number variants were detected in 11% of patients. Among these, 77 patients 77 (57%, 77/135) were diagnosed with well-recognized genetic syndromes and phenotype-associated copy number variants were found in 58 patients (42.9%, 58/135). The study was designed to collect data of patients in Kocaeli Derince Training and Research Hospital retrospectively. In our study, we examined 135 cases with clinically significant copy number variability among all patients. CONCLUSIONS: In this study, chromosomal microarray analysis revealed pathogenic de novo copy number variants with new clinical features. Chromosomal microarray analysis in the Turkish population has been reported in the largest patient cohort to date.


Asunto(s)
Anomalías Múltiples , Trastorno del Espectro Autista , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/diagnóstico , Turquía/epidemiología , Variaciones en el Número de Copia de ADN/genética , Femenino , Masculino , Niño , Preescolar , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Adolescente , Fenotipo , Lactante , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Aberraciones Cromosómicas , Análisis por Micromatrices/métodos , Estudios Retrospectivos , Adulto
9.
BMC Pregnancy Childbirth ; 24(1): 456, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951757

RESUMEN

BACKGROUND: TBX6, a member of the T-box gene family, encodes the transcription factor box 6 that is critical for somite segmentation in vertebrates. It is known that the compound heterozygosity of disruptive variants in trans with a common hypomorphic risk haplotype (T-C-A) in the TBX6 gene contribute to 10% of congenital scoliosis (CS) cases. The deletion of chromosome 17q12 is a rare cytogenetic abnormality, which often leads to renal cysts and diabetes mellitus. However, the affected individuals often exhibit clinical heterogeneity and incomplete penetrance. METHODS: We here present a Chinese fetus who was shown to have CS by ultrasound examination at 17 weeks of gestation. Trio whole-exome sequencing (WES) was performed to investigate the underlying genetic defects of the fetus. In vitro functional experiments, including western-blotting and luciferase transactivation assay, were performed to determine the pathogenicity of the novel variant of TBX6. RESULTS: WES revealed the fetus harbored a compound heterozygous variant of c.338_340del (p.Ile113del) and the common hypomorphic risk haplotype of the TBX6 gene. In vitro functional study showed the p.Ile113del variant had no impact on TBX6 expression, but almost led to complete loss of its transcriptional activity. In addition, we identified a 1.85 Mb deletion on 17q12 region in the fetus and the mother. Though there is currently no clinical phenotype associated with this copy number variation in the fetus, it can explain multiple renal cysts in the pregnant woman. CONCLUSIONS: This study is the first to report a Chinese fetus with a single amino acid deletion variant and a T-C-A haplotype of TBX6. The clinical heterogeneity of 17q12 microdeletion poses significant challenges for prenatal genetic counseling. Our results once again suggest the complexity of prenatal genetic diagnosis.


Asunto(s)
Cromosomas Humanos Par 17 , Haplotipos , Heterocigoto , Proteínas de Dominio T Box , Humanos , Proteínas de Dominio T Box/genética , Femenino , Cromosomas Humanos Par 17/genética , Embarazo , Adulto , Deleción Cromosómica , Secuenciación del Exoma , Eliminación de Secuencia , Feto/anomalías , Ultrasonografía Prenatal
10.
BMC Pregnancy Childbirth ; 24(1): 23, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172840

RESUMEN

OBJECTIVES: The 15q11.2 BP1-BP2 microdeletion is associated with neurodevelopmental diseases. However, most studies on this microdeletion have focused on adults and children. Thus, in this study, we summarized the molecular characteristics of fetuses with the 15q11.2 BP1-BP2 microdeletion and their postnatal follow-up to guide prenatal diagnosis. METHODS: Ten thousand fetuses were retrospectively subjected to karyotype analysis and chromosome microarray analysis. RESULTS: Chromosome microarray analysis revealed that 37 (0.4%) of the 10,000 fetuses had 15q11.2 BP1-BP2 microdeletions. The fragment size of the 15q11.2 BP1-BP2 region was approximately 312-855 kb and encompassed TUBGCP5, CYFIP1, NIPA2, and NIPA1 genes. Twenty-five of the 37 fetuses with this microdeletion showed phenotypic abnormalities. The most common ultrasonic structural abnormality was congenital heart disease, followed by renal dysplasia and Dandy-Walker malformation. The 15q11.2 BP1-BP2 microdeletion was inherited from the father and mother in 6 and 10 cases, respectively, and de novo inherited in 4 cases. In the postnatal follow-up, 16.1% of the children had postnatal abnormalities. CONCLUSION: Fetuses with the 15q11.2 BP1-BP2 microdeletion showed high proportions of phenotypic abnormalities, but the specificity of penetrance was low. Thus, fetuses with this syndrome are potentially at a higher risk of postnatal growth/behavioral problems and require continuous monitoring of growth and development.


Asunto(s)
Trastornos de los Cromosomas , Discapacidad Intelectual , Adulto , Niño , Embarazo , Femenino , Humanos , Estudios Retrospectivos , Estudios de Seguimiento , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética
11.
BMC Urol ; 24(1): 123, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867229

RESUMEN

BACKGROUND: Male infertility has become a global health problem, and genetic factors are one of the essential causes. Y chromosome microdeletion is the leading genetic factor cause of male infertility. The objective of this study is to investigate the correlation between male infertility and Y chromosome microdeletions in Hainan, the sole tropical island province of China. METHODS: We analyzed the semen of 897 infertile men from Hainan in this study. Semen analysis was measured according to WHO criteria by professionals at the Department of Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, where samples were collected. Y chromosome AZF microdeletions were confirmed by detecting six STS markers using multiple polymerase chain reactions on peripheral blood DNA. The levels of reproductive hormones, including FSH, LH, PRL, T, and E2, were quantified using the enzyme-linked immunosorbent assay (ELISA). RESULTS: The incidence of Y chromosome microdeletion in Hainan infertile men was 7.13%. The occurrence rate of Y chromosome microdeletion was 6.69% (34/508) in the oligozoospermia group and 7.71% (30/389) in the azoospermia group. The deletion of various types in the AZF subregion was observed in the group with azoospermia, whereas no AZFb deletion was detected in the oligozoospermia group. Among all patients with microdeletions, the deletion rate of the AZFc region was the higher at 68.75% (44 out of 64), followed by a deletion rate of 6.25% (4 out of 64) for the AZFa region and a deletion rate of 4.69% (3 out of 64) for the AZFb region. The deletion rate of the AZFa region was significantly higher in patients with azoospermia than in patients with oligozoospermia (0.51% vs. 0.39%, p < 0.001). In comparison, the deletion rate of the AZFc region was significantly higher in patients with oligozoospermia (3.08% vs. 6.30%, p < 0.001). Additionally, the AZFb + c subregion association deletion was observed in the highest proportion among all patients (0.89%, 8/897), followed by AZFa + b + c deletion (0.56%, 5/897), and exclusively occurred in patients with azoospermia. Hormone analysis revealed FSH (21.63 ± 2.01 U/L vs. 10.15 ± 0.96 U/L, p = 0.001), LH (8.96 ± 0.90 U/L vs. 4.58 ± 0.42 U/L, p < 0.001) and PRL (263.45 ± 21.84 mIU/L vs. 170.76 ± 17.10 mIU/L, p = 0.002) were significantly increased in azoospermia patients with microdeletions. Still, P and E2 levels were not significantly different between the two groups. CONCLUSIONS: The incidence of AZF microdeletion can reach 7.13% in infertile men in Hainan province, and the deletion of the AZFc subregion is the highest. Although the Y chromosome microdeletion rate is distinct in different regions or populations, the regions mentioned above of the Y chromosome may serve an indispensable role in regulating spermatogenesis. The analysis of Y chromosome microdeletion plays a crucial role in the clinical assessment and diagnosis of male infertility.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Y , Infertilidad Masculina , Técnicas Reproductivas Asistidas , Aberraciones Cromosómicas Sexuales , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual , Humanos , Masculino , Infertilidad Masculina/genética , Infertilidad Masculina/sangre , Infertilidad Masculina/epidemiología , China/epidemiología , Adulto , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/sangre , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/genética , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/epidemiología , Hormona Luteinizante/sangre , Hormona Folículo Estimulante/sangre , Azoospermia/genética , Azoospermia/sangre , Prolactina/sangre , Oligospermia/genética , Oligospermia/sangre , Testosterona/sangre , Estradiol/sangre , Análisis de Semen
12.
J Obstet Gynaecol Can ; 46(4): 102342, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38176679

RESUMEN

OBJECTIVES: To investigate the incidence of Y chromosome microdeletions in male newborns conceived by intracytoplasmic sperm injection (ICSI), in vitro fertilization (IVF), and natural conception (NC). METHODS: A total of 186 male newborns were recruited, including 35 conceived by ICSI, 37 conceived by IVF, and 114 conceived naturally. DNA was extracted from umbilical cord blood after birth. The Yq genetic status of the newborns was determined according to 18 Y-specific sequence tagging sites (STS) markers covering 3 azoospermia factor (AZF) sub-regions and internal control sequences. RESULTS: Partial AZF microdeletions were identified in 8 of 35 (22.9%) ICSI newborns, 4 of 37 (10.8%) IVF newborns, and 1 of 114 (0.9%) NC newborns. There was a statistically significant difference in the proportion of newborns with partial Y chromosome microdeletions between the ICSI, IVF, and NC groups. When analyzed individually, only the SY114 and SY152 STS markers showed a statistically significant difference in incidence between the 3 cohorts. CONCLUSIONS: Our study indicates that the population of male children conceived through assisted reproductive technologies (ART), particularly ICSI, is at an increased risk of genetic defect in the form of partial Y chromosome microdeletions. The growing population of ART-conceived children emphasizes the importance of studying the genetic repercussions of these procedures regarding the future fertility of males conceived in vitro.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Y , Sangre Fetal , Infertilidad Masculina , Aberraciones Cromosómicas Sexuales , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual , Inyecciones de Esperma Intracitoplasmáticas , Humanos , Masculino , Cromosomas Humanos Y/genética , Recién Nacido , Sangre Fetal/química , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/genética , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/sangre , Infertilidad Masculina/genética , Fertilización In Vitro , Adulto , Femenino
13.
J Ultrasound Med ; 43(8): 1461-1466, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38708946

RESUMEN

OBJECTIVES: To investigate short-term neonatal developmental outcomes in fetuses with an isolated wide or narrow cavum septi pellucidi (CSP) using new reference ranges. METHODS: A cross-sectional study on fetuses at 16 + 0 to 36 + 6 weeks of gestation between December 2020 and January 2022. CSP width reference ranges were constructed from low-risk pregnancies. Wide and narrow CSPs were defined as measurements above the 95th percentile and below the 5th percentile, respectively. For the primary outcome fetuses with normal neurosonograms were included. Neonatal developmental outcomes were assessed using the Survey of Well-being of Young Children (SWYC). RESULTS: A total of 352 fetuses were included in this study, of whom 138 were healthy and had uncomplicated neonatal outcomes. These fetuses constituted the control group and were used to construct the CSP width reference ranges. Of 185 fetuses in the neurosonography group, 9.7% had wide and 7.6% had narrow CSPs, of whom 33.3% and 22.2%, respectively, scored below the SWYC threshold for expected developmental milestones, a rate similar to that reported in the general population. CONCLUSIONS: The presence of a prenatally isolated wide or narrow CSP does not appear to increase the risk of neonatal neurodevelopmental delay.


Asunto(s)
Tabique Pelúcido , Ultrasonografía Prenatal , Humanos , Femenino , Tabique Pelúcido/embriología , Tabique Pelúcido/diagnóstico por imagen , Estudios Transversales , Ultrasonografía Prenatal/métodos , Embarazo , Valores de Referencia , Recién Nacido , Adulto , Masculino
14.
J Assist Reprod Genet ; 41(3): 739-750, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38263474

RESUMEN

PURPOSE: The preimplantation genetic testing for aneuploidy (PGT-A) platform is not currently available for small copy-number variants (CNVs), especially those < 1 Mb. Through strategies used in PGT for monogenic disease (PGT-M), this study intended to perform PGT for families with small pathogenic CNVs. METHODS: Couples who carried small pathogenic CNVs and underwent PGT at the Reproductive and Genetic Hospital of CITIC-Xiangya (Hunan, China) between November 2019 and April 2023 were included in this study. Haplotype analysis was performed through two platforms (targeted sequencing and whole-genome arrays) to identify the unaffected embryos, which were subjected to transplantation. Prenatal diagnosis using amniotic fluid was performed during 18-20 weeks of pregnancy. RESULTS: PGT was successfully performed for 20 small CNVs (15 microdeletions and 5 microduplications) in 20 families. These CNVs distributed on chromosomes 1, 2, 6, 7, 13, 15, 16, and X with sizes ranging from 57 to 2120 kb. Three haplotyping-based PGT-M strategies were applied. A total of 89 embryos were identified in 25 PGT cycles for the 20 families. The diagnostic yield was 98.9% (88/89). Nineteen transfers were performed for 17 women, resulting in a 78.9% (15/19) clinical pregnancy rate after each transplantation. Of the nine women who had healthy babies, eight accepted prenatal diagnosis and the results showed no related pathogenic CNVs. CONCLUSION: Our results show that the extended haplotyping-based PGT-M strategy application for small pathogenic CNVs compensated for the insufficient resolution of PGT-A. These three PGT-M strategies could be applied to couples with small pathogenic CNVs.


Asunto(s)
Aborto Espontáneo , Diagnóstico Preimplantación , Embarazo , Humanos , Femenino , Diagnóstico Preimplantación/métodos , Pruebas Genéticas/métodos , Índice de Embarazo , Aborto Espontáneo/genética , Nacimiento Vivo , Aneuploidia
15.
Reprod Med Biol ; 23(1): e12596, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983692

RESUMEN

Purpose: To explore whether spermatozoa from AZFc microdeletion patients affect their outcomes of intracytoplasmic sperm injection (ICSI). Methods: Eighty-five patients with AZFc microdeletion were recruited. A control group of one hundred and forty patients with severe oligozoospermia but without AZF microdeletion was selected using propensity score matching analysis with a 1:2 nearest neighbor algorithm ratio. The ICSI outcomes of the two groups were compared. Results: AZFc microdeletion had lower rates of normal fertilization (73% vs. 80%, p = 0.17) and high-quality embryos (44% vs. 58%, p = 0.07) than the control group. There was no significant difference in the clinical pregnancy rate, miscarriage rate, and live birth rate between the two groups. When the sperm concentration was <1 million/mL, the AZFc microdeletion group exhibited lower rates of fertilization (71% vs. 80%, p = 0.03), high-quality embryo (44% vs. 58%, p = 0.02), clinical pregnancy (57% vs. 76%, p = 0.02), and live birth (49% vs. 72%, p = 0.01) than the control group. However, if sperm concentration was ≥1 million/mL, no significant differences were found. Conclusion: If the sperm concentration is <1 million/mL, AZFc microdeletion do have a detrimental effect on most outcomes of ICSI.

16.
J Cell Mol Med ; 27(16): 2354-2361, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37401003

RESUMEN

Shortened foetal femur length (FL) is a common abnormal phenotype that often causes anxiety in pregnant women, and standard clinical treatments remain unavailable. We investigated the clinical characteristics, genetic aetiology and obstetric pregnancy outcomes of foetuses with short FL and provided a reference for perinatal management of such cases. Chromosomal microarray analysis was used to analyse the copy number variations (CNV) in short FL foetuses. Of the 218 foetuses with short FL, 33 foetuses exhibited abnormal CNVs, including 19 with pathogenic CNVs and 14 with variations of uncertain clinical significance. Of the 19 foetuses with pathogenic CNVs, four had aneuploidy, 14 had deletions/duplications, and one had pathogenic uniparental diploidy. The 7q11.23 microdeletion was detected in three foetuses. The severity of short FL was not associated with the rate of pathogenic CNVs. The duration of short FL for the intrauterine ultrasound phenotype in foetuses carrying a pathogenic CNV was independent of the gestational age. Further, maternal age was not associated with the incidence of foetal pathogenic CNVs. Adverse pregnancy outcomes occurred in 77 cases, including termination of pregnancy in 63 cases, postnatal dwarfed foetuses with intellectual disability in 11 cases, and three deaths within 3 months of birth. Pathogenic CNVs closely related to foetal short FL were identified, among which the 7q11.23 microdeletion was highly associated with short FL development. This study provides a reference for the perinatal management of foetuses with short FL.


Asunto(s)
Variaciones en el Número de Copia de ADN , Feto , Embarazo , Femenino , Humanos , Variaciones en el Número de Copia de ADN/genética , Centros de Atención Terciaria , Edad Materna , Fémur
17.
Neurogenetics ; 24(3): 181-188, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37145209

RESUMEN

Neurofibromatosis type I (NF1) microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by the heterozygous deletion of NF1 and a variable number of flanking genes in the 17q11.2 region. This syndrome is characterized by more severe symptoms than those shown by patients with intragenic NF1 mutation and by variable expressivity, which is not fully explained by the haploinsufficiency of the genes included in the deletions. We here reevaluate an 8-year-old NF1 patient, who carries an atypical deletion generating the RNF135-SUZ12 chimeric gene, previously described when he was 3 years old. As the patient has developed multiple cutaneous/subcutaneous neurofibromas over the past 5 years, we hypothesized a role of RNF135-SUZ12 chimeric gene in the onset of the patient's tumor phenotype. Interestingly, SUZ12 is generally lost or disrupted in NF1 microdeletion syndrome and frequently associated to cancer as RNF135. Expression analysis confirmed the presence of the chimeric gene transcript and revealed hypo-expression of five out of the seven analyzed target genes of the polycomb repressive complex 2 (PRC2), to which SUZ12 belongs, in the patient's peripheral blood, indicating a higher transcriptional repression activity mediated by PRC2. Furthermore, decreased expression of tumor suppressor gene TP53, which is targeted by RNF135, was detected. These results suggest that RNF135-SUZ12 chimera may acquire a gain of function, compared with SUZ12 wild type in the PRC2 complex, and a loss of function relative to RNF135 wild type. Both events may have a role in the early onset of the patient's neurofibromas.


Asunto(s)
Neurofibroma , Neurofibromatosis 1 , Masculino , Humanos , Neurofibromatosis 1/genética , Complejo Represivo Polycomb 2/genética , Neurofibroma/genética , Fenotipo , Mutación , Ubiquitina-Proteína Ligasas/genética
18.
Funct Integr Genomics ; 23(2): 174, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37219715

RESUMEN

Microdeletion of the 15q11.2 BP1-BP2 region, also known as Burnside-Butler susceptibility region, is associated with phenotypes like delayed developmental language abilities along with motor skill disabilities, combined with behavioral and emotional problems. The 15q11.2 microdeletion region harbors four evolutionarily conserved and non-imprinted protein-coding genes: NIPA1, NIPA2, CYFIP1, and TUBGCP5. This microdeletion is a rare copy number variation frequently associated with several pathogenic conditions in humans. The aim of this study is to investigate the RNA-binding proteins binding with the four genes present in 15q11.2 BP1-BP2 microdeletion region. The results of this study will help to better understand the molecular intricacies of the Burnside-Butler Syndrome and also the possible involvement of these interactions in the disease aetiology. Our results of enhanced crosslinking and immunoprecipitation data analysis indicate that most of the RBPs interacting with the 15q11.2 region are involved in the post-transcriptional regulation of the concerned genes. The RBPs binding to this region are found from the in silico analysis, and the interaction of RBPs like FASTKD2 and EFTUD2 with exon-intron junction sequence of CYFIP1 and TUBGCP5 has also been validated by combined EMSA and western blotting experiment. The exon-intron junction binding nature of these proteins suggests their potential involvement in splicing process. This study may help to understand the intricate relationship of RBPs with mRNAs within this region, along with their functional significance in normal development, and lack thereof, in neurodevelopmental disorders. This understanding will help in the formulation of better therapeutic approaches.


Asunto(s)
Cromosomas Humanos , Variaciones en el Número de Copia de ADN , Humanos , Proteínas de Unión al ARN , Intrones , Factores de Elongación de Péptidos , Ribonucleoproteína Nuclear Pequeña U5
19.
Clin Genet ; 103(2): 156-166, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36224108

RESUMEN

CNOT2 haploinsufficiency underlies a rare neurodevelopmental disorder named Intellectual Developmental disorder with NAsal speech, Dysmorphic Facies, and variable Skeletal anomalies (IDNADFS, OMIM 618608). The condition clinically overlaps with chromosome 12q15 deletion syndrome, suggesting a major contribution of CNOT2 haploinsufficiency to the latter. CNOT2 is a member of the CCR4-NOT complex, which is a master regulator of multiple cellular processes, including gene expression, RNA deadenylation, and protein ubiquitination. To date, less than 20 pathogenic 12q15 microdeletions encompassing CNOT2, together with a single truncating variant of the gene, and two large intragenic deletions have been reported. Due to the small number of affected subjects described so far, the clinical profile of IDNADFS has not been fully delineated. Here we report five unrelated individuals, three of which carrying de novo intragenic CNOT2 variants, one presenting with a multiexon intragenic deletion, and an additional case of 12q15 microdeletion syndrome. Finally, we assess the features of IDNADFS by reviewing published and present affected individuals and reevaluate the clinical phenotype of this neurodevelopmental disorder.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Deleción Cromosómica , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Fenotipo , Proteínas Represoras/genética
20.
Reprod Biol Endocrinol ; 21(1): 116, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053137

RESUMEN

BACKGROUND: The incidence of Y chromosome microdeletions varies among men with infertility across regions and ethnicities worldwide. However, comprehensive epidemiological studies on Y chromosome microdeletions in Chinese men with infertility are lacking. We aimed to investigate Y chromosome microdeletions prevalence among Chinese men with infertility and its correlation with intracytoplasmic sperm injection (ICSI) outcomes. METHODS: This single-center retrospective study included 4,714 men with infertility who were evaluated at the Reproductive Center of the First Affiliated Hospital of Sun Yat-sen University between May 2017 and January 2021. Semen analysis and Y-chromosome microdeletion via multiplex polymerase chain reaction were conducted on the men. The study compared outcomes of 36 ICSI cycles from couples with male azoospermia factor (AZF)cd deletions with those of a control group, which included 72 ICSI cycles from couples without male Y chromosome microdeletions, during the same period. Both groups underwent ICSI treatment using ejaculated sperm. RESULTS: Among 4,714 Chinese men with infertility, 3.31% had Y chromosome microdeletions. The combined deletion of sY254 and sY255 in the AZFc region and sY152 in the AZFd region was the prevalent pattern of Y chromosome microdeletion, with 3.05% detection rate. The detection rates of AZF deletions in patients with normal total sperm count, mild oligozoospermia, severe oligozoospermia, cryptozoospermia, and azoospermia were 0.17%, 1.13%, 5.53%, 71.43%, and 7.54%, respectively. Compared with the control group, the AZFcd deletion group exhibited no significant difference in the laboratory results or pregnancy outcomes of ICSI cycles using ejaculated sperm. CONCLUSIONS: This is the largest epidemiological study on Y chromosome microdeletions in Chinese men with infertility. The study results underline the necessity for detecting Y chromosome microdeletion in men with infertility and severe sperm count abnormalities, especially those with cryptozoospermia. The combined deletion of sY254 and sY255 in the AZFc region and sY152 in the AZFd region was the most prevalent Y chromosome microdeletion pattern. Among patients with AZFcd deletion and ejaculated sperm, ICSI treatment can result in pregnancy outcomes, similar to those without AZFcd deletion.


Asunto(s)
Azoospermia , Infertilidad Masculina , Oligospermia , Embarazo , Femenino , Humanos , Masculino , Oligospermia/epidemiología , Oligospermia/genética , Inyecciones de Esperma Intracitoplasmáticas/métodos , Azoospermia/epidemiología , Azoospermia/genética , Azoospermia/terapia , Estudios Retrospectivos , Pueblos del Este de Asia , Prevalencia , Semen , Infertilidad Masculina/epidemiología , Infertilidad Masculina/genética , Infertilidad Masculina/terapia , Cromosomas Humanos Y/genética , Resultado del Embarazo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA