Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047499

RESUMEN

Optogenetic systems driven by yellow-orange light are required for the simultaneous regulation of several cellular processes. We have engineered the red fluorescent protein FusionRed into a 26 kDa monomeric optogenetic module, called degFusionRed. Unlike other fluorescent protein-based optogenetic domains, which exhibit light-induced self-inactivation by generating reactive oxygen species, degFusionRed undergoes proteasomal degradation upon illumination with 567 nm light. Similarly to the parent protein, degFusionRed has minimal absorbance at 450 nm and above 650 nm, making it spectrally compatible with blue and near-infrared-light-controlled optogenetic tools. The autocatalytically formed chromophore provides degFusionRed with an additional advantage over most optogenetic tools that require the binding of the exogenous chromophores, the amount of which varies in different cells. The degFusionRed efficiently performed in the engineered light-controlled transcription factor and in the targeted photodegradation of the protein of interest, demonstrating its versatility as the optogenetic module of choice for spectral multiplexed interrogation of various cellular processes.


Asunto(s)
Regulación de la Expresión Génica , Optogenética , Estimulación Luminosa , Luz
2.
Molecules ; 27(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35164045

RESUMEN

Singlet oxygen (1O2) is the excited state of ground, triplet state, molecular oxygen (O2). Photosensitized 1O2 has been extensively studied as one of the reactive oxygen species (ROS), responsible for damage of cellular components (protein, DNA, lipids). On the other hand, its generation has been exploited in organic synthesis, as well as in photodynamic therapy for the treatment of various forms of cancer. The aim of this review is to highlight the versatility of 1O2, discussing the main bioorganic applications reported over the past decades, which rely on its production. After a brief introduction on the photosensitized production of 1O2, we will describe the main aspects involving the biologically relevant damage that can accompany an uncontrolled, aspecific generation of this ROS. We then discuss in more detail a series of biological applications featuring 1O2 generation, including protein and DNA labelling, cross-linking and biosensing. Finally, we will highlight the methodologies available to tailor 1O2 generation, in order to accomplish the proposed bioorganic transformations while avoiding, at the same time, collateral damage related to an untamed production of this reactive species.


Asunto(s)
ADN/química , Fármacos Fotosensibilizantes/metabolismo , Proteínas/química , Oxígeno Singlete/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
J Neurogenet ; 34(3-4): 298-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32366143

RESUMEN

Synapses are dynamic connections that underlie essential functions of the nervous system. The addition, removal, and maintenance of synapses govern the flow of information in neural circuits throughout the lifetime of an animal. While extensive studies have elucidated many intrinsic mechanisms that neurons employ to modulate their connections, increasing evidence supports the roles of non-neuronal cells, such as glia, in synapse maintenance and circuit function. We previously showed that C. elegans epidermis regulates synapses through ZIG-10, a cell-adhesion protein of the immunoglobulin domain superfamily. Here we identified a member of the Pals1/MPP5 family, MAGU-2, that functions in the epidermis to modulate phagocytosis and the number of synapses by regulating ZIG-10 localization. Furthermore, we used light and electron microscopy to show that this epidermal mechanism removes neuronal membranes from the neuromuscular junction, dependent on the conserved phagocytic receptor CED-1. Together, our study shows that C. elegans epidermis constrains synaptic connectivity, in a manner similar to astrocytes and microglia in mammals, allowing optimized output of neural circuits.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Epidermis/fisiología , Proteínas de la Membrana/fisiología , Fagocitosis/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Neuronas Colinérgicas/fisiología , Levamisol/farmacología , Proteínas de la Membrana/genética , Neuronas Motoras/fisiología , Plasticidad Neuronal/fisiología , Filogenia , Isoformas de Proteínas/fisiología , ARN de Helminto/genética , ARN Mensajero/genética , Transgenes
4.
Int J Mol Sci ; 21(11)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466589

RESUMEN

In contrast to reversible activation by agonist, cholecystokinin 1 receptor (CCK1R) is permanently activated by singlet oxygen generated in photodynamic action, with sulphonated aluminium phthalocyanine or genetically encoded mini singlet oxygen generator (miniSOG) as photosensitizer. In these works, a halogen light source was used to power photodynamic action. For possible in vivo application of photodynamic CCK1R physiology, bearing a cumbersome light-delivery device connected to an external light source by experimental animals might interfere with their behavior. Therefore, in the present work, the possibility of bioluminescence-driven miniSOG photodynamic CCK1R activation was examined, as monitored by Fura-2 calcium imaging. In parallel experiments, it was found that, after plasma membrane (PM)-localized expression of miniSOGPM in AR4-2J cells, light irradiation with blue light-emitting diode (LED) (450 nm, 85 mW·cm-2, 1.5 min) induced persistent calcium oscillations that were blocked by CCK1R antagonist devazepide 2 nM. NanoLuc was expressed bicistronically with miniSOGPM via an internal ribosome entry site (IRES) sequence (pminiSOGPM-IRES-NanoLuc). The resultant miniSOGPM-IRES-NanoLuc-AR4-2J cells were found to generate strong bioluminescence upon addition of NanoLuc substrate coelenterazine. Strikingly, coelenterazine 5 microM was found to trigger long-lasting calcium oscillations (a hallmark for permanent CCK1R activation) in perifused miniSOGPM-IRES-NanoLuc-AR4-2J cells. These data indicate that NanoLuc bioluminescence can drive miniSOGPM photodynamic CCK1R activation, laying the foundation for its future in vivo applications.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Receptores de Colecistoquinina/metabolismo , Oxígeno Singlete/metabolismo , Animales , Técnicas Biosensibles/métodos , Señalización del Calcio , Línea Celular Tumoral , Sitios Internos de Entrada al Ribosoma , Luz , Luminiscencia , Proteínas Luminiscentes/genética , Ingeniería de Proteínas/métodos , Ratas , Receptores de Colecistoquinina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
J Cell Sci ; 130(19): 3248-3260, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28808085

RESUMEN

Each mitochondrial compartment contains varying protein compositions that underlie a diversity of localized functions. Insights into the localization of mitochondrial intermembrane space-bridging (MIB) components will have an impact on our understanding of mitochondrial architecture, dynamics and function. By using the novel visualizable genetic tags miniSOG and APEX2 in cultured mouse cardiac and human astrocyte cell lines and performing electron tomography, we have mapped at nanoscale resolution three key MIB components, Mic19, Mic60 and Sam50 (also known as CHCHD3, IMMT and SAMM50, respectively), in the environment of structural landmarks such as cristae and crista junctions (CJs). Tagged Mic19 and Mic60 were located at CJs, distributed in a network pattern along the mitochondrial periphery and also enriched inside cristae. We discovered an association of Mic19 with cytochrome c oxidase subunit IV. It was also found that tagged Sam50 is not uniformly distributed in the outer mitochondrial membrane and appears to incompletely overlap with Mic19- or Mic60-positive domains, most notably at the CJs.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Línea Celular Transformada , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética
6.
Cytometry A ; 91(9): 917-925, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28857464

RESUMEN

Controlling background fluorescence remains an important challenge in flow cytometry, as autofluorescence can interfere with the detection of chromophores. Furthermore, experimental procedures can also affect cellular fluorescence in certain regions of the emission spectrum. In this work, the effects of fixation, permeabilization, and heating on cellular autofluorescence are analyzed in various spectral regions, along with the influence of trypan blue as a quenching dye for these treatments. The impact of these procedures on the staining of SK-BR-3 cells with a dim green fluorophore, a miniSOG (mini Singlet Oxygen Generator) flavoprotein in the form of the recombinant protein DARPin-miniSOG, is also evaluated. The data presented here indicate that fixation of certain types of cells leads to noticeable increase of the autofluorescence. Our results also suggest that trypan blue should be used as an autofluorescence quencher only with bright green emitters since it interferes with the fluorescent signal in a longer-wavelength region of the spectrum and as a result causes reduction of the signal from dim green fluorescent agents. © 2017 International Society for Advancement of Cytometry.


Asunto(s)
Colorantes Fluorescentes/farmacología , Azul de Tripano/farmacología , Animales , Recuento de Células/métodos , Línea Celular Tumoral , Citometría de Flujo/métodos , Fluorescencia , Humanos , Ratones , Ratones Endogámicos C57BL , Coloración y Etiquetado/métodos
7.
Traffic ; 15(9): 961-82, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24931576

RESUMEN

Myeloproliferative neoplasms (MPNs) are often characterized by JAK2 or calreticulin (CALR) mutations, indicating aberrant trafficking in pathogenesis. This study focuses on Mpl trafficking and Jak2 association using two model systems: human erythroleukemia cells (HEL; JAK2V617F) and K562 myeloid leukemia cells (JAK2WT). Consistent with a putative chaperone role for Jak2, Mpl and Jak2 associate on both intracellular and plasma membranes (shown by proximity ligation assay) and siRNA-mediated knockdown of Jak2 led to Mpl trapping in the endoplasmic reticulum (ER). Even in Jak2 sufficient cells, Mpl accumulates in punctate structures that partially colocalize with ER-tracker, the ER exit site marker (ERES) Sec31a, the autophagy marker LC3 and LAMP1. Mpl was fused to miniSOG, a genetically encoded tag for correlated light and electron microscopy. Results suggest that a fraction of Mpl is taken up into autophagic structures from the ER and routed to autolyososomes. Surface biotinylation shows that both immature and mature Mpl reach the cell surface; in K562 cells Mpl is also released in exosomes. Both forms rapidly internalize upon ligand addition, while recovery is primarily attributed to immature Mpl. Mpl appears to reach the plasma membrane via both conventional ER-Golgi and autolysosome secretory pathways, as well as recycling.


Asunto(s)
Membrana Celular/metabolismo , Receptores de Trombopoyetina/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Exosomas/metabolismo , Humanos , Janus Quinasa 2/metabolismo , Células K562 , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular/metabolismo
8.
Biol Proced Online ; 18: 5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26839516

RESUMEN

BACKGROUND: One of the most notable recent advances in electron microscopy (EM) was the development of genetically-encoded EM tags, including the fluorescent flavoprotein Mini-SOG (Mini-Singlet Oxygen Generator). Mini-SOG generates good EM contrast, thus providing a viable alternative to technically-demanding methods such as immuno-electron microcopy (immuno-EM). Based on the Mini-SOG technology, in this paper, we describe the construction, validation and optimization of a series of vectors which allow expression of Mini-SOG in the Drosophila melanogaster genetic model system. FINDINGS: We constructed a Mini-SOG tag that has been codon-optimized for expression in Drosophila (DMS tag) using PCR-mediated gene assembly. The photo-oxidation reaction triggered by DMS was then tested using these vectors in Drosophila cell lines. DMS tag did not affect the subcellular localization of the proteins we tested. More importantly, we demonstrated the utility of the DMS tag for EM in Drosophila by showing that it can produce robust photo-oxidation reactions in the presence of blue light and the substrate DAB; the resultant electron micrographs contain electron-dense regions corresponding to the protein of interest. The vectors we generated allow protein tagging at both termini, for constitutive and inducible protein expression, as well as the generation of transgenic lines by P-element transformation. CONCLUSIONS: We demonstrated the feasibility of Mini-SOG tagging in Drosophila. The constructed vectors will no doubt be a useful molecular tool for genetic tagging to facilitate high-resolution localization of proteins in Drosophila by electron microscopy.

9.
Bioorg Med Chem Lett ; 26(14): 3359-3363, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27220724

RESUMEN

Protein-protein interactions regulate many biological processes. Identification of interacting proteins is thus an important step toward molecular understanding of cell signaling. The aim of this study was to investigate the use of photo-generated singlet oxygen and a small molecule for proximity labeling of interacting proteins in cellular environment. The protein of interest (POI) was fused with a small singlet oxygen photosensitizer (miniSOG), which generates singlet oxygen ((1)O2) upon irradiation. The locally generated singlet oxygen then activated a biotin-conjugated thiol molecule to form a covalent bond with the proteins nearby. The labeled proteins can then be separated and subsequently identified by mass spectrometry. To demonstrate the applicability of this labeling technology, we fused the miniSOG to Skp2, an F-box protein of the SCF ubiquitin ligase, and expressed the fusion protein in mammalian cells and identified that the surface cysteine of its interacting partner Skp1 was labeled by the biotin-thiol molecule. This photoactivatable protein labeling method may find important applications including identification of weak and transient protein-protein interactions in the native cellular context, as well as spatial and temporal control of protein labeling.


Asunto(s)
Fármacos Fotosensibilizantes/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Oxígeno Singlete/metabolismo , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química , Proteínas Quinasas Asociadas a Fase-S/química
10.
Methods ; 90: 39-48, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26066760

RESUMEN

Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication.


Asunto(s)
Microscopía Electrónica/métodos , Proteínas Virales/química , Adenoviridae , Línea Celular , Interacciones Huésped-Patógeno , Humanos , Modelos Químicos , Oxidación-Reducción , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química
11.
Parasitology ; 143(3): 260-75, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26653973

RESUMEN

The world health organization currently recognizes diarrhoeal diseases as a significant cause of death in children globally. Protozoan parasites such as Giardia and Entamoeba that thrive in the oxygen-deprived environment of the human gut are common etiological agents of diarrhoea. In the urogenital tract of humans, the anaerobic protozoan parasite Trichomonas vaginalis is notorious as the most common non-viral, sexually transmitted pathogen. Even with high medical impact, our understanding of anaerobic parasite physiology is scarce and as a result, treatment choices are limited. Fluorescent proteins (FPs) are invaluable tools as genetically encoded protein tags for advancing knowledge of cellular function. These FP tags emit fluorescent colours and once attached to a protein of interest, allow tracking of parasite proteins in the dynamic cellular space. Application of green FPs-like FPs in anaerobic protozoans is hindered by their oxygen dependency. In this review, we examine aspects of anaerobic parasite biology that clash with physio-chemical properties of FPs and limit their use as live-parasite protein tags. We expose novel FPs, such as miniSOG that do not require oxygen for signal production. The potential use of novel FPs has the opportunity to leverage the anaerobe parasitologist toolkit to that of aerobe parasitologist.


Asunto(s)
Técnica del Anticuerpo Fluorescente/tendencias , Parásitos/metabolismo , Parasitología/tendencias , Proteínas Protozoarias/metabolismo , Anaerobiosis , Animales , Eucariontes/metabolismo , Técnica del Anticuerpo Fluorescente/normas , Humanos , Oxígeno/metabolismo
12.
Biochim Biophys Acta ; 1830(11): 5059-67, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23876295

RESUMEN

BACKGROUND: Genetically encoded photosensitizers are a promising optogenetic instrument for light-induced production of reactive oxygen species in desired locations within cells in vitro or whole body in vivo. Only two such photosensitizers are currently known, GFP-like protein KillerRed and FMN-binding protein miniSOG. In this work we studied phototoxic effects of miniSOG in cancer cells. METHODS: HeLa Kyoto cell lines stably expressing miniSOG in different localizations, namely, plasma membrane, mitochondria or chromatin (fused with histone H2B) were created. Phototoxicity of miniSOG was tested on the cells in vitro and tumor xenografts in vivo. RESULTS: Blue light induced pronounced cell death in all three cell lines in a dose-dependent manner. Caspase 3 activation was characteristic of illuminated cells with mitochondria- and chromatin-localized miniSOG, but not with miniSOG in the plasma membrane. In addition, H2B-miniSOG-expressing cells demonstrated light-induced activation of DNA repair machinery, which indicates massive damage of genomic DNA. In contrast to these in vitro data, no detectable phototoxicity was observed on tumor xenografts with HeLa Kyoto cell lines expressing mitochondria- or chromatin-localized miniSOG. CONCLUSIONS: miniSOG is an excellent genetically encoded photosensitizer for mammalian cells in vitro, but it is inferior to KillerRed in the HeLa tumor. GENERAL SIGNIFICANCE: This is the first study to assess phototoxicity of miniSOG in cancer cells. The results suggest an effective ontogenetic tool and may be of interest for molecular and cell biology and biomedical applications.


Asunto(s)
Flavoproteínas/genética , Terapia Genética/métodos , Oxígeno/metabolismo , Fármacos Fotosensibilizantes/metabolismo , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Muerte Celular/genética , Línea Celular , Línea Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Daño del ADN , Reparación del ADN , Dermatitis Fototóxica/etiología , Dermatitis Fototóxica/genética , Dermatitis Fototóxica/metabolismo , Femenino , Flavoproteínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Luz/efectos adversos , Ratones , Ratones Desnudos , Mitocondrias/genética , Mitocondrias/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Chem Biodivers ; 11(12): 1883-91, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25491332

RESUMEN

In this work, molecular dynamics (MD) simulations of the permeation of proteins by small gases of biological significance have been extended from gas carrier, sensor, and enzymatic proteins to genetically encoded tags and killer proteins. To this end, miniSOG was taken as an example of current high interest, using a biased form of MD, called random-acceleration MD. Various egress gates and binding pockets for dioxygen, as an indistinguishable mimic of singlet dioxygen, were found on both above and below the isoalloxazine plane of the flavin mononucleotide cofactor in miniSOG. Of such gates and binding pockets, those lying within two opposite cones, coaxial with a line normal to the isoalloxazine plane, and with the vertex at the center of such a plane are those most visited by the escaping gas molecule. Out of residues most capable of quenching (1) O2 , Y30, lying near the base of one such a cone, and H85, near the base of the opposite cone, are held to be most responsible for the reduced quantum yield of (1) O2 with folded miniSOG with respect to free flavin mononucleotide in solution.


Asunto(s)
Simulación de Dinámica Molecular , Oxígeno/metabolismo , Proteínas/metabolismo , Oxígeno Singlete/metabolismo , Biomarcadores/metabolismo , Proteínas/genética
14.
Protein Sci ; 33(4): e4921, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501448

RESUMEN

Flavin mononucleotide (FMN) is a highly efficient photosensitizer (PS) yielding singlet oxygen (1 O2 ). However, its 1 O2 production efficiency significantly decreases upon isoalloxazine ring encapsulation into the protein matrix in genetically encoded photosensitizers (GEPS). Reducing isoalloxazine ring interactions with surrounding amino acids by protein engineering may increase 1 O2 production efficiency GEPS, but at the same time weakened native FMN-protein interactions may cause undesirable FMN dissociation. Here, in contrast, we intentionally induce the FMN release by light-triggered sulfur oxidation of strategically placed cysteines (oxidation-prone amino acids) in the isoalloxazine-binding site due to significantly increased volume of the cysteinyl side residue(s). As a proof of concept, in three variants of the LOV2 domain of Avena sativa (AsLOV2), namely V416C, T418C, and V416C/T418C, the effective 1 O2 production strongly correlated with the efficiency of irradiation-induced FMN dissociation (wild type (WT) < V416C < T418C < V416C/T418C). This alternative approach enables us: (i) to overcome the low 1 O2 production efficiency of flavin-based GEPSs without affecting native isoalloxazine ring-protein interactions and (ii) to utilize AsLOV2, due to its inherent binding propensity to FMN, as a PS vehicle, which is released at a target by light irradiation.


Asunto(s)
Flavoproteínas , Fármacos Fotosensibilizantes , Flavoproteínas/química , Flavoproteínas/metabolismo , Dominios Proteicos , Sitios de Unión , Aminoácidos , Mononucleótido de Flavina/química
15.
Neuron ; 111(13): 2065-2075.e5, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37164008

RESUMEN

Although the etiology of major depressive disorder remains poorly understood, reduced gamma oscillations is an emerging biomarker. Olfactory bulbectomy, an established model of depression that reduces limbic gamma oscillations, suffers from non-specific effects of structural damage. Here, we show that transient functional suppression of olfactory bulb neurons or their piriform cortex efferents decreased gamma oscillation power in limbic areas and induced depression-like behaviors in rodents. Enhancing transmission of gamma oscillations from olfactory bulb to limbic structures by closed-loop electrical neuromodulation alleviated these behaviors. By contrast, silencing gamma transmission by anti-phase closed-loop stimulation strengthened depression-like behaviors in naive animals. These induced behaviors were neutralized by ketamine treatment that restored limbic gamma power. Taken together, our results reveal a causal link between limbic gamma oscillations and depression-like behaviors in rodents. Interfering with these endogenous rhythms can affect behaviors in rodent models of depression, suggesting that restoring gamma oscillations may alleviate depressive symptoms.


Asunto(s)
Trastorno Depresivo Mayor , Bulbo Olfatorio , Animales , Bulbo Olfatorio/fisiología , Roedores , Depresión/terapia , Neuronas
16.
Bio Protoc ; 12(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36353720

RESUMEN

When understanding the neuronal function of a specific neural circuit, single-cell level photoablation of a targeted cell is one of the useful experimental approaches. This protocol describes a method to photoablate specific motor neurons via the mini singlet oxygen generator (miniSOG2), a light-oxygen-voltage (LOV)-based optogenetic tool used for ablating targeted cells in arbitrary areas. MiniSOG2 could induce the cell death pathway by generating reactive oxygen species (ROS) upon blue light illumination. Photoablation of a specific cell using the miniSOG2 was performed to show that, in Ciona intestinalis type A ( Ciona robusta) , a single pair of motor neurons, MN2/A10.64, is necessary to drive their tail muscle contraction. The membrane targeted miniSOG2 combined with neuron-specific promoter (pSP-Neurog::miniSOG2-CAAX) was electroplated into the Ciona egg and transiently expressed at specific neurons of the embryo. MN2 labeled with pSP-Neurog:mCherry-CAAX was irradiated using a 440-nm laser from the lateral side for 10 min to ablate its neural function. The behavior of the embryo before and after the irradiation was recorded with a high-speed camera. Graphical abstract.

17.
Biochim Biophys Acta Gen Subj ; 1865(12): 129978, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34487824

RESUMEN

BACKGROUND: Therapeutic effects of PDT depend on many factors, including the amount of singlet oxygen, localization of photosensitizer and irradiation protocol. The present study was aimed to compare the cytotoxic mechanisms of PDT under continuous-wave (CW) and pulsed irradiation using a tumor spheroid model and a genetically encoded photosensitizer miniSOG. METHODS: 1O2 detection in miniSOG and flavin mononucleotide (FMN) solutions was performed. Photobleaching of miniSOG in solution and in HeLa tumor spheroids was analyzed. Tumor spheroid morphology and growth and the cell death mechanisms after PDT in CW and pulsed modes were assessed. RESULTS: We found a more rapid 1O2 generation and a higher photobleaching rate in miniSOG solution upon irradiation in pulsed mode compared to CW mode. Photobleaching of miniSOG in tumor spheroids was also higher after irradiation in the pulsed mode. PDT of spheroids in CW mode resulted in a moderate expansion of the necrotic core of tumor spheroids and a slight inhibition of spheroid growth. The pulsed mode was more effective in induction of cell death, including apoptosis, and suppression of spheroid growth. CONCLUSIONS: Comparison of CW and pulsed irradiation modes in PDT with miniSOG showed more pronounced cytotoxic effects of the pulsed mode. Our results suggest that the pulsed irradiation regimen enables enhanced 1O2 production by photosensitizer and stimulates apoptosis. GENERAL SIGNIFICANCE: Our results provide more insights into the cellular mechanisms of anti-cancer PDT and open the way to improvement of light irradiation protocols.


Asunto(s)
Triazenos , Muerte Celular , Fármacos Fotosensibilizantes
18.
ACS Chem Neurosci ; 12(4): 626-639, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33522227

RESUMEN

Communication between neurons relies on the release of diverse neurotransmitters, which represent a key-defining feature of a neuron's chemical and functional identity. Neurotransmitters are packaged into vesicles by specific vesicular transporters. However, tools for labeling and imaging synapses and synaptic vesicles based on their neurochemical identity remain limited. We developed a genetically encoded probe to identify glutamatergic synaptic vesicles at the levels of both light and electron microscopy (EM) by fusing the mini singlet oxygen generator (miniSOG) probe to an intralumenal loop of the vesicular glutamate transporter-2. We then used a 3D imaging method, serial block-face scanning EM, combined with a deep learning approach for automatic segmentation of labeled synaptic vesicles to assess the subcellular distribution of transporter-defined vesicles at nanometer scale. These tools represent a new resource for accessing the subcellular structure and molecular machinery of neurotransmission and for transmitter-defined tracing of neuronal connectivity.


Asunto(s)
Neuronas , Sinapsis , Animales , Ácido Glutámico , Ratones , Microscopía Electrónica , Vesículas Sinápticas , Proteína 1 de Transporte Vesicular de Glutamato , Proteína 2 de Transporte Vesicular de Glutamato
19.
Synth Syst Biotechnol ; 6(3): 231-241, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34541345

RESUMEN

The development of Drug Delivery Systems (DDS) has led to increasingly efficient therapies for the treatment and detection of various diseases. DDS use a range of nanoscale delivery platforms produced from polymeric of inorganic materials, such as micelles, and metal and polymeric nanoparticles, but their variant chemical composition make alterations to their size, shape, or structures inherently complex. Genetically encoded protein nanocages are highly promising DDS candidates because of their modular composition, ease of recombinant production in a range of hosts, control over assembly and loading of cargo molecules and biodegradability. One example of naturally occurring nanocompartments are encapsulins, recently discovered bacterial organelles that have been shown to be reprogrammable as nanobioreactors and vaccine candidates. Here we report the design and application of a targeted DDS platform based on the Thermotoga maritima encapsulin reprogrammed to display an antibody mimic protein called Designed Ankyrin repeat protein (DARPin) on the outer surface and to encapsulate a cytotoxic payload. The DARPin9.29 chosen in this study specifically binds to human epidermal growth factor receptor 2 (HER2) on breast cancer cells, as demonstrated in an in vitro cell culture model. The encapsulin-based DDS is assembled in one step in vivo by co-expressing the encapsulin-DARPin9.29 fusion protein with an engineered flavin-binding protein mini-singlet oxygen generator (MiniSOG), from a single plasmid in Escherichia coli. Purified encapsulin-DARPin_miniSOG nanocompartments bind specifically to HER2 positive breast cancer cells and trigger apoptosis, indicating that the system is functional and specific. The DDS is modular and has the potential to form the basis of a multi-receptor targeted system by utilising the DARPin screening libraries, allowing use of new DARPins of known specificities, and through the proven flexibility of the encapsulin cargo loading mechanism, allowing selection of cargo proteins of choice.

20.
J Neurosci Methods ; 341: 108764, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32416277

RESUMEN

BACKGROUND: Although the presences of scrapie associated fibril in the brain tissues is a ultrastructural hallmark for prion diseases, the exact morphological structure of prion during the progression of the disease is still unclear. The host prion protein (PrP) is encoded by PrP gene (PRNP) locating on the chromosome 20 in human and the chromosome 2 in mouse. Recently, a novel correlative light and electron microscopy with Mini Singlet Oxygen Generator (miniSOG) was generated. MiniSOG, a small protein of 106 amino acids, can absorb blue light and emit green fluorescence that is detectable under the fluorescence microscope. MiniSOG can also partially catalyze the polymerization of DAB to form black stained structures in the presence of osmium tetroxide, which is able to be observed under transmission electron microscope. NEW METHODS: Two kinds of miniSOG-PrP expressing recombinant plasmids were generated. Correlative photooxidation and transmission electron microscope were used to detect these plasmids. The plasmids were microinjected into fertilized FVB/NJ eggs and Tg mice expressing miniSOG-PrP fusion proteins were selected after successive bred withPRNP KO Tg mice. RESULTS: Those two strains of Tg mice, TgSOG23 and Tg231SOG, developed normally and maintained healthy without detectable abnormality after one-year observation. Western blots and immunohistochemical assays with PrP- and miniSOG-specific antibodies confirmed that the chimeric miniSOG-PrP proteins were expressed in the brain tissues of Tg mice. Digital PCR assays proposed that the copy numbers of the inserted external gene in TgSOG23 and Tg231SOG were 2 and 12, respectively. COMPARISON WITH EXISTING METHOD(S): Compared with GFP tag miniSOG is significantly smaller, which makes it easy be operated experimentally and possibly has less influence on the biological function of the labeled protein. Additionally, GFP tag is an ideal marker for immunofluorescent assays, but may not be suitable for ultrastructural assays for prion morphology. CONCLUSION: Those Tg mice may supply novel and useful experimental animals for further study on the potential morphological structure formation and deposits of prion in the brain tissues during prion infection.


Asunto(s)
Priones , Animales , Western Blotting , Ratones , Ratones Transgénicos , Priones/genética , Proteínas Recombinantes , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA