Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339743

RESUMEN

A botnet is a collection of Internet-connected computers that have been suborned and are controlled externally for malicious purposes. Concomitant with the growth of the Internet of Things (IoT), botnets have been expanding to use IoT devices as their attack vectors. IoT devices utilise specific protocols and network topologies distinct from conventional computers that may render detection techniques ineffective on compromised IoT devices. This paper describes experiments involving the acquisition of several traditional botnet detection techniques, BotMiner, BotProbe, and BotHunter, to evaluate their capabilities when applied to IoT-based botnets. Multiple simulation environments, using internally developed network traffic generation software, were created to test these techniques on traditional and IoT-based networks, with multiple scenarios differentiated by the total number of hosts, the total number of infected hosts, the botnet command and control (CnC) type, and the presence of aberrant activity. Externally acquired datasets were also used to further test and validate the capabilities of each botnet detection technique. The results indicated, contrary to expectations, that BotMiner and BotProbe were able to detect IoT-based botnets-though they exhibited certain limitations specific to their operation. The results show that traditional botnet detection techniques are capable of detecting IoT-based botnets and that the different techniques may offer capabilities that complement one another.

2.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37447792

RESUMEN

Nowadays, the Internet of Things (IoT) concept plays a pivotal role in society and brings new capabilities to different industries. The number of IoT solutions in areas such as transportation and healthcare is increasing and new services are under development. In the last decade, society has experienced a drastic increase in IoT connections. In fact, IoT connections will increase in the next few years across different areas. Conversely, several challenges still need to be faced to enable efficient and secure operations (e.g., interoperability, security, and standards). Furthermore, although efforts have been made to produce datasets composed of attacks against IoT devices, several possible attacks are not considered. Most existing efforts do not consider an extensive network topology with real IoT devices. The main goal of this research is to propose a novel and extensive IoT attack dataset to foster the development of security analytics applications in real IoT operations. To accomplish this, 33 attacks are executed in an IoT topology composed of 105 devices. These attacks are classified into seven categories, namely DDoS, DoS, Recon, Web-based, brute force, spoofing, and Mirai. Finally, all attacks are executed by malicious IoT devices targeting other IoT devices. The dataset is available on the CIC Dataset website.


Asunto(s)
Benchmarking , Internet de las Cosas , Industrias , Transportes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA