Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arch Biochem Biophys ; 737: 109556, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863693

RESUMEN

To cope with the requirements of energy and building blocks for rapid proliferation, cancer cells reprogram their metabolic pathways profoundly, especially in oxygen- and nutrients-deficient tumor microenvironments. However, functional mitochondria and mitochondria-dependent oxidative phosphorylation are still necessary for the tumorigenesis and metastasis of cancer cells. We show here that mitochondrial elongation factor 4 (mtEF4) is commonly upregulated in breast tumors compared to adjacent non-cancerous tissues, and is relevant to tumor progression and poor prognosis. Down regulation of mtEF4 in breast cancer cells impairs the assembly of mitochondrial respiration complexes, decreases mitochondrial respiration, reduces ATP production, attenuates the formation of lamellipodia, and suppresses cell motility in vitro and cancer metastasis in vivo. On the contrary, upregulation of mtEF4 elevates the mitochondrial oxidative phosphorylation, which contributes to the migratory capacities of breast cancer cells. mtEF4 also increases the potential of glycolysis, probably via an AMPK-related mechanism. In summary, we provide direct evidences that the aberrantly upregulated mtEF4 contributes to the metastasis of breast cancer by coordinating metabolic pathways.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Factores de Elongación de Péptidos/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Glucólisis , Fosforilación Oxidativa , Línea Celular Tumoral , Microambiente Tumoral , Melanoma Cutáneo Maligno
2.
J Biol Chem ; 294(46): 17262-17277, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31533986

RESUMEN

Recruitment of the GTPase dynamin-related protein 1 (Drp1) to mitochondria is a central step required for mitochondrial fission. Reversible Drp1 phosphorylation has been implicated in the regulation of this process, but whether Drp1 phosphorylation at Ser-637 determines its subcellular localization and fission activity remains to be fully elucidated. Here, using HEK 293T cells and immunofluorescence, immunoblotting, RNAi, subcellular fractionation, co-immunoprecipitation assays, and CRISPR/Cas9 genome editing, we show that Drp1 phosphorylated at Ser-637 (Drp1pS637) resides both in the cytosol and on mitochondria. We found that the receptors mitochondrial fission factor (Mff) and mitochondrial elongation factor 1/2 (MIEF1/2) interact with and recruit Drp1pS637 to mitochondria and that elevated Mff or MIEF levels promote Drp1pS637 accumulation on mitochondria. We also noted that protein kinase A (PKA), which mediates phosphorylation of Drp1 on Ser-637, is partially present on mitochondria and interacts with both MIEFs and Mff. PKA knockdown did not affect the Drp1-Mff interaction, but slightly enhanced the interaction between Drp1 and MIEFs. In Drp1-deficient HEK 293T cells, both phosphomimetic Drp1-S637D and phospho-deficient Drp1-S637A variants, like wild-type Drp1, located to the cytosol and to mitochondria and rescued a Drp1 deficiency-induced mitochondrial hyperfusion phenotype. However, Drp1-S637D was less efficient than Drp1-WT and Drp1-S637A in inducing mitochondrial fission. In conclusion, the Ser-637 phosphorylation status in Drp1 is not a determinant that controls Drp1 recruitment to mitochondria.


Asunto(s)
Dinaminas/genética , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Elongación de Péptidos/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Citosol/metabolismo , Dinaminas/metabolismo , Células HEK293 , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Fosforilación/genética , Serina/química
3.
J Biol Chem ; 293(29): 11537-11552, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29895621

RESUMEN

Proteins in mammalian cells exhibit optimal stability at physiological temperatures, and even small temperature variations may cause unfolding and nonspecific aggregation. Because this process leads to a loss of function of the affected polypeptides and to cytotoxic stress, formation of protein aggregates has been recognized as a major pathogenic factor in human diseases. In this study, we determined the impact of physiological heat stress on mitochondria isolated from HeLa cells. We found that the heat-stressed mitochondria had lower membrane potential and ATP level and exhibited a decreased production of reactive oxygen species. An analysis of the mitochondrial proteome by 2D PAGE showed that the overall solubility of endogenous proteins was only marginally affected by elevated temperatures. However, a small subset of polypeptides exhibited an high sensitivity to heat stress. The mitochondrial translation elongation factor Tu (Tufm), a protein essential for organellar protein biosynthesis, was highly aggregation-prone and lost its solubility already under mild heat-stress conditions. Moreover, mitochondrial translation and the import of cytosolic proteins were defective in the heat-stressed mitochondria. Both types of nascent polypeptides, produced by translation or imported into the mitochondria, exhibited a strong tendency to aggregate in the heat-exposed mitochondria. We propose that a fast and specific inactivation of elongation factors may prevent the accumulation of misfolded nascent polypeptides and may thereby attenuate proteotoxicity under heat stress.


Asunto(s)
Respuesta al Choque Térmico , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Agregado de Proteínas , Adenosina Trifosfato/metabolismo , Células HeLa , Calor , Humanos , Potencial de la Membrana Mitocondrial , Factor Tu de Elongación Peptídica/metabolismo
4.
Biochim Biophys Acta ; 1862(4): 592-600, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26809120

RESUMEN

Mutations on the mitochondrial-expressed Branched Chain α-Keto acid Dehydrogenase Kinase (BCKDK) gene have been recently associated with a novel dietary-treatable form of autism. But, being a mitochondrial metabolism disease, little is known about the impact on mitochondrial performance. Here, we analyze the mitochondrial response to the BCKDK-deficiency in patient's primary fibroblasts by measuring bioenergetics, ultra-structural and dynamic parameters. A two-fold increase in superoxide anion production, together with a reduction in ATP-linked respiration and intracellular ATP levels (down to 60%) detected in mutants fibroblasts point to a general bioenergetics depletion that could affect the mitochondrial dynamics and cell fate. Ultrastructure analysis of BCKDK-deficient fibroblasts shows an increased number of elongated mitochondria, apparently associated with changes in the mediator of inner mitochondria membrane fusion, GTPase OPA1 forms, and in the outer mitochondrial membrane, mitofusin 2/MFN2. Our data support a possible hyperfusion response of BCKDK-deficient mitochondria to stress. Cellular fate also seems to be affected as these fibroblasts show an altered proportion of the cells on G0/G1 and G2/M phases. Knockdown of BCKDK gene in control fibroblasts recapitulates most of these features. Same BCKDK-knockdown in a MSUD patient fibroblasts unmasks the direct involvement of the accelerated BCAAs catabolism in the mitochondrial dysfunction. All these data give us a clue to understand the positive dietary response to an overload of branched-chain amino acids. We hypothesize that a combination of the current therapeutic option with a protocol that considers the oxidative damage and energy expenditure, addressing the patients' individuality, might be useful for the physicians.


Asunto(s)
Trastorno Autístico/metabolismo , Metabolismo Energético , Fibroblastos/metabolismo , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Mitocondrias/metabolismo , Superóxidos/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/patología , Ciclo Celular/genética , Fibroblastos/patología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Enfermedad de la Orina de Jarabe de Arce/genética , Enfermedad de la Orina de Jarabe de Arce/patología , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
5.
Clin Sci (Lond) ; 130(21): 1861-74, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27660309

RESUMEN

Mitochondrial morphology is governed by the balance of mitochondrial fusion, mediated by mitofusins and optic atrophy 1 (OPA1), and fission, mediated by dynamin-related protein 1 (Drp1). Disordered mitochondrial dynamics alters metabolism, proliferation, apoptosis and mitophagy, contributing to human diseases, including neurodegenerative syndromes, pulmonary arterial hypertension (PAH), cancer and ischemia/reperfusion injury. Post-translational regulation of Drp1 (by phosphorylation and SUMOylation) is an established means of modulating Drp1 activation and translocation to the outer mitochondrial membrane (OMM). This review focuses on Drp1 adaptor proteins that also regulate fission. The proteins include fission 1 (Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamics proteins of 49 kDa and 51 kDa (MiD49, MiD51). Heterologous MiD overexpression sequesters inactive Drp1 on the OMM, promoting fusion; conversely, increased endogenous MiD creates focused Drp1 multimers that optimize OMM scission. The triggers that activate MiD-bound Drp1 in disease states are unknown; however, MiD51 has a unique capacity for ADP binding at its nucleotidyltransferase domain. Without ADP, MiD51 inhibits Drp1, whereas ADP promotes MiD51-mediated fission, suggesting a link between metabolism and fission. Confusion over whether MiDs mediate fusion (by sequestering inactive Drp1) or fission (by guiding Drp1 assembly) relates to a failure to consider cell types used and to distinguish endogenous compared with heterologous changes in expression. We speculate that endogenous MiDs serve as Drp1-binding partners that are dysregulated in disease states and may be important targets for inhibiting cell proliferation and ischemia/reperfusion injury. Moreover, it appears that the composition of the fission apparatus varies between disease states and amongst individuals. MiDs may be important targets for inhibiting cell proliferation and attenuating ischemia/reperfusion injury.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Factores de Elongación de Péptidos/metabolismo , Animales , Dinaminas , GTP Fosfohidrolasas/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Factores de Elongación de Péptidos/genética
6.
J Biol Chem ; 289(40): 27757-65, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25107911

RESUMEN

Protein prenylation is a post-translational modification whereby non-sterol isoprenoid lipid chains are added, thereby modifying the molecular partners with which proteins interact. The autoinflammatory disease mevalonate kinase deficiency (MKD) is characterized by a severe reduction in protein prenylation. A major class of proteins that are affected are small GTPases, including Rac1 and RhoA. It is not clear how protein prenylation of small GTPases relates to GTP hydrolysis activity and downstream signaling. Here, we investigated the contribution of RhoA prenylation to the biochemical pathways that underlie MKD-associated IL-1ß hypersecretion using human cell cultures, Rac1 and RhoA protein variants, and pharmacological inhibitors. We found that when unprenylated, the GTP-bound levels of RhoA decrease, causing a reduction in GTPase activity and increased protein kinase B (PKB) phosphorylation. Cells expressing unprenylated RhoA produce increased levels of interleukin 1ß mRNA. Of other phenotypic cellular changes seen in MKD, increased mitochondrial potential and mitochondrial elongation, only mitochondrial elongation was observed. Finally, we show that pharmacological inactivation of RhoA boosts Rac1 activity, a small GTPase whose activity was earlier implied in MKD pathogenesis. Together, our data show that RhoA plays a pivotal role in MKD pathogenesis through Rac1/PKB signaling toward interleukin 1ß production and elucidate the effects of protein prenylation in monocytes.


Asunto(s)
Interleucina-1beta/metabolismo , Deficiencia de Mevalonato Quinasa/enzimología , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Línea Celular , Humanos , Interleucina-1beta/genética , Deficiencia de Mevalonato Quinasa/genética , Deficiencia de Mevalonato Quinasa/metabolismo , Prenilación de Proteína , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rhoA/genética
7.
Antioxidants (Basel) ; 11(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35624848

RESUMEN

Ras-related protein Ral-A (RalA)-binding protein 1 (RalBP1, also known as Ral-interacting protein of 76 kDa (RLIP76) or Ral-interacting protein 1 (RLIP1 or RIP1)) is involved in the efflux of 4-hydroxynonenal (4-HNE, an end product of lipid peroxidation), as well as mitochondrial fission. In the present study, we found that 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) attenuated CA1 neuronal death and aberrant mitochondrial elongations in these neurons coupled with enhanced RalBP1 expression and reduced 4-HNE levels following status epilepticus (SE). RalBP1 knockdown did not affect mitochondrial dynamics and CA1 neuronal death under physiological and post-SE conditions. Following SE, however, cotreatment of RalBP1 siRNA diminished the effect of CDDO-Me on 4-HNE levels, mitochondrial hyperfusion in CA1 neurons, and CA1 neuronal death. These findings indicate that CDDO-Me may ameliorate CA1 neuronal death by facilitating RalBP1-mediated 4-HNE efflux and mitochondrial fission following SE. Therefore, our findings suggest that increased RalBP1 expression/activity may be one of the considerable targets to protect neurons from SE.

8.
J Exp Clin Cancer Res ; 39(1): 286, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317572

RESUMEN

BACKGROUND: Increasing evidence has revealed the close link between mitochondrial dynamic dysfunction and cancer. MIEF2 (mitochondrial elongation factor 2) is mitochondrial outer membrane protein that functions in the regulation of mitochondrial fission. However, the expression, clinical significance and biological functions of MIEF2 are still largely unclear in human cancers, especially in ovarian cancer (OC). METHODS: The expression and clinical significance of MIEF2 were determined by qRT-PCR, western blot and immunohistochemistry analyses in tissues and cell lines of OC. The biological functions of MIEF2 in OC were determined by in vitro and in vivo cell growth and metastasis assays. Furthermore, the effect of MIEF2 on metabolic reprogramming of OC was determined by metabolomics and glucose metabolism analyses. RESULTS: MIEF2 expression was significantly increased in OC mainly due to the down-regulation of miR-424-5p, which predicts poor survival for patients with OC. Knockdown of MIEF2 significantly suppressed OC cell growth and metastasis both in vitro and in vivo by inhibiting G1-S cell transition, epithelial-to-mesenchymal transition (EMT) and inducing cell apoptosis, while forced expression of MIEF2 had the opposite effects. Mechanistically, mitochondrial fragmentation-suppressed cristae formation and thus glucose metabolism switch from oxidative phosphorylation to glycolysis was found to be involved in the promotion of growth and metastasis by MIEF2 in OC cells. CONCLUSIONS: MIEF2 plays a critical role in the progression of OC and may serve as a valuable prognostic biomarker and therapeutic target in the treatment of this malignancy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Reprogramación Celular , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Neoplasias Pulmonares/secundario , Proteínas Mitocondriales/metabolismo , Neoplasias Ováricas/patología , Factores de Elongación de Péptidos/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Femenino , Glucólisis , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Mitocondriales/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosforilación Oxidativa , Factores de Elongación de Péptidos/genética , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Exp Ther Med ; 20(6): 173, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33093908

RESUMEN

The identified mutations in the G elongation factor mitochondrial 1 (GFM1) gene have been associated with heterogeneous clinical features of an early-onset mitochondrial disease in only 25 families. The present study reports the case of two siblings with a novel GFM1 variant and their clinical and laboratory presentations, which included progressive hepatic encephalopathy, failure to thrive and persistent lactic acidemia. Both histological changes and diminished expression of the GFM1 protein were observed in the liver and kidney tissues of the index patient. Whole-exome and Sanger sequencing technologies were used to diagnose the index patient with defective GFM1 using amniocentesis at 32 weeks' gestation. Heterozygous mutations in the GFM1 gene were identified in both siblings: A novel mutation, C1576T in exon 13 inherited from their asymptomatic mother, resulting in a premature stop codon at amino acid position 526 and the previously reported G688A mutation on the boundary between exon 5 and intron 5-6, inherited from their asymptomatic father. In conclusion, the present study reports two siblings carrying a novel GFM1 variant with a rare fatal mitochondrial disease.

10.
Cell Rep ; 22(11): 2827-2836, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539413

RESUMEN

Endoplasmic reticulum (ER) stress is transmitted to mitochondria and is associated with pathologic mitochondrial dysfunction in diverse diseases. The PERK arm of the unfolded protein response (UPR) protects mitochondria during ER stress through the transcriptional and translational remodeling of mitochondrial molecular quality control pathways. Here, we show that ER stress also induces dynamic remodeling of mitochondrial morphology by promoting protective stress-induced mitochondrial hyperfusion (SIMH). ER-stress-associated SIMH is regulated by the PERK arm of the UPR and activated by eIF2α phosphorylation-dependent translation attenuation. We show that PERK-regulated SIMH is a protective mechanism to prevent pathologic mitochondrial fragmentation and promote mitochondrial metabolism in response to ER stress. These results identify PERK-dependent SIMH as a protective stress-responsive mechanism that regulates mitochondrial morphology during ER stress. Furthermore, our results show that PERK integrates transcriptional and translational signaling to coordinate mitochondrial molecular and organellar quality control in response to pathologic ER insults.


Asunto(s)
Estrés del Retículo Endoplásmico/inmunología , Mitocondrias/metabolismo , Respuesta de Proteína Desplegada/inmunología , Enfermedad Aguda , Animales , Humanos , Ratones
11.
Mitochondrion ; 34: 84-90, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28216230

RESUMEN

We report the clinical, biochemical, and molecular findings in two brothers with encephalopathy and multi-systemic disease. Abnormal transferrin glycoforms were suggestive of a type I congenital disorder of glycosylation (CDG). While exome sequencing was negative for CDG related candidate genes, the testing revealed compound heterozygous mutations in the mitochondrial elongation factor G gene (GFM1). One of the mutations had been reported previously while the second, novel variant was found deep in intron 6, activating a cryptic splice site. Functional studies demonstrated decreased GFM1 protein levels, suggested disrupted assembly of mitochondrial complexes III and V and decreased activities of mitochondrial complexes I and IV, all indicating combined OXPHOS deficiency.


Asunto(s)
Anomalías Congénitas/genética , Anomalías Congénitas/patología , Expresión Génica , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Fosforilación Oxidativa , Factor G de Elongación Peptídica/biosíntesis , Factor G de Elongación Peptídica/genética , Sitios de Empalme de ARN , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Masculino
12.
Free Radic Biol Med ; 100: 231-237, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27101739

RESUMEN

Mitochondria are semi-autonomous organelle possessing their own translation machinery to biosynthesize mitochondrial DNA (mtDNA)-encoded polypeptides, which are the core subunits of oxidative phosphorylation (OXPHOS) complexes. Mitochondrial translation elongation factor 4 (mtEF4) is a key quality control factor in mitochondrial translation (mt-translation) that regulates mitochondrial tRNA translocation and modulates cellular responses by influencing cytoplasmic translation (ct-translation). In addition to mtEF4, mt-translational activators, mitochondrial microRNAs (mitomiRs), and MITRAC have been reported recently as crucial mt-translation regulators. Here, we focus on the novel ways how these factors regulate mt-translation, discuss the main cellular response of mammalian target of rapamycin (mTOR) signalling upon mt-translation defects, and summarize the related human diseases.


Asunto(s)
Mitocondrias/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Regulación de la Expresión Génica , Humanos , Mitocondrias/genética , Biosíntesis de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA