Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 25(3): 991-1021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38243137

RESUMEN

Neuronal maturation is the phase during which neurons acquire their final characteristics in terms of morphology, electrical activity, and metabolism. However, little is known about the metabolic pathways governing neuronal maturation. Here, we investigate the contribution of the main metabolic pathways, namely glucose, glutamine, and fatty acid oxidation, during the maturation of primary rat hippocampal neurons. Blunting glucose oxidation through the genetic and chemical inhibition of the mitochondrial pyruvate transporter reveals that this protein is critical for the production of glutamate, which is required for neuronal arborization, proper dendritic elongation, and spine formation. Glutamate supplementation in the early phase of differentiation restores morphological defects and synaptic function in mitochondrial pyruvate transporter-inhibited cells. Furthermore, the selective activation of metabotropic glutamate receptors restores the impairment of neuronal differentiation due to the reduced generation of glucose-derived glutamate and rescues synaptic local translation. Fatty acid oxidation does not impact neuronal maturation. Whereas glutamine metabolism is important for mitochondria, it is not for endogenous glutamate production. Our results provide insights into the role of glucose-derived glutamate as a key player in neuronal terminal differentiation.


Asunto(s)
Glutamina , Transportadores de Ácidos Monocarboxílicos , Ratas , Animales , Glutamina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuronas/metabolismo , Ácido Glutámico/metabolismo , Glucosa/metabolismo , Ácidos Grasos/metabolismo
2.
Am J Physiol Endocrinol Metab ; 326(4): E515-E527, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353639

RESUMEN

Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of 2H/1³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles.NEW & NOTEWORTHY Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise.


Asunto(s)
Gluconeogénesis , Hipoglucemia , Ratones , Animales , Gluconeogénesis/genética , Ácido Pirúvico/metabolismo , Tolerancia al Ejercicio , Hígado/metabolismo , Glucosa/metabolismo , Hipoglucemia/metabolismo , Lactatos/metabolismo , Alanina/metabolismo , Aminoácidos/metabolismo
3.
J Biol Chem ; : 101775, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35257748

RESUMEN

It's widely accepted that increasing mitochondrial respiration plays a pivotal role during osteoclastogenesis. Mitochondrial pyruvate carrier (MPC) is the key transporter that links glycolysis to mitochondrial respiration but little is known about its role during osteoclastogenesis. Our goal was to determine the effects of its blockade on osteoclastogenesis and bone resorption in vivo and in vitro. To address this issue, we performed gene knockdown or pharmacologically inhibited MPC in primary bone marrow-derived monocytes (BMMs) or in an ovariectomized mouse model. We also studied the metabolic changes in RANKL-induced differentiating BMMs with MPC blockade and performed rescue experiments. We found that MPC blockade resulted in decreased osteoclastogenesis both in vivo and in vitro and inhibiting MPC significantly alleviated ovariectomy-induced trabecular bone loss. Further investigations showed that MPC blockade significantly reversed the metabolic profile related to RANK activation, including decreased intermediates involved in citric acid cycle and glutamine metabolism. Moreover, metabolic flux analysis verified that MPC blockade decreased pyruvate flux into TCA cycle with no significant effect on glycolysis. Besides, MPC blockade resulted in suppressed mitochondrial biogenesis in addition to oxidative phosphorylation. Rescue experiments revealed that inhibiting pyruvate dehydrogenase kinase (PDK) via sodium dichloroacetate (DCA), but not targeting glutamine metabolism, could reverse the effects of MPC blockade on osteoclastogenesis. These implied that the effects of MPC blockade were mediated by reduced pyruvate fuel into citric acid cycle in multiple aspects. Taken together, our data demonstrated the inhibitory effects of MPC blockade on osteoclastogenesis, which was mediated by decreased mitochondrial energy production.

4.
Immunology ; 169(3): 271-291, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36708143

RESUMEN

The nucleotide-binding and oligomerization domain, leucine-rich repeats, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in innate immunity and is involved in the pathogenesis of autoinflammatory diseases. Glycolysis regulates NLRP3 inflammasome activation in macrophages. However, how lactic acid fermentation and pyruvate oxidation controlled by the mitochondrial pyruvate carrier (MPC) affect NLRP3 inflammasome activation and autoinflammatory disease remains elusive. We found that the inactivation of MPC with genetic depletion or pharmacological inhibitors, MSDC-0160 or pioglitazone, increased NLRP3 inflammasome activation and IL-1ß secretion in macrophages. Glycolytic reprogramming induced by MPC inhibition skewed mitochondrial ATP-associated oxygen consumption into cytosolic lactate production, which enhanced NLRP3 inflammasome activation in response to monosodium urate (MSU) crystals. As pioglitazone is an insulin sens MSDC-itizer used for diabetes, its MPC inhibitory effect in diabetic individuals was investigated. The results showed that MPC inhibition exacerbated MSU-induced peritonitis in diabetic mice and increased the risk of gout in patients with diabetes. Altogether, we found that glycolysis controlled by MPC regulated NLRP3 inflammasome activation and gout development. Accordingly, prescriptions for medications targeting MPC should consider the increased risk of NLRP3-related autoinflammatory diseases.


Asunto(s)
Diabetes Mellitus Experimental , Gota , Enfermedades Autoinflamatorias Hereditarias , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transportadores de Ácidos Monocarboxílicos/uso terapéutico , Ácido Úrico , Pioglitazona/uso terapéutico , Gota/patología , Interleucina-1beta/metabolismo
5.
Appl Microbiol Biotechnol ; 107(4): 1361-1371, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36635397

RESUMEN

Mitochondrial pyruvate carriers (MPCs), located in the inner membrane of mitochondria, are essential carriers for pyruvate to enter mitochondria. MPCs regulate a wide range of intracellular metabolic processes, such as glycolysis, the tricarboxylic acid cycle (TCA cycle), fatty acid metabolism, and amino acid metabolism. However, the metabolic regulation of MPCs in macrofungi is poorly studied. We studied the role of MPCs in Ganoderma lucidum (GlMPC) on ganoderic acid (GA) biosynthesis regulation in G. lucidum. In this study, we found that the mitochondrial/cytoplasmic ratio of pyruvate was downregulated about 75% in GlMPC1- and GlMPC2-silenced transformants compared with wild type (WT). In addition, the GA content was 17.72 mg/g and increased by approximately 50% in GlMPC1- and GlMPC2-silenced transformants compared with WT. By assaying the expression levels of three key enzymes and the enzyme activities of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) of the TCA cycle in GlMPC1- and GlMPC2-silenced transformants, it was found that the decrease in GlMPCs activity did not significantly downregulate the TCA cycle rate, and the enzyme activity of IDH increased by 44% compared with WT. We then verified that fatty acid ß-oxidation (FAO) supplements the TCA cycle by detecting the expression levels of key enzymes involved in FAO. The results showed that compared with WT, the GA content was 1.14 mg/g and reduced by approximately 40% in co-silenced transformants. KEY POINTS: • GlMPCs affects the distribution of pyruvate between mitochondria and the cytoplasm. • Acetyl-CoA produced by FAO maintains the TCA cycle. • Acetyl-CoA produced by FAO promotes the accumulation of GA.


Asunto(s)
Reishi , Reishi/genética , Reishi/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Acetilcoenzima A/metabolismo , Ciclo del Ácido Cítrico , Mitocondrias/metabolismo , Ácidos Grasos/metabolismo , Piruvatos/metabolismo
6.
EMBO Rep ; 21(11): e50085, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33043581

RESUMEN

The cultured brown adipocytes can oxidize glucose in vitro, but it is still not fully clear whether brown adipose tissue (BAT) could completely oxidize glucose in vivo. Although positron emission tomography (PET) with 18 F-fluorodeoxyglucose (18 F-FDG) showed a high level of glucose uptake in the activated BAT, the non-metabolizable 18 F-FDG cannot fully demonstrate intracellular glucose metabolism. Through in vivo [U-13 C]glucose tracing, here we show that chronic cold exposure dramatically activates glucose oxidation in BAT and the browning/beiging subcutaneous white adipose tissue (sWAT). Specifically, chronic cold exposure enhances glucose flux into the mitochondrial TCA cycle. Metabolic flux analysis models that ß3-adrenergic receptor (ß3-AR) agonist significantly enhances the flux of mitochondrial pyruvate uptake through mitochondrial pyruvate carrier (MPC) in the differentiated primary brown adipocytes. Furthermore, in vivo MPC inhibition blocks cold-induced glucose oxidation and impairs body temperature maintenance in mice. Together, mitochondrial pyruvate uptake and oxidation serve an important energy source in the chronic cold exposure activated BAT and beige adipose tissue, which supports a role for glucose oxidation in brown fat thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Glucosa , Tejido Adiposo Blanco , Animales , Frío , Fluorodesoxiglucosa F18 , Ratones , Termogénesis
7.
EMBO Rep ; 21(12): e49634, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33275313

RESUMEN

Combined fatty acid esterification and lipolysis, termed lipid cycling, is an ATP-consuming process that contributes to energy expenditure. Therefore, interventions that stimulate energy expenditure through lipid cycling are of great interest. Here we find that pharmacological and genetic inhibition of the mitochondrial pyruvate carrier (MPC) in brown adipocytes activates lipid cycling and energy expenditure, even in the absence of adrenergic stimulation. We show that the resulting increase in ATP demand elevates mitochondrial respiration coupled to ATP synthesis and fueled by lipid oxidation. We identify that glutamine consumption and the Malate-Aspartate Shuttle are required for the increase in Energy Expenditure induced by MPC inhibition in Brown Adipocytes (MAShEEBA). We thus demonstrate that energy expenditure through enhanced lipid cycling can be activated in brown adipocytes by decreasing mitochondrial pyruvate availability. We present a new mechanism to increase energy expenditure and fat oxidation in brown adipocytes, which does not require adrenergic stimulation of mitochondrial uncoupling.


Asunto(s)
Adipocitos Marrones , Ácido Pirúvico , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Lípidos , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Termogénesis , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
8.
J Inherit Metab Dis ; 45(2): 264-277, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34873722

RESUMEN

Pyruvate, the end product of glycolysis, is a key metabolic molecule enabling mitochondrial adenosine triphosphate synthesis and takes part in multiple biosynthetic pathways within mitochondria. The mitochondrial pyruvate carrier (MPC) plays a vital role in transporting pyruvate from the cytosol into the organelle. In humans, MPC is a hetero-oligomeric complex formed by the MPC1 and MPC2 paralogs that are both necessary to stabilize each other and form a functional MPC. MPC deficiency (OMIM#614741) due to pathogenic MPC1 variants is a rare autosomal recessive disease involving developmental delay, microcephaly, growth failure, and increased serum lactate and pyruvate. To date, two MPC1 variants in four cases have been reported, though only one with a detailed clinical description. Herein, we report three novel pathogenic MPC1 variants in six patients from three unrelated families, identified within European, Kuwaiti, and Chinese mitochondrial disease patient cohorts, one of whom presented as a Leigh-like syndrome. Functional analysis in primary fibroblasts from the patients revealed decreased expression of MPC1 and MPC2. We rescued pyruvate-driven oxygen consumption rate in patient's fibroblasts by reconstituting with wild-type MPC1. Complementing homozygous MPC1 mutant cDNA with CRISPR-deleted MPC1 C2C12 cells verified the mechanism of variants: unstable MPC complex or ablated pyruvate uptake activity. Furthermore, we showed that glutamine and beta-hydroxybutyrate were alternative substrates to maintain mitochondrial respiration when cells lack pyruvate. In conclusion, we expand the clinical phenotypes and genotypes associated with MPC deficiency, with our studies revealing glutamine as a potential therapy for MPC deficiency.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Glutamina/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo
9.
Exp Dermatol ; 30(4): 448-456, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33739490

RESUMEN

Hair follicle stem cells (HFSCs) are known to be responsible for the initiation of a new hair cycle, but typically remain quiescent for very long periods. In alopecia, or hair loss disorders, follicles can be refractory to activation for years or even permanently. Alopecia can be triggered by autoimmunity, age, chemotherapeutic treatment, stress, disrupted circadian rhythm or other environmental insults. We previously showed that hair follicle stem cells and the hair cycle can be manipulated by regulation of pyruvate entry into mitochondria for subsequent oxidation to fuel the TCA cycle in normal adult mice with typical hair cycling. Here, we present new data from our efforts to develop murine models of alopecia based on environmental triggers that have been shown to do the same in human skin. We found that inhibition of pyruvate transport into mitochondria can accelerate the hair cycle even during refractory hair cycling due to age, repeated chemotherapeutic treatment and stress. Hair cycle acceleration in these alopecia models led to the formation of histologically normal hair follicles within 30-40 days of treatment without any overt signs of toxicity or deleterious effects. Therefore, we propose inhibition of pyruvate entry into mitochondria as a versatile treatment strategy for alopecia in humans.


Asunto(s)
Alopecia/terapia , Folículo Piloso/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Piruvatos/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Células Madre/efectos de los fármacos
10.
BMC Biol ; 18(1): 2, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907035

RESUMEN

BACKGROUND: The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway. RESULTS: Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins. CONCLUSIONS: The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico
11.
Metab Eng ; 61: 225-237, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32623009

RESUMEN

Pyruvate is a central metabolite for the biological production of various chemicals. In eukaryotes, pyruvate produced by glycolysis is used in conversion to ethanol and lactate and in anabolic metabolism in the cytosol, or is transported into the mitochondria for use as a substrate in the tricarboxylic acid (TCA) cycle. In this study, we focused on controlling pyruvate metabolism in aerobic microorganisms for the biological production of various chemicals. We successfully improved productivity by redirecting pyruvate metabolism in the aerobic filamentous fungus Aspergillus oryzae via the deletion of two genes that encode pyruvate decarboxylase and mitochondrial pyruvate carriers. Production of ethanol as a major byproduct was completely inhibited, and the limited translocation of pyruvate into the mitochondria shifted the metabolism from respiration for energy conversion to the effective production of lactate or 2,3-butandiole, even under aerobic conditions. Metabolomic and transcriptomic analyses showed an emphasis on glycolysis and a repressed TCA cycle. Although the dry mycelial weights of the deletion mutants were reduced compared with those of wild type, the titer and yields of the target products were drastically increased. In particular, the redirection of pyruvate metabolism shifted from anabolism for biomass production to catabolism for the production of target chemicals. Conclusively, our results indicate that the redirection of pyruvate metabolism is a useful strategy in the metabolic engineering of aerobic microorganisms.


Asunto(s)
Aspergillus oryzae , Ciclo del Ácido Cítrico , Etanol/metabolismo , Mitocondrias , Consumo de Oxígeno , Ácido Pirúvico/metabolismo , Aerobiosis , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Ingeniería Metabólica , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación
12.
Biotechnol Bioeng ; 117(9): 2633-2647, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32436990

RESUMEN

Chinese hamster ovary (CHO) cells are characterized by a low glucose catabolic efficiency, resulting in undesirable lactate production. Here, it is hypothesized that such low efficiency is determined by the transport of pyruvate into the mitochondria. The mitochondrial pyruvate carrier (MPC), responsible for introducing pyruvate into the mitochondria, is formed by two subunits, MPC1 and MPC2. Stable CHO cell lines, overexpressing the genes of both subunits, were constructed to facilitate the entry of pyruvate into the mitochondria and its incorporation into oxidative pathways. Significant overexpression of both genes, compared to the basal level of the control cells, was verified, and subcellular localization of both subunits in the mitochondria was confirmed. Kinetic evaluation of the best MPC overexpressing CHO cells showed a reduction of up to 50% in the overall yield of lactate production with respect to the control. An increase in specific growth rate and maximum viable cell concentration, as well as an increase of up to 40% on the maximum concentration of two recombinant model proteins transiently expressed (alkaline phosphatase or a monoclonal antibody), was also observed. Hybrid cybernetic modeling, that considered 89 reactions, 25 extracellular metabolites, and a network of 62 intracellular metabolites, explained that the best MPC overexpression case resulted in an increased metabolic flux across the mitochondrial membrane, activated a more balanced growth, and reduced the Warburg effect without compromising glucose consumption rate and maximum cell concentration. Overall, this study showed that transport of pyruvate into the mitochondria limits the efficiency of glucose oxidation, which can be overcome by a cell engineering approach.


Asunto(s)
Ácido Láctico/metabolismo , Ingeniería Metabólica/métodos , Proteínas Mitocondriales , Transportadores de Ácidos Monocarboxílicos , Proteínas Recombinantes , Animales , Células CHO , Cricetinae , Cricetulus , Glucosa/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
BMC Nephrol ; 21(1): 274, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32664896

RESUMEN

BACKGROUND: Mitochondrial dysfunction contributes to the pathogenesis of diabetic nephropathy (DN). Mitochondrial pyruvate carrier 1 (MPC1) and mitochondrial pyruvate carrier 2 (MPC2) play a bottleneck role in the transport of pyruvate into mitochondrial across the mitochondrial inner membrane. A previous study showed that increasing mitochondrial pyruvate carrier content might ameliorate diabetic kidney disease in db/db mice. However, the expression status of MPC1 and MPC2 in patients with DN is unclear. METHODS: Patients with primary glomerulonephropathy (PGN, n = 30), PGN with diabetes mellitus (PGN-DM, n = 30) and diabetic nephropathy (DN, n = 30) were included. MPC1 and MPC2 protein levels were examined by immunohistochemistry. The expression of MPC in different groups was evaluated by the Kruskal-Wallis test. Spearman's rank correlation was performed for correlation analysis between MPC levels and clinical factors. RESULTS: Both MPC1 and MPC2 were localized in renal tubules. Levels of MPC1 and MPC2 were lower in DN patients than in PGN patients and in PGN patients with DM, whereas there were no differences in MPC1 and MPC2 levels among DN stage II to stage IV. Moreover, both MPC1 and MPC2 levels were significantly correlated with serum creatinine, BUN and eGFR in patients with DN, whereas no analogous trend was observed in nondiabetic kidney disease. CONCLUSIONS: Our study indicated that MPC localized in renal tubules, which were significantly decreased in DN. MPC was associated with clinical features, especially those representing renal functions.


Asunto(s)
Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/metabolismo , Glomerulonefritis/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Adulto , Anciano , Diabetes Mellitus/patología , Nefropatías Diabéticas/patología , Femenino , Glomerulonefritis/patología , Humanos , Riñón/metabolismo , Riñón/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Persona de Mediana Edad
14.
Int J Mol Sci ; 21(9)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403431

RESUMEN

Human mitochondrial pyruvate carriers (hMPCs), which are required for the uptake of pyruvate into mitochondria, are associated with several metabolic diseases, including type 2 diabetes and various cancers. Yeast MPC was recently demonstrated to form a functional unit of heterodimers. However, human MPC-1 (hMPC-1) and MPC-2 (hMPC-2) have not yet been individually isolated for their detailed characterization, in particular in terms of their structural and functional properties, namely, whether they exist as homo- or heterodimers. In this study, hMPC-1 and hMPC-2 were successfully isolated in micelles and they formed stable homodimers. However, the heterodimer state was found to be dominant when both hMPC-1 and hMPC-2 were present. In addition, as heterodimers, the molecules exhibited a higher binding capacity to both substrates and inhibitors, together with a larger structural stability than when they existed as homodimers. Taken together, our results demonstrated that the hetero-dimerization of hMPCs is the main functional unit of the pyruvate metabolism, providing a structural insight into the transport mechanisms of hMPCs.


Asunto(s)
Enfermedades Metabólicas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Transportadores de Ácidos Monocarboxílicos/química , Multimerización de Proteína , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Humanos , Enfermedades Metabólicas/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Homología de Secuencia de Aminoácido , Células Sf9 , Spodoptera
15.
EMBO J ; 34(7): 911-24, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25672363

RESUMEN

At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by MPC1, MPC2, and MPC3 in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPCFERM and MPCOX. By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPCOX has a higher transport activity than MPCFERM, which is dependent on the C-terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability.


Asunto(s)
Proteínas de Transporte de Anión/biosíntesis , Proteínas de la Membrana/biosíntesis , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Ácido Pirúvico/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Anión/genética , Transporte Biológico Activo/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial , Complejos Multiproteicos/biosíntesis , Complejos Multiproteicos/genética , Consumo de Oxígeno/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
NMR Biomed ; 32(11): e4163, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31424145

RESUMEN

We aimed to evaluate the feasibility of neurochemical profiling of embryonic mouse brain developments in utero and to seek potential in vivo evidence of an energy shift in a mitochondrial pyruvate carrier 1 (MPC1) deficient mouse model. C57BL/6 embryonic mouse brains were studied in utero by anatomical MRI and short echo localized proton (1 H) MRS at 14.1 T. Two embryonic stages were studied, the energy shift (e.g., embryonic day 12.5-13, E12.5-13) and close to the birth (E17.5-18). In addition, embryonic brains devoid of MPC1 were studied at E12.5-13. The MRI provided sufficient anatomical contrasts for visualization of embryonic brain. Localized 1 H MRS offered abundant metabolites through the embryonic development from E12.5 and close to the birth, e.g., E17.5 and beyond. The abundant neurochemical information at E12.5 provided metabolic status and processes relating to cellular development at this stage, i.e., the energy shift from glycolysis to oxidative phosphorylation, evidenced by accumulation of lactate in E12.5-13 embryonic brain devoid of MPC1. The further evolution of the neurochemical profile of embryonic brains at E17.5-18 is consistent with cellular and metabolic processes towards the birth. Localized 1 H MRS study of embryonic brain development in utero is feasible, and longitudinal neurochemical profiling of embryonic brains offers valuable insight into early brain development.


Asunto(s)
Química Encefálica , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Embrión de Mamíferos/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Animales , Estudios de Factibilidad , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Microb Cell Fact ; 18(1): 177, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615527

RESUMEN

BACKGROUND: Saccharomyces cerevisiae is a suitable host for the industrial production of pyruvate-derived chemicals such as ethanol and 2,3-butanediol (23BD). For the improvement of the productivity of these chemicals, it is essential to suppress the unnecessary pyruvate consumption in S. cerevisiae to redirect the metabolic flux toward the target chemical production. In this study, mitochondrial pyruvate transporter gene (MPC1) or the essential gene for mitophagy (ATG32) was knocked-out to repress the mitochondrial metabolism and improve the production of pyruvate-derived chemical in S. cerevisiae. RESULTS: The growth rates of both aforementioned strains were 1.6-fold higher than that of the control strain. 13C-metabolic flux analysis revealed that both strains presented similar flux distributions and successfully decreased the tricarboxylic acid cycle fluxes by 50% compared to the control strain. Nevertheless, the intracellular metabolite pool sizes were completely different, suggesting distinct metabolic effects of gene knockouts in both strains. This difference was also observed in the test-tube culture for 23BD production. Knockout of ATG32 revealed a 23.6-fold increase in 23BD titer (557.0 ± 20.6 mg/L) compared to the control strain (23.5 ± 12.8 mg/L), whereas the knockout of MPC1 revealed only 14.3-fold increase (336.4 ± 113.5 mg/L). Further investigation using the anaerobic high-density fermentation test revealed that the MPC1 knockout was more effective for ethanol production than the 23BD production. CONCLUSION: These results suggest that the engineering of the mitochondrial transporters and membrane dynamics were effective in controlling the mitochondrial metabolism to improve the productivities of chemicals in yeast cytosol.


Asunto(s)
Citosol/metabolismo , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Butileno Glicoles/metabolismo , Etanol/metabolismo , Fermentación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ingeniería Metabólica , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Biochem J ; 475(10): 1687-1699, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669911

RESUMEN

Mitochondrial pyruvate carrier (MPC), which is essential for mitochondrial pyruvate usage, mediates the transport of cytosolic pyruvate into mitochondria. Low MPC expression is associated with various cancers, and functionally associated with glycolytic metabolism and stemness. However, the mechanism by which MPC expression is regulated is largely unknown. In this study, we showed that MPC1 is down-regulated in human renal cell carcinoma (RCC) due to strong suppression of peroxisome proliferator-activated receptor-gamma co-activator (PGC)-1 alpha (PGC-1α). We also demonstrated that overexpression of PGC-1α stimulates MPC1 transcription, while depletion of PGC-1α by siRNA suppresses MPC expression. We found that PGC-1α interacts with estrogen-related receptor-alpha (ERR-α) and recruits it to the ERR-α response element motif located in the proximal MPC1 promoter, resulting in efficient activation of MPC1 expression. Furthermore, the MPC inhibitor, UK5099, blocked PGC-1α-induced pyruvate-dependent mitochondrial oxygen consumption. Taken together, our results suggest that MPC1 is a novel target gene of PGC-1α. In addition, low expression of PGC-1α in human RCC might contribute to the reduced expression of MPC, resulting in impaired mitochondrial respiratory capacity in RCC by limiting the transport of pyruvate into the mitochondrial matrix.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Regulación Neoplásica de la Expresión Génica , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/genética , Consumo de Oxígeno , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Metabolismo Energético , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Regiones Promotoras Genéticas , Ácido Pirúvico/metabolismo , Elementos de Respuesta , Factores de Transcripción , Células Tumorales Cultivadas
19.
J Biol Chem ; 292(11): 4423-4433, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28154187

RESUMEN

Alterations in mitochondrial function contribute to diabetic cardiomyopathy. We have previously shown that heart mitochondrial proteins are hyperacetylated in OVE26 mice, a transgenic model of type 1 diabetes. However, the universality of this modification and its functional consequences are not well established. In this study, we demonstrate that Akita type 1 diabetic mice exhibit hyperacetylation. Functionally, isolated Akita heart mitochondria have significantly impaired maximal (state 3) respiration with physiological pyruvate (0.1 mm) but not with 1.0 mm pyruvate. In contrast, pyruvate dehydrogenase activity is significantly decreased regardless of the pyruvate concentration. We found that there is a 70% decrease in the rate of pyruvate transport in Akita heart mitochondria but no decrease in the mitochondrial pyruvate carriers 1 and 2 (MPC1 and MPC2). The potential role of hyperacetylation in mediating this impaired pyruvate uptake was examined. The treatment of control mitochondria with the acetylating agent acetic anhydride inhibits pyruvate uptake and pyruvate-supported respiration in a similar manner to the pyruvate transport inhibitor α-cyano-4-hydroxycinnamate. A mass spectrometry selective reactive monitoring assay was developed and used to determine that acetylation of lysines 19 and 26 of MPC2 is enhanced in Akita heart mitochondria. Expression of a double acetylation mimic of MPC2 (K19Q/K26Q) in H9c2 cells was sufficient to decrease the maximal cellular oxygen consumption rate. This study supports the conclusion that deficient pyruvate transport activity, mediated in part by acetylation of MPC2, is a contributor to metabolic inflexibility in the diabetic heart.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocardio/patología , Ácido Pirúvico/metabolismo , Acetilación , Animales , Proteínas de Transporte de Anión/análisis , Diabetes Mellitus Tipo 1/patología , Cardiomiopatías Diabéticas/patología , Ácidos Grasos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Proteínas de Transporte de Membrana Mitocondrial/análisis , Miocardio/metabolismo , Oxidación-Reducción , Consumo de Oxígeno
20.
Biochem Biophys Res Commun ; 495(1): 1008-1013, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29175325

RESUMEN

Pyruvate is a central substrate in energy metabolism, paramount to carbohydrate, fat, and amino acid catabolic and anabolic pathways. Mitochondrial pyruvate carrier 1(MPC1) is one important component of the complex that facilitates mitochondrial pyruvate import. Complete MPC1 deficiency is a serious concern, and has been shown to result in embryonic lethality in mice. The study outlined in this paper generated one mouse line with the MPC1 protein part deficiency by using the CRISPR/Cas9 system. Clinical observations, body weight and organ/tissue weight, gas exchange, cold-stimulation, blood parameters, as well as histopathology analysis were analyzed to evaluate potential physiological abnormalities caused by MPC1 deficiency. Results indicate that MPC1+/- mice experienced a change in important clinical criteria such as low body weight, decreased movement, and low body shell temperature, few adipose accumulate. The mice show significant difference in some blood parameters including apo-B100, apo-A1, HDL, glucagon, insulin. However these changes alleviated while being fed with the HFD, which provided metabolites to sustain the TCA cycle and body development. The MPC1+/- mice may employ fatty acid oxidation to meet their bioenergetic demands. This study suggests that inhibition of MPC1 activity can boost fatty acid oxidation to provide sufficient energy to the body. This work promotes further studies regarding the interplay between carbohydrate and fat metabolism.


Asunto(s)
Peso Corporal/fisiología , Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Consumo de Oxígeno/fisiología , Proproteína Convertasa 1/metabolismo , Ácido Pirúvico/metabolismo , Animales , Respuesta al Choque por Frío/fisiología , Activación Enzimática , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA