Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Chemistry ; 29(43): e202301250, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37194969

RESUMEN

A new type of neutral mixed-valence system was synthesized using a facile one-pot procedure. The spiro-conjugated framework is additionally "fastened" with a biphenyl bridge, which does not directly participate in spin delocalization but makes the molecule stable and influences the reorganization energy and the energy barrier of the intramolecular electron transfer. The in-depth experimental and quantum-chemical study allowed determining the radicals as the Class II Robin-Day-mixed-valence systems. The structure of the radicals was confirmed by the X-ray data, which are relatively rare for Class II MV molecules. Advanced properties of the radicals, such as an ambipolar redox behavior and panchromatic absorption in the visible and NIR regions, along with their stability, make them of interest for materials science. All radicals demonstrate the SOMO-HOMO inversion phenomenon, which was supported by the DFT and the experimental study.

2.
Angew Chem Int Ed Engl ; 62(49): e202314006, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37847644

RESUMEN

Mixed-valence (MV) dimers have been extensively investigated, however, the structure and properties of purely organic MV trimers based on open-shell polycyclic aromatic hydrocarbons remain elusive. Herein, unprecedented MV BN-doped corannulene radical cations [BN-Cor1]3 ⋅⋅2+ ⋅ 2[BArylF 4 ]- and [BN-Cor2]3 ⋅⋅2+ ⋅ 2[BArylF 4 ]- were synthesized via chemical oxidation, and their structures were unambiguously confirmed by single-crystal X-ray diffraction. These uncommon radical cations consist of three corannulene cores and two [BArylF 4 ]- anions, and three corannulene motifs [BN-Cor1]3 ⋅⋅2+ and [BN-Cor2]3 ⋅⋅2+ in the unit cell exhibit a trimer structure with a slipped π-stacking configuration. Detailed structural analyses further revealed that the corannulene cores exhibit an infinite layered self-assembly configuration, allowing their potential applications as building blocks for molecular conductors. The detection of a forbidden transition (Δms =±2) by electron paramagnetic resonance (EPR) spectroscopy further confirmed the existence of two unpaired electrons in the π-trimers and the MV characteristic of these two species. Variable-temperature EPR and conductivity measurements suggested that the BN-doped π-trimers exhibited antiferromagnetic coupling and conductivity properties.

3.
Chemistry ; 28(34): e202104486, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35347776

RESUMEN

To investigate the effects of cis/trans-configuration of the cyanidometal bridge and the electron donating ability of the auxiliary ligand on the cyanidometal bridge on metal to metal charge transfer (MMCT) in cyanidometal-bridged mixed valence compounds, two groups of trinuclear cyanidometal-bridged compounds cis/trans-[Cp(dppe)Fe(µ-NC)Ru(4,4'-dmbpy)2 (µ-CN)Fe(dppe)Cp][PF6 ]n (n=2 (cis/trans-1[PF6 ]2 ), 3 (cis/trans-1[PF6 ]3 ), 4 (cis/trans-1[PF6 ]4 )) and cis/trans-[Cp(dppe)Fe(µ-NC)Ru(bpy)2 (µ-CN)Fe(dppe)Cp][PF6 ]3 (cis/trans-2[PF6 ]3 ) were synthesized and fully characterized. The experimental results indicate that for these one- and two-electron oxidation mixed valence compounds, the trans-configuration compounds are more beneficial for MMCT than the cis-configuration compounds, and increasing the electron donating ability of the auxiliary ligand on the cyanidometal bridge is also conductive to MMCT. Moreover, compounds cis/trans-1[PF6 ]n (n=3, 4) and cis/trans-2[PF6 ]3 belong to localized compounds by analyzing the experimental characterization results, supported by the TDDFT calculations.

4.
Angew Chem Int Ed Engl ; 61(52): e202214108, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36305378

RESUMEN

A one-dimensional (1D) halogen-bridged dinuclear-metal complex (MMX-chain) exhibits various electronic states based on a mixed-valence metal-dimer system. This report deals with the synthesis and physical properties of a new MMX-chain with a bulky pendant ligand, Pt2 (mcc-HexCS2 )4 I (mcc-HexCS2 =trans-4-(methoxycarbonyl)cyclohexanedithiocarboxylate). The steric hindrance caused by the bulky substituent induces a strain in its 1D chain, achieving at ambient condition the first pure alternate charge-polarization (ACP) state (-Pt2+ -Pt3+ -I- -Pt3+ -Pt2+ -I- -), a kind of spin-Peierls state, as confirmed by X-ray diffraction and its conducting and magnetic properties. The strain effect is also manifested as a very large linear thermal expansion along the chain direction, which is quite different from conventional MMX-chains without a bulky ligand. The design of low-dimensional materials with ligand variations is expected to lead to the emergence of new electron-lattice coupled electronic states.

5.
Angew Chem Int Ed Engl ; 60(12): 6771-6777, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33306267

RESUMEN

Three linear dimers with two redox-active planarized triphenylamines were synthesized and their structures verified by X-ray crystallography. Their radical cations, which exhibit electron self-exchange between the two redox centers, are of great interest. This process was thoroughly investigated by means of electron paramagnetic resonance spectroscopy, absorption spectroscopy, and (time-dependent) density functional theory calculations. A comparison of the key parameters of electron transfer with non-planarized nitrogen-centered building blocks emphasizes the impact of using redox centers with low internal reorganization energies. However, the distance-dependence attenuation factor of the super-exchange mechanisms remains similar.

6.
Angew Chem Int Ed Engl ; 60(9): 4804-4814, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33226727

RESUMEN

Mixed-valence compounds with the iso-cyanidometal-ligand bridge in different oxidation states are used as models for the investigation of the electron-transfer process. We synthesized a series of trimetallic isocyanidometal-bridged compounds with [Fe-CN-Ru-NC-Fe]n+ (n=2-4), in which the one-electron oxidation product (N3+ ) and two-electron oxidation product (N4+ ) compounds possess an isocyanidometal bridge whose energy is, respectively lower and slightly higher than the terminal metal centers energies. For the N3+ compounds, the bridge state (FeII -RuIII -FeII ) and mixed-valence states (FeIII -RuII -FeII or FeII -RuII -FeIII ) could be simultaneously observed on the IR timescale. For the N4+ compounds, as the donor becomes stronger the electron transfer bridge excited state (FeIII -RuII -FeIII ) becomes more and more stable, and even becomes ground state due to the strong electronic coupling between Fe and Ru.

7.
Angew Chem Int Ed Engl ; 60(28): 15371-15375, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33908694

RESUMEN

Herein, we investigate a novel set of polarizing agents-mixed-valence compounds-by theoretical and experimental methods and demonstrate their performance in high-field dynamic nuclear polarization (DNP) NMR experiments in the solid state. Mixed-valence compounds constitute a group of molecules in which molecular mobility persists even in solids. Consequently, such polarizing agents can be used to perform Overhauser-DNP experiments in the solid state, with favorable conditions for dynamic nuclear polarization formation at ultra-high magnetic fields.

8.
Chemistry ; 25(60): 13728-13738, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31376186

RESUMEN

Realization of molecular quantum cellular automata (QCA), a promising architecture for molecular computing through current-free processes, requires improved understanding and application of mixed-valence (MV) molecules. In this report, we present an electrostatic approach to creating MV subspecies through internalizing opposite charges in close proximity to MV ionic moieties. This approach is demonstrated by unsymmetrically attaching a charge-responsive boron substituent to a well-known organometallic MV complex, biferrocenium. Guest anions (CN- and F- ) bind to the Lewis acidic boron center, leading to unusual blue-shifts of the intervalence charge-transfer (IVCT) bands. To the best of our knowledge, this is the first reported example of a zwitterionic MV series in which the degree of positive charge delocalization can be varied by changing the bound anions, and serves to clarify the interplay between IVCT parameters. The key underlying factor is the variable zero-level energy difference in the MV states. This work provides new insight into imbuing MV molecules with external charge-responsiveness, a prerequisite of molecular QCA techniques.

10.
Chemistry ; 25(68): 15455-15462, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31647599

RESUMEN

Radical cations of bis(dianisylamino)-terminated oligo(p-phenylene)s (OPPs) with up to five phenyl moieties were characterized by means of UV/Vis-NIR and variable-temperature ESR spectroscopy to investigate the bridge-length-dependence on intramolecular charge/spin self-exchange between two nitrogen redox-active centers. Additionally, a comparative study between bis(dianisylamine)-based mixed-valence (MV) radical cations connected by p-terphenylene and hexa-peri-hexabenzocoronene (HBC) π-bridging units also provided information on the influence of extended π-conjugation over the OPP-bridge due to the planarization between adjacent phenylene units on the strength of electronic coupling. The present study on a homologous series of organic MV systems clarifies the attenuation factor through the OPP-bridge and the linear relationship between the electrochemical potential splitting and the electronic coupling in the region of intermediate-to-weak electronic coupling regime.

11.
Chemistry ; 24(8): 1821-1832, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29077995

RESUMEN

Three classes of donor-acceptor (D-A) π-extended chromophores (1-12) were synthesized through a phosphite-mediated cross-coupling reaction, in which the anhydride- or imide-based π-As and number of tetrathiafulvalene (TTF)/dithiafulvalene (DTF) Ds were systematically changed. Large π rings, such as benzoperylene and coronene, were integrated into the TTF/DTF unit, for the first time, to overcome their high insolubility. The anhydride and imide groups in the π acceptors can significantly alter the frontier orbitals and influence the optoelectronic properties. The D moieties allow the formation of radical cations (D.+ ) and the π-extended A moieties aid the formation of radical anions (A.- ) by oxidation/reduction under ambient conditions. The molecules revealed UV/Vis/near-IR absorption, fluorescence extending into the near-IR region, and amphoteric electrochemical properties. Chromophores 10 and 12 show solvatochromism in a wide range of solvents. The π-As with anhydride functionality allow easier electron uptake, relative to the imide groups, whereas the increasing number of D TTF/DTF units make them easy to oxidize. Interestingly, the trans-TTF-fused molecules (1, 6, and 11) exhibited a mixed-valence state in the mid-IR region (ν˜ =5130-4000 cm-1 ). Moderate electron coupling between the redox centers is inferred to the compounds being of Robin-Day class II. The multistate redox activity along with panchromism and near-/mid-IR optical absorption of these systems can be attractive towards advanced switchable materials.

12.
Chemphyschem ; 19(22): 2989-2994, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30171653

RESUMEN

Mixed-valence compounds are of great interest due to their interesting properties and wide applications. Recently, gold (Au) chemistry has experienced an unprecedented development. However, Au with mixed-valence states in Au-O compounds has not been reported thus far. Here, two hitherto unknown AuO2 and AuS compounds with mixed-valence character were identified with the aid of first-principles swarm structure searching calculations. AuO2 consists of quasi-square AuO4 moiety and AuO6 octahedron in which Au shows the mixed-valence states of III and V, the first example in Au-O binary compounds. AuS contains the linear AuS2 and quasi-square AuS4 units exhibiting AuI/III mixed-valence states. The analysis of electronic property demonstrates that AuO2 and AuS are narrow band gap semiconductors with strong hybridization between Au 5d and O 2p or S 3p. With the increase of pressure, Au-O and Au-S compounds show completely different thermodynamic stabilities, resulting from distinct shifting of pressure-induced atomic orbital energy levels of O and S atoms. Our work provides an opportunity for understanding mixed-valence character in Au-O and Au-S compounds.

13.
Angew Chem Int Ed Engl ; 57(17): 4717-4721, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29450956

RESUMEN

The multistate redox-active/multi-interactive ligand 5,5',8,8'-tetra(4-pyridyl)-2,2'-(1,4-phenylene)bis-1H-perimidine (H2 TPP) was designed and synthesized. H2 TPP undergoes four one-electron oxidation steps, and was used for the preparation of a multistate redox-active coordination network in a solid-liquid interface reaction using molten Cd2+ salts. The multiple redox states of H2 TPP were confirmed spectroscopically by stepwise four-electron oxidation. Spectroscopic analysis indicated that the mixed-valence states of the ligand are class II on the UV/Vis/NIR timescale and borderline class II/class III on the ESR timescale.

14.
Angew Chem Int Ed Engl ; 56(14): 3838-3841, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28000324

RESUMEN

The fabrication of so-called ghost-leg sheets and their electronic properties is reported. This unique sheet structure is composed of one-dimensional mixed-valence nickel chains, which are linked with one another by bis(azamacrocycle) ligands. They are also topologically unique NiII /NiIII mixed-valence complexes, as confirmed by X-ray and optical measurements. Moreover, their magnetic susceptibilities indicated two-dimensional antiferromagnetic behavior following the Fisher 1D chain model with interchain interactions, where spins on NiIII sites mutually interact antiferromagnetically in the sheets.

15.
Angew Chem Int Ed Engl ; 56(6): 1605-1609, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28079947

RESUMEN

The heterometallic complexes trans-[Cp(dppe)FeNCRu(o-bpy)CNFe(dppe)Cp][PF6 ]n (1[PF6 ]n , n=2, 3, 4; o-bpy=1,2-bis(2,2'-bipyridyl-6-yl)ethane, dppe=1,2-bis(diphenylphosphino)ethane, Cp=1,3-cyclopentadiene) in three distinct states have been synthesized and fully characterized. 13+ [PF6 ]3 and 14+ [PF6 ]4 are the one- and two-electron oxidation products of 12+ [PF6 ]2 , respectively. The investigated results suggest that 1[PF6 ]3 is a Class II mixed valence compound. 1[PF6 ]4 after a thermal treatment at 400 K shows an unusually delocalized mixed valence state of [FeIII -NC-RuIII -CN-FeII ], which is induced by electron transfer from the central RuII to the terminal FeIII in 1[PF6 ]4 , which was confirmed by IR spectroscopy, magnetic data, and EPR and Mössbauer spectroscopy.

16.
J Comput Chem ; 37(1): 93-102, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26265245

RESUMEN

A series of paracyclophane (PC) bridged mixed-valence (MV) bis-triarylamine radical cations with different ([2.2], [3.3], [4.4]) linkers, with and without additional ethynyl spacers, have been studied by quantum-chemical calculations (BLYP35-D3/TZVP/COSMO) of ground-state structures, thermal electron-transfer barriers, hyperfine couplings, and lowest-lying excited states. Such PC-bridged MV systems are important intra-molecular model systems for inter-molecular electron transfer (ET) via π-stacked aromatics, since they allow enforcement of a more or less well-defined geometrical arrangement. Closely comparable ET barriers and electronic couplings for all [2.2] and [3.3] bridges are found for these class-II MV systems, irrespective of the use of pseudo-para and pseudo-meta connections. While the latter observation contradicts notions of quantum interference for off-resonant conduction through molecular wires, it agrees with the less intricate nodal structures of the highest occupied molecular orbitals. The ET in such MV systems may be more closely connected with hole conduction in the resonant regime. Computations on model cations, in which the [2.2] linkers have been truncated, confirm predominant through-space π-π electronic coupling. Systems with [4.4] PC bridges exhibit far more structural flexibility and concomitantly weaker electronic interactions between the redox centers.

17.
Chemistry ; 22(30): 10341-5, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27246707

RESUMEN

A series of cyclometalated diruthenium complexes with a redox-active amine bridge were synthesized. Depending on the terminal ligands of the ruthenium components and the substituent on the amine unit, the one-electron-oxidized state can be either in the form of a weakly or strongly coupled mixed-valence diruthenium complex, a fully charge-delocalized three-center system, or a bridge-biased electrophore. This transition among different electronic forms was supported by electrochemistry, near-infrared absorption, electron paramagnetic resonance, and density functional theory analysis.

18.
Angew Chem Int Ed Engl ; 55(43): 13519-13523, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27717214

RESUMEN

We report two new helicenes derived from the double fusion of an acene with two perylene diimide (PDI) subunits. These PDI-helicene homologs exhibit very different structural and electronic properties, despite differing by only a single ring in the link between the PDI units. The shorter inter-PDI link brings the two PDI subunits closer together, and this results in the collision of their respective π-electron clouds. This collision facilitates intramolecular through-space electronic delocalization when the PDI-helicene is reduced.

19.
Angew Chem Int Ed Engl ; 54(51): 15448-51, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26516063

RESUMEN

The preparation of 7-Fc(+) -8-Fc-7,8-nido-[C2 B9 H10 ](-) (Fc(+) FcC2 B9 (-) ) demonstrates the successful incorporation of a carborane cage as an internal counteranion bridging between ferrocene and ferrocenium units. This neutral mixed-valence Fe(II) /Fe(III) complex overcomes the proximal electronic bias imposed by external counterions, a practical limitation in the use of molecular switches. A combination of UV/Vis-NIR spectroscopic and TD-DFT computational studies indicate that electron transfer within Fc(+) FcC2 B9 (-) is achieved through a bridge-mediated mechanism. This electronic framework therefore provides the possibility of an all-neutral null state, a key requirement for the implementation of quantum-dot cellular automata (QCA) molecular computing. The adhesion, ordering, and characterization of Fc(+) FcC2 B9 (-) on Au(111) has been observed by scanning tunneling microscopy.

20.
Angew Chem Int Ed Engl ; 54(42): 12506-10, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26381441

RESUMEN

A complete series of biomimetic [2Fe-2S] clusters, [(L(Dep) Fe)2 (µ-S)2 ] (3, L(Dep) =CH[CMeN(2,6-Et2 C6 H3 )]2 ), [(L(Dep) Fe)2 (µ-S)2 K] (4), [(L(Dep) Fe)2 (µ-S)2 ][Bu4 N] (5, Bu=n-butyl), and [(L(Dep) Fe)2 (µ-S)2 K2 ] (6), could be synthesized and characterized. The all-ferric [2Fe-2S] cluster 3 is readily accessible through the reaction of [(L(Dep) Fe)2 (µ-H)2 ] (2) with elemental sulfur. The chemical reduction of 3 with one molar equivalent of elemental potassium affords the contact ion pair K(+) [2Fe-2S](-) (4) as a one-dimensional coordination polymer, which in turn reacts with [Bu4 N]Cl to afford the separate ion pair [Bu4 N](+) [2Fe-2S](-) (5). Further reduction of 4 with potassium furnishes the super-reduced all-ferrous [2Fe-2S] cluster 6. Remarkably, complexes 4 and 5 are [2Fe-2S] clusters with extensively delocalized Fe(2+) Fe(3+) pairs as evidenced by (57) Fe Mössbauer, X-ray absorption and emission spectroscopy (XAS, XES) and in accordance with DFT calculations.


Asunto(s)
Materiales Biomiméticos/química , Compuestos de Hierro/química , Proteínas Hierro-Azufre/química , Modelos Moleculares , Estructura Molecular , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA