Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333627

RESUMEN

Effective intracellular communication between cellular organelles occurs at dedicated membrane contact sites (MCSs). Tether proteins are responsible for the establishment of MCSs, enabling direct communication between organelles to ensure organelle function and host cell homeostasis. While recent research has identified tether proteins in several bacterial pathogens, their functions have predominantly been associated with mediating inter-organelle communication between the bacteria containing vacuole (BCV) and the host endoplasmic reticulum (ER). Here, we identify a novel bacterial effector protein, CbEPF1, which acts as a molecular tether beyond the confines of the BCV and facilitates interactions between host cell organelles. Coxiella burnetii, an obligate intracellular bacterial pathogen, encodes the FFAT motif-containing protein CbEPF1 which localizes to host lipid droplets (LDs). CbEPF1 establishes inter-organelle contact sites between host LDs and the ER through its interactions with VAP family proteins. Intriguingly, CbEPF1 modulates growth of host LDs in a FFAT motif-dependent manner. These findings highlight the potential for bacterial effector proteins to impact host cellular homeostasis by manipulating inter-organelle communication beyond conventional BCVs.

2.
J Cell Sci ; 132(12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31209063

RESUMEN

In the general context of an increasing prevalence of obesity-associated diseases, which follows changing paradigms in food consumption and worldwide use of industry-transformed foodstuffs, much attention has been given to the consequences of excessive fattening on health. Highly related to this clinical problem, studies at the cellular and molecular level are focused on the fundamental mechanism of lipid handling in dedicated lipid droplet (LD) organelles. This Review briefly summarizes how views on LD functions have evolved from those of a specialized intracellular compartment dedicated to lipid storage to exerting a more generalized role in the stress response. We focus on the current understanding of how proteins bind to LDs and determine their function, and on the new paradigms that have emerged from the discoveries of the multiple contact sites formed by LDs. We argue that elucidating the important roles of LD tethering to other cellular organelles allows for a better understanding of LD diversity and dynamics.


Asunto(s)
Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Membranas/metabolismo , Unión Proteica , Animales , Humanos , Lípidos , Membranas Mitocondriales/metabolismo
3.
Assay Drug Dev Technol ; 22(4): 203-215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38717194

RESUMEN

The relentless pursuit of precision medicine has catalyzed the development of molecular and cellular tethered drug delivery systems, a burgeoning field that stands to redefine the paradigms of therapeutic delivery. This review encapsulates the cutting-edge advancements within this domain, emphasizing the engineering of molecular tethers and cellular vectors designed to ferry therapeutics directly to their target sites with unparalleled specificity and efficiency. By exploiting the unique biochemical signatures of disease states, these systems promise a substantial reduction in off-target effects and an enhancement in drug bioavailability, thereby mitigating the systemic side effects that are often associated with conventional drug therapies. Through a synthesis of recent research findings, this review highlights the innovative approaches being explored in the design and application of these tethered systems, ranging from nanotechnology-based solutions to genetically engineered cellular carriers. The potential of these systems to provide targeted therapy for a wide array of diseases, including cancer, autoimmune disorders, and neurological conditions, is thoroughly examined. This abstract aims to provide a succinct overview of the current state and future prospects of molecular and cellular tethered drug delivery systems in advancing the frontiers of precision medicine.


Asunto(s)
Sistemas de Liberación de Medicamentos , Humanos , Medicina de Precisión , Animales , Portadores de Fármacos/química , Nanotecnología
4.
bioRxiv ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38168204

RESUMEN

Effective intracellular communication between cellular organelles is pivotal for maintaining cellular homeostasis. Tether proteins, which are responsible for establishing membrane contact sites between cell organelles, enable direct communication between organelles and ultimately influence organelle function and host cell homeostasis. While recent research has identified tether proteins in several bacterial pathogens, their functions have predominantly been associated with mediating inter-organelle communication specifically between the bacteria containing vacuole (BCV) and the host endoplasmic reticulum (ER). However, this study reveals a novel bacterial effector protein, CbEPF1, which acts as a molecular tether beyond the confines of the BCV and facilitates interactions between host cell organelles. Coxiella burnetii, an obligate intracellular bacterial pathogen, encodes the FFAT motif-containing protein CbEPF1 which localizes to host lipid droplets (LDs). CbEPF1 establishes inter-organelle contact sites between host LDs and the ER through its interactions with VAP family proteins. Intriguingly, CbEPF1 modulates growth of host LDs in a FFAT motif-dependent manner. These findings highlight the potential for bacterial effector proteins to impact host cellular homeostasis by manipulating inter-organelle communication beyond conventional BCVs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA