Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
Más filtros

Intervalo de año de publicación
1.
Glycobiology ; 34(4)2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38366999

RESUMEN

The glycoprotein-N-acetylgalactosamine ß1,3-galactosyltransferase, known as T-synthase (EC 2.4.1.122), plays a crucial role in the synthesis of the T-antigen, which is the core 1 O-glycan structure. This enzyme transfers galactose from UDP-Gal to GalNAc-Ser/Thr. The T-antigen has significant functions in animal development, immune response, and recognition processes. Molluscs are a successful group of animals that inhabit various environments, such as freshwater, marine, and terrestrial habitats. They serve important roles in ecosystems as filter feeders and decomposers but can also be pests in agriculture and intermediate hosts for human and cattle parasites. The identification and characterization of novel carbohydrate active enzymes, such as T-synthase, can aid in the understanding of molluscan glycosylation abilities and their adaptation and survival abilities. Here, the T-synthase enzymes from the snail Pomacea canaliculata and the oyster Crassostrea gigas are identified, cloned, expressed, and characterized, with a focus on structural elucidation. The synthesized enzymes display core 1 ß1,3-galactosyltransferase activity using pNP-α-GalNAc as substrate and exhibit similar biochemical parameters as previously characterised T-synthases from other species. While the enzyme from C. gigas shares the same structural parameters with the other enzymes characterised so far, the T-synthase from P. canaliculata lacks the consensus sequence CCSD, which was previously considered indispensable.


Asunto(s)
Ecosistema , Galactosiltransferasas , Animales , Humanos , Bovinos , Secuencia de Aminoácidos , Galactosiltransferasas/metabolismo , Clonación Molecular , Moluscos/metabolismo , Antígenos Virales de Tumores
2.
Mol Ecol ; 33(2): e17211, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37996993

RESUMEN

Hybrid zones among mussel species have been extensively studied in the northern hemisphere. In South America, it has only recently become possible to study the natural hybrid zones, due to the clarification of the taxonomy of native mussels of the Mytilus genus. Analysing 54 SNP markers, we show the genetic species composition and admixture in the hybrid zone between M. chilensis and M. platensis in the southern end of South America. Bayesian, non-Bayesian clustering and re-assignment algorithms showed that the natural hybrid zone between M. chilensis and M. platensis in the Strait of Magellan, Isla Grande de Tierra del Fuego and the Falkland Islands shows clinal architecture. The hybrid zone can be divided into three different areas: the first one is on the Atlantic coast where only pure M. platensis and hybrid were found. In the second one, inside the Strait of Magellan, pure individuals of both species and mussels with variable degrees of hybridisation coexist. In the last area at the Strait in front of Punta Arenas City, fjords on the Isla Grande de Tierra del Fuego, and at the Beagle Channel, only M. chilensis and a low number of hybrids were found. According to the proportion of hybrids, bays with protected conditions away from strong currents would give better conditions for hybridisation. We do not find evidence of any other mussel species such as M. edulis, M. galloprovincialis, M. planulatus or M. trossulus in the zone.


Asunto(s)
Mytilus , Humanos , Animales , Perros , Mytilus/genética , Islas Malvinas , Teorema de Bayes , Genotipo , América del Sur
3.
J Evol Biol ; 37(7): 779-794, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38699972

RESUMEN

Molluscs have undergone many transitions between separate sexes and hermaphroditism, which is of interest in studying the evolution of sex determination and differentiation. Here, we combined multi-locus genotypes obtained from restriction site-associated DNA (RAD) sequencing with anatomical observations of the gonads of three deep-sea hydrothermal vent gastropods of the genus Alviniconcha living in the southwest Pacific. We found that all three species (Alviniconcha boucheti, Alviniconcha strummeri, and Alviniconcha kojimai) share the same male-heterogametic XY sex-determination system but that the gonads of XX A. kojimai individuals are invaded by a variable proportion of male reproductive tissue. The identification of Y-specific RAD loci (found only in A. boucheti) and the phylogenetic analysis of three sex-linked loci shared by all species suggested that X-Y recombination has evolved differently within each species. This situation of three species showing variation in gonadal development around a common sex-determination system provides new insights into the reproductive mode of poorly known deep-sea species and opens up an opportunity to study the evolution of recombination suppression on sex chromosomes and its association with mixed or transitory sexual systems.


Asunto(s)
Gastrópodos , Respiraderos Hidrotermales , Filogenia , Procesos de Determinación del Sexo , Animales , Masculino , Gastrópodos/genética , Gastrópodos/anatomía & histología , Gastrópodos/clasificación , Femenino , Trastornos del Desarrollo Sexual/genética , Gónadas/anatomía & histología , Gónadas/crecimiento & desarrollo
4.
RNA Biol ; 21(1): 1-13, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38693614

RESUMEN

Small non-coding RNAs (sncRNAs) are non-coding RNA molecules that play various roles in metazoans. Among the sncRNAs, microRNAs (miRNAs) guide post-translational gene regulation during cellular development, proliferation, apoptosis, and differentiation, while PIWI-interacting RNAs (piRNAs) suppress transposon activity to safeguard the genome from detrimental insertion mutagenesis. While an increasing number of piRNAs are being identified in the soma and germlines of various organisms, they are scarcely reported in molluscs. To unravel the small RNA (sRNA) expression patterns and genomic function in molluscs, we generated a comprehensive sRNA dataset by sRNA sequencing (sRNA-seq) of eight mollusc species. Abundant miRNAs were identified and characterized in all investigated molluscs, and ubiquitous piRNAs were discovered in both somatic and gonadal tissues in six of the investigated molluscs, which are more closely associated with transposon silencing. Tens of piRNA clusters were also identified based on the genomic mapping results, which varied among different tissues and species. Our dataset serves as important reference data for future genomic and genetic studies on sRNAs in these molluscs and related species, especially in elucidating the ancestral state of piRNAs in bilaterians.


Asunto(s)
Moluscos , ARN Interferente Pequeño , ARN Pequeño no Traducido , Animales , Moluscos/genética , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , MicroARNs/genética , Elementos Transponibles de ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Transcriptoma
5.
Environ Sci Technol ; 58(4): 1865-1876, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38217500

RESUMEN

Marine organisms are threatened by the presence of pesticides in coastal waters. Among them, the Pacific oyster is one of the most studied invertebrates in marine ecotoxicology where numerous studies highlighted the multiscale impacts of pesticides. In the past few years, a growing body of literature has reported the epigenetic outcomes of xenobiotics. Because DNA methylation is an epigenetic mark implicated in organism development and is meiotically heritable, it raises the question of the multigenerational implications of xenobiotic-induced epigenetic alterations. Therefore, we performed a multigenerational exposure to an environmentally relevant mixture of 18 pesticides (nominal sum concentration: 2.85 µg·L-1) during embryo-larval stages (0-48 hpf) of a second generation (F1) for which parents where already exposed or not in F0. Gene expression, DNA methylation, and physiological end points were assessed throughout the life cycle of individuals. Overall, the multigenerational effect has a greater influence on the phenotype than the exposure itself. Thus, multigenerational phenotypic effects were observed: individuals descending from exposed parents exhibited lower epinephrine-induced metamorphosis and field survival rates. At the molecular level, RNA-seq and Methyl-seq data analyses performed in gastrula embryos and metamorphosis-competent pediveliger (MCP) larvae revealed a clear F0 treatment-dependent discrimination. Some genes implicated into shell secretion and immunity exhibited F1:F0 treatment interaction patterns (e.g., Calm and Myd88). Those results suggest that low chronic environmental pesticide contamination can alter organisms beyond the individual scale level and have long-term adaptive implications.


Asunto(s)
Crassostrea , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Animales , Plaguicidas/toxicidad , Crassostrea/genética , Crassostrea/metabolismo , Metilación de ADN , Fenotipo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
6.
Mar Drugs ; 22(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786591

RESUMEN

Marine molluscs are of enormous scientific interest due to their astonishing diversity in terms of their size, shape, habitat, behaviour, and ecological roles. The phylum Mollusca is the second most common animal phylum, with 100,000 to 200,000 species, and marine molluscs are among the most notable class of marine organisms. This work aimed to show the importance of marine molluscs as a potential source of nutraceuticals as well as natural medicinal drugs. In this review, the main classes of marine molluscs, their chemical ecology, and the different techniques used for the extraction of bioactive compounds have been presented. We pointed out their nutraceutical importance such as their proteins, peptides, polysaccharides, lipids, polyphenolic compounds pigments, marine enzymes, minerals, and vitamins. Their pharmacological activities include antimicrobial, anticancer, antioxidant, anti-inflammatory, and analgesic activities. Moreover, certain molluscs like abalones and mussels contain unique compounds with potential medicinal applications, ranging from wound healing to anti-cancer effects. Understanding the nutritional and therapeutic value of marine molluscs highlights their significance in both pharmaceutical and dietary realms, paving the way for further research and utilization in human health.


Asunto(s)
Organismos Acuáticos , Suplementos Dietéticos , Moluscos , Animales , Moluscos/química , Humanos , Productos Biológicos/farmacología , Productos Biológicos/química
7.
Ecotoxicol Environ Saf ; 280: 116549, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852467

RESUMEN

Roundup®, a prominent glyphosate-based herbicide (GBH), holds a significant position in the global market. However, studies of its effects on aquatic invertebrates, including molluscs are limited. Pomacea canaliculata, a large freshwater snail naturally thrives in agricultural environments where GBH is extensively employed. Our investigation involved assessing the impact of two concentrations of GBH (at concentrations of 19.98 mg/L and 59.94 mg/L, corresponding to 6 mg/L and 18 mg/L glyphosate) during a 96 h exposure experiment on the intestinal bacterial composition and metabolites of P. canaliculata. Analysis of the 16 S rRNA gene demonstrated a notable reduction in the alpha diversity of intestinal bacteria due to GBH exposure. Higher GBH concentration caused a significant shift in the relative abundance of dominant bacteria, such as Bacteroides and Paludibacter. We employed widely-targeted metabolomics analysis to analyze alterations in the hepatopancreatic metabolic profile as a consequence of GBH exposure. The shifts in metabolites primarily affected lipid, amino acid, and glucose metabolism, resulting in compromised immune and adaptive capacities in P. canaliculata. These results suggested that exposure to varying GBH concentrations perpetuates adverse effects on intestinal and hepatopancreatic health of P. canaliculata. This study provides an understanding of the negative effects of GBH on P. canaliculata and may sheds light on its potential implications for other molluscs.


Asunto(s)
Microbioma Gastrointestinal , Glicina , Glifosato , Hepatopáncreas , Herbicidas , Contaminantes Químicos del Agua , Animales , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Caracoles/efectos de los fármacos , ARN Ribosómico 16S/genética , Metabolómica
8.
J Environ Manage ; 353: 120140, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38290263

RESUMEN

Anthropogenic causes are overtaking natural factors to reshape patterns of biodiversity and ecosystem functioning. Mangrove reforestation aimed at reversing losses of mangroves has been conducted worldwide for several decades. However, how reforestation influences the link between ecological processes that shape community diversity and the consequent effects on ecosystem functions such as biomass production is less well known. Here we used data collected before and after mangrove planting to examine the effects of reforestation on molluscan species richness and biomass production by testing the changes in species richness, compositional similarities, distance-decay effects (community similarity decreases with increasing geographical distance) in metacommunity across a regional scale of 480 km (23-27 °N) in southeast Chinese coasts. Additionally, we further detected the impact of landscape configuration caused by different intensities of reforestation on the mollusc community. After the mangrove reforestation, mollusc species richness and biomass increased significantly. The increases in species richness and biomass of mollusc community were mediated by reducing distance-decay effect, indicating an increase in relationship strength between species richness and biomass might be associated with a decrease in distance-decay effect with rising mangrove habitat. We highlight the importance of considering the effects of anthropogenic changes on the relationship between biodiversity and ecosystem functioning. Quantifying the distance-decay effect of these influences enables management decisions about coastal restoration to be based upon ecological mechanisms rather than wishful thinking or superficial appearance.


Asunto(s)
Biodiversidad , Moluscos , Humedales , Animales , Biomasa , Ecosistema
9.
J Mol Evol ; 91(6): 837-853, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37962577

RESUMEN

Venomous marine gastropods of the family Conidae are among the most diversified predators in marine realm-in large due to their complex venoms. Besides being a valuable source of bioactive neuropeptides conotoxins, cone-snails venoms are an excellent model for molecular evolution studies, addressing origin of key innovations. However, these studies are handicapped by scarce current knowledge on the tissues involved in venom production, as it is generally assumed the sole prerogative of the venom gland (VG). The role of other secretory glands that are present in all Conus species (salivary gland, SG) or only in some species (accessory salivary gland, ASG) remains poorly understood. Here, for the first time, we carry out a detailed analysis of the VG, SG, and ASG transcriptomes in the vermivorous Conus virgo. We detect multiple transcripts clusters in both the SG and ASG, whose annotations imply venom-related functions. Despite the subsets of transcripts highly-expressed in the VG, SG, and ASG being very distinct, SG expresses an L-, and ASG-Cerm08-, and MEFRR- superfamily conotoxins, all previously considered specific for VG. We corroborate our results with the analysis of published SG and VG transcriptomes from unrelated fish-hunting C. geographus, and C. striatus, possibly fish-hunting C. rolani, and worm-hunting Conus quercinus. In spite of low expression levels of conotoxins, some other specific clusters of putative venom-related peptides are present and may be highly expressed in the SG of these species. Further functional studies are necessary to determine the role that these peptides play in envenomation. In the meantime, our results show importance of routine multi-tissue sampling both for accurate interpretation of tissue-specific venom composition in cone-snails, and for better understanding origin and evolution of venom peptides genes.


Asunto(s)
Conotoxinas , Caracol Conus , Animales , Caracol Conus/genética , Caracol Conus/metabolismo , Ponzoñas , Conotoxinas/genética , Conotoxinas/metabolismo , Perfilación de la Expresión Génica , Péptidos/metabolismo
10.
Proc Biol Sci ; 290(1995): 20230257, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36987646

RESUMEN

Molluscs have produced an extensive fossil record, owing to the prevalence of robust biomineralized shells among this clade. By contrast, most other components of molluscan anatomy are seldom preserved. Importantly, little is known of the evolutionary history of the unique molluscan feeding apparatus-the radula. A scarcity of fossil radulae has hampered our understanding of the ancestral condition, and of the dietary ecology of early molluscs. The handful of known fossil radulae all point to early molluscs as simple deposit feeders that obtained food via rasping or scraping. This study reports microscopic radulae preserved as 'small carbonaceous fossils' (SCFs) from Cambrian (Stage 4-Wuliuan, approximately 514-504.5 Ma) strata of Sweden. These rare fossil radulae offer novel insights into the feeding anatomy and ecology of early molluscs. Each radula comprises a uniseriate arc of (≤10) blade-shaped teeth, fringed by a slicing keel. This distinctive morphology is strikingly convergent with the radulae of extant sacoglossan heterobranch gastropods-such radulae are specially adapted for piercing the cell walls of green algal tissues to enable suctorial feeding on the cytoplasm contents. Discovery of analogous Cambrian radulae demonstrates this specialized form of herbivory had already evolved among molluscs more than half a billion years ago.


Asunto(s)
Gastrópodos , Diente , Animales , Fósiles , Moluscos/anatomía & histología , Evolución Biológica , Diente/anatomía & histología , Filogenia
11.
Mol Ecol ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843465

RESUMEN

Inversions are thought to play a key role in adaptation and speciation, suppressing recombination between diverging populations. Genes influencing adaptive traits cluster in inversions, and changes in inversion frequencies are associated with environmental differences. However, in many organisms, it is unclear if inversions are geographically and taxonomically widespread. The intertidal snail, Littorina saxatilis, is one such example. Strong associations between putative polymorphic inversions and phenotypic differences have been demonstrated between two ecotypes of L. saxatilis in Sweden and inferred elsewhere, but no direct evidence for inversion polymorphism currently exists across the species range. Using whole genome data from 107 snails, most inversion polymorphisms were found to be widespread across the species range. The frequencies of some inversion arrangements were significantly different among ecotypes, suggesting a parallel adaptive role. Many inversions were also polymorphic in the sister species, L. arcana, hinting at an ancient origin.

12.
Mol Ecol ; 32(19): 5276-5287, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37606178

RESUMEN

Parallel diversification provides a proper framework for studying the role of natural selection in evolution. Yet, empirical studies from ecological 'non-model' species of invertebrates are limited at the whole genome level. Here, we presented a chromosome-scale genome assembly for Crassostrea angulata and investigated the parallel genomic evolution in oysters. Specifically, we used population genomics approaches to compare two southern-northern oyster species pairs (C. angulata-C. gigas and southern-northern C. ariakensis) along the coast of China. The estimated divergence time of C. angulata and C. gigas is earlier than that of southern and northern C. ariakensis, which aligns with the overall elevated genome-wide divergence. However, the southern-northern C. ariakensis FST profile represented more extremely divergent "islands". Combined with recent reciprocal hybridization studies, we proposed that they are currently at an early stage of speciation. These two southern-northern oyster species pairs exhibited significant repeatability in patterns of genome-wide differentiation, especially in genomic regions with extremely high and low divergence. This suggested that divergent and purifying selection has contributed to the genomic parallelism between southern and northern latitudes. Top differentiated genomic regions shared in these two oyster species pairs contained candidate genes enriched for functions in energy metabolism, especially adipogenesis, which are closely related to reproductive behaviours. These genes might be good candidates for further investigation in vivo. In conclusion, our results suggest that similar divergent selection and shared genomic features could predictably transform standing genetic variation within one species pair into differences in another.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Adipogénesis/genética , Genoma/genética , Cromosomas , China
13.
Fish Shellfish Immunol ; 143: 109220, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977546

RESUMEN

Flow-cytometry has become increasingly popular to assess the haemocytes morphology and functions of marine molluscs. Indeed, haemocytes are the first line of defence of the immune system in molluscs and are used as a proxy for oyster health. Authors publishing in the field of flow-cytometry and molluscs health seemed to utilise the same methods for all model species used, independently of their geographical location in the world (temperate, tropical, etc.). Hence, this paper dived into flow-cytometry methodology and investigated if using different plates, different thresholds, different incubation times and temperatures as well as different fluorochromes concentrations affected the results. This study revealed that the cell count did not change when using different thresholds on the FSC-H parameter of the instrument but was affected by the plate type, the temperature of incubation, and the time of incubation. Indeed, non-adherent plates yielded the highest cell count and lower cell counts were associated with a higher temperature and a longer time of incubation. Furthermore, the haemocytes functions such as the phagocytosis, the lysosomal content, the intracellular oxidative activity, and the mitochondria activity were also affected by the temperature and the time of incubation. An increase in the phagocytosis capacity, lysosomal content and mitochondria activity was observed with a higher temperature. At the exception of the phagocytosis rate, all the other parameters such as the phagocytosis capacity, the intracellular oxidative activity, and the lysosomal content increased with a longer incubation time. We also showed that it is best to optimise the amount of fluorochromes used to avoid unnecessary background or non-specific staining.


Asunto(s)
Ostreidae , Pinctada , Animales , Colorantes Fluorescentes , Citometría de Flujo/veterinaria , Citometría de Flujo/métodos , Fagocitosis , Hemocitos
14.
Rev Med Virol ; 32(4): e2310, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34726308

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus and the causative agent of coronavirus disease 2019 (Covid-19). There is an urgent need for effective antivirals to treat current Covid-19 cases and protect those unable to be vaccinated against SARS-CoV-2. Marine molluscs live in an environment containing high virus densities (>107 virus particles per ml), and there are an estimated 100,000 species in the phylum Mollusca, demonstrating the success of their innate immune system. Mollusc-derived antivirals are yet to be used clinically despite the activity of many extracts, including against human viruses, being demonstrated in vitro. Hemolymph of the Pacific oyster (Crassostrea gigas) has in vitro antiviral activity against herpes simplex virus and human adenovirus, while antiviral action against SARS-CoV-2 has been proposed by in silico studies. Such evidence suggests that molluscs, and in particular C. gigas hemolymph, may represent a source of antivirals for human coronaviruses.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos
15.
Parasitology ; 150(11): 1015-1021, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37705257

RESUMEN

In recent field studies, suspected gymnophallid metacercariae were histologically located in the mantle of mussels from the Norwegian Sea. Mussels from the sites in which that infection was detected also presented abnormally high pearl numbers. It has been previously described that gymnophallid metacercariae could cause pearl formation processes in mussels, as a host reaction to encapsulate these metacercariae. Given the pathological host reaction these parasites elicit, a study was performed to identify gymnophallid metacercariae found in mussels collected from Tromsø at morphological and molecular level and to assess, by the use of molecular tools, the relationship between the parasite and the biological material inside the pearls. As a result, Gymnophallus bursicola metacercariae infecting Norwegian Mytilus edulis were identified according to morphological characters, along with the first 18S rDNA and COI sequences for this trematode species. In addition, parasite DNA from the core of the pearls was extracted and amplified for the first time, confirming the parasitological origin of these pearls. This procedure could allow identifying different parasitic organisms responsible for the generation of pearls in bivalves.


Asunto(s)
Mytilus edulis , Mytilus , Trematodos , Animales , Mytilus edulis/parasitología , Metacercarias/genética , Trematodos/genética , Trematodos/anatomía & histología , ADN Ribosómico/genética
16.
J Biol Chem ; 297(6): 101352, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34715129

RESUMEN

The ancient origin of the lectin pathway of the complement system can be traced back to protochordates (such as amphioxus and tunicates) by the presence of components such as ficolin, glucose-binding lectin, mannose-binding lectin-associated serine protease (MASP), and C3. Evidence for a more primitive origin is offered in the present study on the Pacific oyster Crassostrea gigas. C3 protein in C. gigas (CgC3) was found to be cleaved after stimulation with the bacteria Vibrio splendidus. In addition, we identified a novel C-type lectin (defined as CgCLec) with a complement control protein (CCP) domain, which recognized various pathogen-associated molecular patterns (PAMPs) and bacteria. This protein was involved in the activation of the complement system by binding CgMASPL-1 to promote cleavage of CgC3. The production of cytokines and antibacterial peptides, as well as the phagocytotic ratio of haemocytes in CgCLec-CCP-, CgMASPL-1-, or CgC3-knockdown oysters, decreased significantly after V. splendidus stimulation. Moreover, this activated CgC3 participated in perforation of bacterial envelopes and inhibiting survival of the infecting bacteria. These results collectively suggest that there existed an ancient lectin pathway in molluscs, which was activated by a complement cascade to regulate the production of immune effectors, phagocytosis, and bacterial lysis.


Asunto(s)
Activación de Complemento , Crassostrea/inmunología , Lectinas Tipo C/inmunología , Animales , Complemento C3/inmunología , Crassostrea/microbiología , Inmunidad Innata , Fagocitosis , Vibrio/inmunología
17.
Proc Biol Sci ; 289(1984): 20221573, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36196545

RESUMEN

The genomic landscape of divergence-the distribution of differences among populations or species across the genome-is increasingly characterized to understand the role that microevolutionary forces such as natural selection and recombination play in causing and maintaining genetic divergence. This line of inquiry has also revealed chromosome structure variation to be an important factor shaping the landscape of adaptive genetic variation. Owing to a high prevalence of chromosome structure variation and the strong pressure for local adaptation necessitated by their sessile nature, bivalve molluscs are an ideal taxon for exploring the relationship between chromosome structure variation and local adaptation. Here, we report a population genomic survey of king scallop (Pecten maximus) across its natural range in the northeastern Atlantic Ocean, using a recent chromosome-level genome assembly. We report the presence of at least three large (12-22 Mb), putative chromosomal inversions associated with sea surface temperature and whose frequencies are in contrast to neutral population structure. These results highlight a potentially large role for recombination-suppressing chromosomal inversions in local adaptation and suggest a hypothesis to explain the maintenance of differences in reproductive timing found at relatively small spatial scales across king scallop populations.


Asunto(s)
Inversión Cromosómica , Pecten , Adaptación Fisiológica/genética , Animales , Selección Genética , Temperatura
18.
Proc Biol Sci ; 289(1982): 20221535, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100022

RESUMEN

The calcareous shell and sessile lifestyle are the representative phenotypes of many molluscs, which happen to be present in barnacles, a group of unique crustaceans. The origin of these phenotypes is unclear, but it may be embodied in the convergent genetics of such distant groups (interphylum). Herein, we perform comprehensive comparative genomics analysis in barnacles and molluscs, and reveal a genome-wide strong convergent molecular evolution between them, including coexpansion of biomineralization and organic matrix genes for shell formation, and origination of lineage-specific orphan genes for settlement. Notably, the expanded biomineralization gene encoding alkaline phosphatase evolves a novel, highly conserved motif that may trigger the origin of barnacle shell formation. Unlike molluscs, barnacles adopt novel organic matrices and cement proteins for shell formation and settlement, respectively, and their calcareous shells have potentially originated from the cuticle system of crustaceans. Therefore, our study corroborates the idea that selection pressures driving convergent evolution may strongly act in organisms inhabiting similar environments regardless of phylogenetic distance. The convergence signatures shed light on the origin of the shell and sessile lifestyle of barnacles and molluscs. In addition, notable non-convergence signatures are also present and may contribute to morphological and functional specificities.


Asunto(s)
Thoracica , Animales , Evolución Molecular , Genoma , Moluscos/genética , Filogenia , Thoracica/genética
19.
Mol Ecol ; 31(19): 5005-5023, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35947503

RESUMEN

Sublethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa clams, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data were analysed after (i) a 110-day acclimation under ambient (921 µatm, naïve) and moderately elevated pCO2 (2870 µatm, pre-exposed); then following (ii) a second 7-day exposure to three pCO2 treatments (ambient: 754 µatm; moderately elevated: 2750 µatm; severely elevated: 4940 µatm), a 7-day return to ambient pCO2 and a third 7-day exposure to two pCO2 treatments (ambient: 967 µatm; moderately elevated: 3030 µatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defence under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicate that pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems.


Asunto(s)
Bivalvos , Dióxido de Carbono , Aclimatación/genética , Animales , Antioxidantes , Bivalvos/genética , Expresión Génica , Glutatión , Concentración de Iones de Hidrógeno , Agua de Mar
20.
Mol Ecol ; 31(11): 3128-3136, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35403750

RESUMEN

Disseminated neoplasia (DN) is one of the most challenging and unrecognised diseases occurring in aquatic fauna. It has been diagnosed in four bivalve species from the Gulf of Gdansk (Southern Baltic Sea) with the highest frequency in Macoma balthica (formerly Limecola balthica), reaching up to 94% in some populations. The aetiology of DN in the Baltic Sea has not yet been identified, with earlier studies trying to link its occurrence with environmental pollution. Taking into account recent research providing evidence that DN is horizontally transmitted as clonal cells between individuals in some bivalve species, we aimed to test whether DN is a bivalve transmissible neoplasia (BTN) in the population of M. balthica from the Gulf of Gdansk highly affected with cancer. We examined mitochondrial cytochrome c oxidase I (mtCOI) and elongation factor 1α (EF1α) sequences of genomes obtained from haemolymph and tissues of neoplastic and healthy individuals. Sequence analysis resulted in detection of an independent transmissible cancer lineage occurring in four neoplastic clams that is not present in healthy animals. This study describes the first case of BTN in the clam M. balthica (MbaBTN), providing further insights for studies on this disease.


Asunto(s)
Bivalvos , Neoplasias , Animales , Países Bálticos , Bivalvos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA