Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 77(6): 1251-1264.e9, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32023484

RESUMEN

Lipid droplets (LDs) store lipids for energy and are central to cellular lipid homeostasis. The mechanisms coordinating lipid storage in LDs with cellular metabolism are unclear but relevant to obesity-related diseases. Here we utilized genome-wide screening to identify genes that modulate lipid storage in macrophages, a cell type involved in metabolic diseases. Among ∼550 identified screen hits is MLX, a basic helix-loop-helix leucine-zipper transcription factor that regulates metabolic processes. We show that MLX and glucose-sensing family members MLXIP/MondoA and MLXIPL/ChREBP bind LDs via C-terminal amphipathic helices. When LDs accumulate in cells, these transcription factors bind to LDs, reducing their availability for transcriptional activity and attenuating the response to glucose. Conversely, the absence of LDs results in hyperactivation of MLX target genes. Our findings uncover a paradigm for a lipid storage response in which binding of MLX transcription factors to LD surfaces adjusts the expression of metabolic genes to lipid storage levels.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Gotas Lipídicas/metabolismo , Proteoma/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/antagonistas & inhibidores , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Células Cultivadas , Pruebas Genéticas , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Unión Proteica , Proteoma/análisis , ARN Interferente Pequeño , Transcripción Genética
2.
Cancer Sci ; 114(3): 961-975, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36398713

RESUMEN

The Mondo family transcription factor MondoA plays a pivotal role in sensing metabolites, such as glucose, glutamine, and lactic acid, to regulate glucose metabolism and cell proliferation. Ketone bodies are important signals for reducing glucose uptake. However, it is unclear whether MondoA functions in ketone body-regulated glucose transport. Here we reported that ketone bodies promoted MondoA nuclear translocation and binding to the promoter of its target gene TXNIP. Ketone bodies reduced glucose uptake, increased apoptosis and decreased proliferation of colorectal cancer cells, which was impeded by MondoA knockdown. Moreover, we identified MEK1 as a novel component of the MondoA protein complex using a proteomic approach. Mechanistically, MEK1 interacted with MondoA and enhanced tyrosine 222, but not serine or threonine, phosphorylation of MondoA, inhibiting MondoA nuclear translocation and transcriptional activity. Ketone bodies decreased MEK1-dependent MondoA phosphorylation by blocking MondoA and MEK1 interaction, leading to MondoA nuclear translocation, TXNIP transcription, and inhibition of glucose uptake. Therefore, our study not only demonstrated that ketone bodies reduce glucose uptake, promote apoptosis, and inhibit cell proliferation in colorectal cancer cells by regulating MondoA phosphorylation but also identified MEK1-dependent phosphorylation as a new mechanism to manipulate MondoA activity.


Asunto(s)
Neoplasias Colorrectales , Cuerpos Cetónicos , Humanos , Fosforilación , Proteómica , Glucosa/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
3.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240157

RESUMEN

Obesity is a major global public health concern associated with an increased risk of many health problems, including type 2 diabetes, heart disease, stroke, and some types of cancer. Obesity is also a critical factor in the development of insulin resistance and type 2 diabetes. Insulin resistance is associated with metabolic inflexibility, which interferes with the body's ability to switch from free fatty acids to carbohydrate substrates, as well as with the ectopic accumulation of triglycerides in non-adipose tissue, such as that of skeletal muscle, the liver, heart, and pancreas. Recent studies have demonstrated that MondoA (MLX-interacting protein or MLXIP) and the carbohydrate response element-binding protein (ChREBP, also known as MLXIPL and MondoB) play crucial roles in the regulation of nutrient metabolism and energy homeostasis in the body. This review summarizes recent advances in elucidating the function of MondoA and ChREBP in insulin resistance and related pathological conditions. This review provides an overview of the mechanisms by which MondoA and ChREBP transcription factors regulate glucose and lipid metabolism in metabolically active organs. Understanding the underlying mechanism of MondoA and ChREBP in insulin resistance and obesity can foster the development of new therapeutic strategies for treating metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Obesidad/metabolismo
4.
J Biol Chem ; 293(38): 14740-14757, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30087120

RESUMEN

Analogous to the c-Myc (Myc)/Max family of bHLH-ZIP transcription factors, there exists a parallel regulatory network of structurally and functionally related proteins with Myc-like functions. Two related Myc-like paralogs, termed MondoA and MondoB/carbohydrate response element-binding protein (ChREBP), up-regulate gene expression in heterodimeric association with the bHLH-ZIP Max-like factor Mlx. Myc is necessary to support liver cancer growth, but not for normal hepatocyte proliferation. Here, we investigated ChREBP's role in these processes and its relationship to Myc. Unlike Myc loss, ChREBP loss conferred a proliferative disadvantage to normal murine hepatocytes, as did the combined loss of ChREBP and Myc. Moreover, hepatoblastomas (HBs) originating in myc-/-, chrebp-/-, or myc-/-/chrebp-/- backgrounds grew significantly more slowly. Metabolic studies on livers and HBs in all three genetic backgrounds revealed marked differences in oxidative phosphorylation, fatty acid ß-oxidation (FAO), and pyruvate dehydrogenase activity. RNA-Seq of livers and HBs suggested seven distinct mechanisms of Myc-ChREBP target gene regulation. Gene ontology analysis indicated that many transcripts deregulated in the chrebp-/- background encode enzymes functioning in glycolysis, the TCA cycle, and ß- and ω-FAO, whereas those dysregulated in the myc-/- background encode enzymes functioning in glycolysis, glutaminolysis, and sterol biosynthesis. In the myc-/-/chrebp-/- background, additional deregulated transcripts included those involved in peroxisomal ß- and α-FAO. Finally, we observed that Myc and ChREBP cooperatively up-regulated virtually all ribosomal protein genes. Our findings define the individual and cooperative proliferative, metabolic, and transcriptional roles for the "Extended Myc Network" under both normal and neoplastic conditions.


Asunto(s)
Proliferación Celular/fisiología , Hepatoblastoma/patología , Hepatocitos/citología , Neoplasias Hepáticas Experimentales/patología , Proteínas Nucleares/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Factores de Transcripción/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas c-myc/genética , Complejo Piruvato Deshidrogenasa/metabolismo , ARN Mensajero/genética , Proteínas Ribosómicas/genética , Factores de Transcripción/genética , Transcripción Genética
5.
Int J Mol Sci ; 20(20)2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623194

RESUMEN

The worldwide increase in type 2 diabetes (T2D) is becoming a major health concern, thus searching for novel preventive and therapeutic strategies has become urgent. In last decade, the paralogous transcription factors MondoA and carbohydrate response element-binding protein (ChREBP) have been revealed to be central mediators of glucose sensing in multiple metabolic organs. Under normal nutrient conditions, MondoA/ChREBP plays vital roles in maintaining glucose homeostasis. However, under chronic nutrient overload, the dysregulation of MondoA/ChREBP contributes to metabolic disorders, such as insulin resistance (IR) and T2D. In this review, we aim to provide an overview of recent advances in the understanding of MondoA/ChREBP and its roles in T2D development. Specifically, we will briefly summarize the functional similarities and differences between MondoA and ChREBP. Then, we will update the roles of MondoA/ChREBP in four T2D-associated metabolic organs (i.e., the skeletal muscle, liver, adipose tissue, and pancreas) in physiological and pathological conditions. Finally, we will discuss the opportunities and challenges of MondoA/ChREBP as drug targets for anti-diabetes. By doing so, we highlight the potential use of therapies targeting MondoA/ChREBP to counteract T2D and its complications.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Transducción de Señal , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Biomarcadores , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/etiología , Regulación de la Expresión Génica , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Páncreas/metabolismo
6.
Biochem Biophys Res Commun ; 504(2): 415-421, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30103944

RESUMEN

Oncogenic c-Myc-induced metabolic reprogramming triggers cellular dependency on exogenous glucose and glutamine. Understanding how nutrients are used may provide new target for therapeutic intervention. We previously provided an alternate route to c-Myc-driven glucose metabolism via the repression of thioredoxin-interacting protein (TXNIP), which is a potent negative regulator of glucose uptake. Herein, we demonstrate that c-Myc suppression of TXNIP is predominantly through the activation of glutaminolysis via glutaminase (GLS1) in prostate cancer cells. Glutamine depletion blocked c-Myc-dependent reductions of TXNIP and its principal regulator MondoA transcriptional activity. Further, GLS1 inhibition by either siRNA or CB-839 resumed TXNIP expression that was repressed by c-Myc. The TXNIP promoter with mutant E-Box region, which was recognized by MondoA, failed to respond to c-Myc or GLS1, indicating c-Myc repression of TXNIP by GLS1 is predominantly through the blockage of MondoA activity. Especially, ectopic TXNIP expression decreased c-Myc-induce glucose uptake and lead to a broad range of glycolytic target gene suppressions. Thus TXNIP is a key adaptor for c-Myc-driven aerobic glycolysis. Supporting the biological significance of c-Myc and TXNIP, their reciprocal relationship are correlates with patient outcome and contributes to the aggressive phenotype in PCAs.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/metabolismo , Glutaminasa/metabolismo , Glucólisis , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ácidos Cetoglutáricos/metabolismo , Masculino , Fenotipo , Análisis de Componente Principal , Hiperplasia Prostática/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(17): 5425-30, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25870263

RESUMEN

Triple-negative breast cancers (TNBCs) are aggressive and lack targeted therapies. Understanding how nutrients are used in TNBCs may provide new targets for therapeutic intervention. We demonstrate that the transcription factor c-Myc drives glucose metabolism in TNBC cells but does so by a previously unappreciated mechanism that involves direct repression of thioredoxin-interacting protein (TXNIP). TXNIP is a potent negative regulator of glucose uptake, aerobic glycolysis, and glycolytic gene expression; thus its repression by c-Myc provides an alternate route to c-Myc-driven glucose metabolism. c-Myc reduces TXNIP gene expression by binding to an E-box-containing region in the TXNIP promoter, possibly competing with the related transcription factor MondoA. TXNIP suppression increases glucose uptake and drives a dependence on glycolysis. Ectopic TXNIP expression decreases glucose uptake, reduces cell proliferation, and increases apoptosis. Supporting the biological significance of the reciprocal relationship between c-Myc and TXNIP, a Mychigh/TXNIPlow gene signature correlates with decreased overall survival and decreased metastasis-free survival in breast cancer. The correlation between the Mychigh/TXNIPlow gene signature and poor clinical outcome is evident only in TNBC, not in other breast cancer subclasses. Mutation of TP53, which is a defining molecular feature of TNBC, enhances the correlation between the Mychigh/TXNIPlow gene signature and death from breast cancer. Because Myc drives nutrient utilization and TXNIP restricts glucose availability, we propose that the Mychigh/TXNIPlow gene signature coordinates nutrient utilization with nutrient availability. Further, our data suggest that loss of the p53 tumor suppressor cooperates with Mychigh/TXNIPlow-driven metabolic dysregulation to drive the aggressive clinical behavior of TNBC.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Portadoras/metabolismo , Reprogramación Celular , Proteínas Proto-Oncogénicas c-myc/metabolismo , Apoptosis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas Portadoras/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Femenino , Glucosa/genética , Glucosa/metabolismo , Glucólisis/genética , Humanos , Mutación , Proteínas Proto-Oncogénicas c-myc/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Biochem Biophys Res Commun ; 465(4): 838-44, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26315267

RESUMEN

The high proliferation rate of cancer cells and the microenvironment in the tumor tissue require the reprogramming of tumor cell metabolism. The major mechanism of metabolic reprogramming in cancer cells is the Warburg effect, defined as the preferential utilization of glucose via glycolysis even in the presence of oxygen. Targeting the Warburg effect is considered as a promising therapeutic strategy in cancer therapy. In this regard, the glycolytic inhibitor 2-deoxyglucose (2DG) has been evaluated clinically. 2DG exerts its effect by directly inhibiting glycolysis at the level of hexokinase and phosphoglucoisomerase. In addition, 2DG is also known to induce the expression of thioredoxin interacting protein (TXNIP), a tumor suppressor protein and an important negative regulator of cellular glucose uptake. Hence, characterization of the mechanism through which 2DG regulates TXNIP expression may reveal novel approaches to target the Warburg effect in cancer cells. Therefore, in this study we sought to test various hypotheses for the mechanistic basis of the 2DG dependent TXNIP regulation. We have shown that 2DG induced TXNIP expression is independent of carbohydrate response element mediated transcription. Furthermore, the induction of TXNIP is neither dependent on the ability of 2DG to deplete cellular ATP nor to cause endoplasmic reticulum stress. We found that the 2DG induced TXNIP expression is at least in part dependent on the inhibition of the O-GlcNAcase enzyme and the accumulation of O-GlcNAc modified proteins. These results have implications for the identification of therapeutic targets to increase TXNIP expression in cancer.


Asunto(s)
Proteínas Portadoras/metabolismo , Desoxiglucosa/farmacología , Glucólisis/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Tiorredoxinas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular Tumoral , Perros , Estrés del Retículo Endoplásmico , Glicosilación/efectos de los fármacos , Células HEK293 , Células Hep G2 , Humanos , Células de Riñón Canino Madin Darby , Ratones , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/fisiología
9.
Cells ; 11(24)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36552737

RESUMEN

The Myc Network, comprising a small assemblage of bHLH-ZIP transcription factors, regulates many hundreds to thousands of genes involved in proliferation, energy metabolism, translation and other activities. A structurally and functionally related set of factors known as the Mlx Network also supervises some of these same functions via the regulation of a more limited but overlapping transcriptional repertoire. Target gene co-regulation by these two Networks is the result of their sharing of three members that suppress target gene expression as well as by the ability of both Network's members to cross-bind one another's consensus DNA sites. The two Networks also differ in that the Mlx Network's control over transcription is positively regulated by several glycolytic pathway intermediates and other metabolites. These distinctive properties, functions and tissue expression patterns potentially allow for sensitive control of gene regulation in ways that are differentially responsive to environmental and metabolic cues while allowing for them to be both rapid and of limited duration. This review explores how such control might occur. It further discusses how the actual functional dependencies of the Myc and Mlx Networks rely upon cellular context and how they may differ between normal and neoplastic cells. Finally, consideration is given to how future studies may permit a more refined understanding of the functional interrelationships between the two Networks.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Regulación de la Expresión Génica , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Metabolismo Energético , Proliferación Celular
10.
Cell Mol Gastroenterol Hepatol ; 13(6): 1785-1804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35259493

RESUMEN

BACKGROUND & AIMS: The c-Myc (Myc) Basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factor is deregulated in most cancers. In association with Max, Myc controls target genes that supervise metabolism, ribosome biogenesis, translation, and proliferation. This Myc network crosstalks with the Mlx network, which consists of the Myc-like proteins MondoA and ChREBP, and Max-like Mlx. Together, this extended Myc network regulates both common and distinct gene targets. Here, we studied the consequence of Myc and/or Mlx ablation in the liver, particularly those pertaining to hepatocyte proliferation, metabolism, and spontaneous tumorigenesis. METHODS: We examined the ability of hepatocytes lacking Mlx (MlxKO) or Myc+Mlx (double KO [DKO]) to repopulate the liver over an extended period of time in a murine model of type I tyrosinemia. We also compared this and other relevant behaviors, phenotypes, and transcriptomes of the livers with those from previously characterized MycKO, ChrebpKO, and MycKO × ChrebpKO mice. RESULTS: Hepatocyte regenerative potential deteriorated as the Extended Myc Network was progressively dismantled. Genes and pathways dysregulated in MlxKO and DKO hepatocytes included those pertaining to translation, mitochondrial function, and hepatic steatosis resembling nonalcoholic fatty liver disease. The Myc and Mlx Networks were shown to crosstalk, with the latter playing a disproportionate role in target gene regulation. All cohorts also developed steatosis and molecular evidence of early steatohepatitis. Finally, MlxKO and DKO mice showed extensive hepatic adenomatosis. CONCLUSIONS: In addition to showing cooperation between the Myc and Mlx Networks, this study showed the latter to be more important in maintaining proliferative, metabolic, and translational homeostasis, while concurrently serving as a suppressor of benign tumorigenesis. GEO accession numbers: GSE181371, GSE130178, and GSE114634.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Neoplasias , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinogénesis/genética , Transformación Celular Neoplásica , Regeneración Hepática , Ratones , Neoplasias/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Cells ; 11(24)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36552851

RESUMEN

Myc, a member of the "Myc Network" of bHLH-ZIP transcription factors, supervises proliferation, metabolism, and translation. It also engages in crosstalk with the related "Mlx Network" to co-regulate overlapping genes and functions. We investigated the consequences of stepwise conditional inactivation of Myc and Mlx in primary and SV40 T-antigen-immortalized murine embryonic fibroblasts (MEFs). Myc-knockout (MycKO) and Myc × Mlx "double KO" (DKO)-but not MlxKO-primary MEFs showed rapid growth arrest and displayed features of accelerated aging and senescence. However, DKO MEFs soon resumed proliferating, indicating that durable growth arrest requires an intact Mlx network. All three KO MEF groups deregulated multiple genes and functions pertaining to aging, senescence, and DNA damage recognition/repair. Immortalized KO MEFs proliferated in Myc's absence while demonstrating variable degrees of widespread genomic instability and sensitivity to genotoxic agents. Finally, compared to primary MycKO MEFs, DKO MEFs selectively downregulated numerous gene sets associated with the p53 and retinoblastoma (Rb) pathways and G2/M arrest. Thus, the reversal of primary MycKO MEF growth arrest by either Mlx loss or SV40 T-antigen immortalization appears to involve inactivation of the p53 and/or Rb pathways.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Proteína p53 Supresora de Tumor , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Daño del ADN , Antígenos Virales de Tumores
12.
Cell Rep ; 38(9): 110444, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235784

RESUMEN

Accumulation of senescent cells affects organismal aging and the prevalence of age-associated disease. Emerging evidence suggests that activation of autophagy protects against age-associated diseases and promotes longevity, but the roles and regulatory mechanisms of autophagy in cellular senescence are not well understood. Here, we identify the transcription factor, MondoA, as a regulator of cellular senescence, autophagy, and mitochondrial homeostasis. MondoA protects against cellular senescence by activating autophagy partly through the suppression of an autophagy-negative regulator, Rubicon. In addition, we identify peroxiredoxin 3 (Prdx3) as another downstream regulator of MondoA essential for mitochondrial homeostasis and autophagy. Rubicon and Prdx3 work independently to regulate senescence. Furthermore, we find that MondoA knockout mice have exacerbated senescence during ischemic acute kidney injury (AKI), and a decrease of MondoA in the nucleus is correlated with human aging and ischemic AKI. Our results suggest that decline of MondoA worsens senescence and age-associated disease.


Asunto(s)
Lesión Renal Aguda , Senescencia Celular , Animales , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Homeostasis , Ratones , Mitocondrias
13.
Cells ; 11(4)2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35203395

RESUMEN

Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Neoplasias , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Humanos , Neoplasias/genética , Proteínas Represoras/fisiología , Factores de Transcripción/metabolismo
14.
Front Endocrinol (Lausanne) ; 12: 653972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868181

RESUMEN

In the past several decades obesity has become one of the greatest health burdens worldwide. Diet high in fats and fructose is one of the main causes for the prevalence of metabolic disorders including obesity. Promoting brown or beige adipocyte development and activity is regarded as a potential treatment of obesity. Mondo family transcription factors including MondoA and carbohydrate response element binding protein (ChREBP) are critical for nutrient-sensing in multiple metabolic organs including the skeletal muscle, liver, adipose tissue and pancreas. Under normal nutrient conditions, MondoA and ChREBP contribute to maintaining metabolic homeostasis. When nutrient is overloaded, Mondo family transcription factors directly regulate glucose and lipid metabolism in brown and beige adipocytes or modulate the crosstalk between metabolic organs. In this review, we aim to provide an overview of recent advances in the understanding of MondoA and ChREBP in sensing nutrients and regulating obesity or related pathological conditions.


Asunto(s)
Adipocitos Beige/metabolismo , Adipocitos Marrones/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción/metabolismo , Adipocitos/citología , Adipogénesis , Tejido Adiposo/metabolismo , Animales , Metabolismo Energético , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Metabolismo de los Lípidos , Ratones , Obesidad/fisiopatología , Obesidad/terapia , Fenotipo
15.
Diabetes Metab J ; 45(3): 439-451, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32431117

RESUMEN

Background: Skeletal muscle is the largest tissue in the human body, and it plays a major role in exerting force and maintaining metabolism homeostasis. The role of muscle transcription factors in the regulation of metabolism is not fully understood. MondoA is a glucose-sensing transcription factor that is highly expressed in skeletal muscle. Previous studies suggest that MondoA can influence systemic metabolism homeostasis. However, the function of MondoA in the skeletal muscle remains unclear. Methods: We generated muscle-specific MondoA knockout (MAKO) mice and analyzed the skeletal muscle morphology and glycogen content. Along with skeletal muscle from MAKO mice, C2C12 myocytes transfected with small interfering RNA against MondoA were also used to investigate the role and potential mechanism of MondoA in the development and glycogen metabolism of skeletal muscle. Results: MAKO caused muscle fiber atrophy, reduced the proportion of type II fibers compared to type I fibers, and increased the muscle glycogen level. MondoA knockdown inhibited myoblast proliferation, migration, and differentiation by inhibiting the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/Akt pathway. Further mechanistic experiments revealed that the increased muscle glycogen in MAKO mice was caused by thioredoxin-interacting protein (TXNIP) downregulation, which led to upregulation of glucose transporter 4 (GLUT4), potentially increasing glucose uptake. Conclusion: MondoA appears to mediate mouse myofiber development, and MondoA decreases the muscle glycogen level. The findings indicate the potential function of MondoA in skeletal muscle, linking the glucose-related transcription factor to myogenesis and skeletal myofiber glycogen metabolism.


Asunto(s)
Glucógeno , Fosfatidilinositol 3-Quinasas , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Músculo Esquelético
16.
J Biochem ; 167(4): 371-377, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782782

RESUMEN

Evidence has indicated the associations between thioredoxin-interacting protein (TXNIP) and cancers. However, the role of TXNIP in cervical cancer remains unclear. Hence, this study aims to investigate the role of TXNIP in regulating cervical cancer cell proliferation, migration and invasion. TXNIP expression can be regulated by either MondoA or ChREBP in a cell- or tissue- dependent manner. Thus, we also explored whether TXNIP expression in cervical cancer can be regulated by MondoA or ChREBP. Our results showed that TXNIP expression was decreased in cervical cancer cells (HeLa, SiHa, CaSki, MS751, C-33A). Furthermore, TXNIP overexpression inhibited cell proliferation, migration and invasion in HeLa cells, whereas TXNIP silencing exerted the opposite effect in C-33A cells. Moreover, TXNIP expression could be induced by MondoA, rather than ChREBP in HeLa cells. Additionally, MondoA overexpression inhibited cell proliferation, migration and invasion through upregulating TXNIP in HeLa cells. In summary, TXNIP induced by MondoA, rather than ChREBP, suppresses cervical cancer cell proliferation, migration and invasion. Our findings provide new ideas for the prevention and treatment of cervical cancer.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/metabolismo , Movimiento Celular , Proliferación Celular , Neoplasias del Cuello Uterino/metabolismo , Proteínas Portadoras/genética , Supervivencia Celular , Femenino , Células HeLa , Humanos , Neoplasias del Cuello Uterino/patología
17.
Front Mol Biosci ; 6: 147, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31993438

RESUMEN

The major metabolic fates of glucose in cells are glycolysis and the pentose phosphate pathway, and they share the first step: converting glucose to glucose-6-phosphate (G6P). Here, we show that G6P can be sensed by the transcription factor MondoA/Mlx to modulate Txnip expression. Endogenous knockdown and EMSA (gel migration assay) analyses both confirmed that G6P is the metabolic intermediate that activates the heterocomplex MondoA/Mlx to elicit the expression of Txnip. Additionally, the three-dimensional structure of MondoA is modeled, and the binding mode of G6P to MondoA is also predicted by in silico molecular docking and binding free energy calculation. Finally, free energy decomposition and mutational analyses suggest that certain residues in MondoA, GKL139-141 in particular, mediate its binding with G6P to activate MondoA, which signals the upregulation of the expression of Txnip.

18.
Elife ; 82019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30717828

RESUMEN

Human MondoA requires glucose as well as other modulatory signals to function in transcription. One such signal is acidosis, which increases MondoA activity and also drives a protective gene signature in breast cancer. How low pH controls MondoA transcriptional activity is unknown. We found that low pH medium increases mitochondrial ATP (mtATP), which is subsequently exported from the mitochondrial matrix. Mitochondria-bound hexokinase transfers a phosphate from mtATP to cytoplasmic glucose to generate glucose-6-phosphate (G6P), which is an established MondoA activator. The outer mitochondrial membrane localization of MondoA suggests that it is positioned to coordinate the adaptive transcriptional response to a cell's most abundant energy sources, cytoplasmic glucose and mtATP. In response to acidosis, MondoA shows preferential binding to just two targets, TXNIP and its paralog ARRDC4. Because these transcriptional targets are suppressors of glucose uptake, we propose that MondoA is critical for restoring metabolic homeostasis in response to high energy charge.


Asunto(s)
Acidosis/fisiopatología , Adenosina Trifosfato/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Transcripción Genética , Arrestinas/metabolismo , Proteínas Portadoras/metabolismo , Activadores de Enzimas/metabolismo , Glucosa-6-Fosfato/metabolismo , Hexoquinasa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Fosfatos/metabolismo , Unión Proteica
19.
Mol Cell Biol ; 38(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30037981

RESUMEN

Oncogenic Ras upregulates aerobic glycolysis to meet the bioenergetic and biosynthetic demands of rapidly growing cells. In contrast, thioredoxin-interacting protein (TXNIP) is a potent inhibitor of glucose uptake and is frequently downregulated in human cancers. Our laboratory previously discovered that Ras activation suppresses TXNIP transcription and translation. In this study, we developed a system to study how Ras affects TXNIP translation in the absence of transcriptional effects. We show that whereas Ras drives a global increase in protein translation, it suppresses TXNIP protein synthesis by reducing the rate at which ribosomes transit the coding region of TXNIP mRNA. To investigate the underlying mechanism(s), we randomized or optimized the codons in the TXNIP message without altering the TXNIP primary amino acid sequence. Translation from these mRNA variants was still repressed by Ras, implying that mRNA secondary structure, microRNAs (miRNAs), RNA binding proteins, or codon usage does not contribute to the blockade of TXNIP synthesis. Rather, we show that the N terminus of the growing TXNIP polypeptide is the target for Ras-dependent translational repression. Our work demonstrates how Ras suppresses TXNIP translation elongation in the face of a global upregulation of protein synthesis and provides new insight into Ras-dependent metabolic reprogramming.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/deficiencia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Células Cultivadas , Regulación hacia Abajo , Técnicas de Inactivación de Genes , Genes ras , Humanos , Ratones , Extensión de la Cadena Peptídica de Translación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
20.
Metabolism ; 70: 133-151, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28403938

RESUMEN

Identification of the Mondo glucose-responsive transcription factors family, including the MondoA and MondoB/ChREBP paralogs, has shed light on the mechanism whereby glucose affects gene transcription. They have clearly emerged, in recent years, as key mediators of glucose sensing by multiple cell types. MondoA and ChREBP have overlapping yet distinct expression profiles, which underlie their downstream targets and separate roles in regulating genes involved in glucose metabolism. MondoA can restrict glucose uptake and influences energy utilization in skeletal muscle, while ChREBP signals energy storage through de novo lipogenesis in liver and white adipose tissue. Because Mondo proteins mediate metabolic adaptations to changing glucose levels, a better understanding of cellular glucose sensing through Mondo proteins will likely uncover new therapeutic opportunities in the context of the imbalanced glucose homeostasis that accompanies metabolic diseases such as type 2 diabetes and cancer. Here, we provide an overview of structural homologies, transcriptional partners as well as the nutrient and hormonal mechanisms underlying Mondo proteins regulation. We next summarize their relative contribution to energy metabolism changes in physiological states and the evolutionary conservation of these pathways. Finally, we discuss their possible targeting in human pathologies.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción/fisiología , Animales , Metabolismo Energético/fisiología , Glucosa/metabolismo , Glucólisis , Humanos , Lipogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA