Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mov Disord ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077793

RESUMEN

BACKGROUND: Musicians' dystonia (MD) is a movement disorder with several established risk factors, but the exact pathophysiology remains unknown. Recent research suggests dysfunction in sensory-motor, basal ganglia, cerebellar, and limbic loops as potential causes. Adverse childhood experiences are also considered risk factors. OBJECTIVE: This study aimed to investigate whether MD patients have experienced more childhood trauma, leading to increased stress reactivity and neural vulnerability to movement disorders. METHODS: Using functional magnetic resonance imaging and the Montreal Imaging Stress Task, 40 MD patients were compared with 39 healthy musicians (HMs). Whole-brain analysis and regions of interest analysis were performed. Parameter estimates and subjective stress levels were compared between groups and correlated with the Childhood Trauma Questionnaire. RESULTS: MD patients reported significantly higher childhood trauma scores than healthy control subjects, but they did not differ in their subjective stress experiences. Stress-related activity of limbic areas was neither found in the whole sample nor between the two groups. Instead, increased activity of visual association and temporal areas was observed, but this activation did not differ between patients and HMs. However, patients showed a tendency toward reduced precuneus activity under stress. Adverse childhood experiences were negatively correlated with precuneus, thalamus, and substantia nigra activity across all participants. CONCLUSIONS: Overall, MD patients and HMs had similar subjective and neurological reactions to stress but differed in childhood trauma experiences and precuneus activity under stress. Further research about the functional connectivity between precuneus, cerebellum, thalamus, and basal ganglia in musicians is needed. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Neuroradiology ; 62(1): 63-69, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31773188

RESUMEN

PURPOSE: Although numerous clinical neuroimaging studies have demonstrated that there are functional abnormalities of motor-related regions in patients with Parkinson's disease (PD) by resting-state functional magnetic resonance imaging (fMRI), little studies have explored the causal interactions within these motor-related regions. The present study aimed to examine Granger causality connectivity patterns within motor-related regions in PD patients. METHODS: Resting-state fMRI was conducted to investigate the causal connectivity differences within motor-related regions between 17 PD patients and 17 matched healthy controls. Subsequently, the relationship between the Unified Parkinson's Disease Rating Scale scores and causal connectivity values within motor-related regions was examined in PD patients. RESULTS: An increased causal connectivity from the left premotor cortex (PMC) to right primary motor cortex (M1) was found in PD patients compared with that of healthy controls. Also, increased causal flow from the PMC to M1 was negatively correlated with motor scores. CONCLUSION: PD patients have abnormal causal connectivity in specific motor-related regions, which may reflect a compensatory role of motor deficits in PD patients.


Asunto(s)
Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Mapeo Encefálico , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Actividad Motora/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Descanso/fisiología
3.
Hum Brain Mapp ; 40(5): 1632-1642, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30447082

RESUMEN

Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcortical strokes acquired prior to 34 weeks gestation involving injury to the periventricular white matter. Both stroke types can damage motor pathways, thus, we investigated resulting alterations in functional motor networks and probed function. We measured blood oxygen level dependent (BOLD) fluctuations at rest in 38 participants [10 arterial patients (age = 14.7 ± 4.1 years), 10 venous patients (age = 13.5 ± 3.7 years), and 18 typically developing controls (TDCs) (age = 15.3 ± 5.1 years)] and explored strength and laterality of functional connectivity in the motor network. Inclusion criteria included MRI-confirmed, unilateral perinatal stroke, symptomatic hemiparetic cerebral palsy, and 6-19 years old at time of imaging. Seed-based functional connectivity analyses measured temporal correlations in BOLD response over the whole brain using primary motor cortices as seeds. Laterality indices based on mean z-scores in lesioned and nonlesioned hemispheres explored laterality. In AIS patients, significant differences in both strength and laterality of motor network connections were observed compared with TDCs. In PVI patients, motor networks largely resembled those of healthy controls, albeit slightly weaker and asymmetric, despite subcortical damage and hemiparesis. Functional connectivity strengths were not related to motor outcome scores for either stroke group. This study serves as a foundation to better understand how resting-state fMRI can assess motor functional connectivity and potentially be applied to explore mechanisms of interventional therapies after perinatal stroke.


Asunto(s)
Vías Eferentes/diagnóstico por imagen , Paresia/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Adolescente , Infarto Encefálico/diagnóstico por imagen , Parálisis Cerebral/diagnóstico por imagen , Niño , Imagen de Difusión Tensora , Femenino , Lateralidad Funcional , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Corteza Motora/fisiopatología , Neuroimagen , Paresia/congénito , Accidente Cerebrovascular/congénito , Adulto Joven
4.
Neuroimage ; 84: 435-42, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24045076

RESUMEN

Deep brain stimulation (DBS) of the internal pallidal segment (GPi: globus pallidus internus) is gold standard treatment for medically intractable dystonia, but detailed knowledge of mechanisms of action is still not available. There is evidence that stimulation of ventral and dorsal GPi produces opposite motor effects. The aim of this study was to analyse connectivity profiles of ventral and dorsal GPi. Probabilistic tractography was initiated from DBS electrode contacts in 8 patients with focal dystonia and connectivity patterns compared. We found a considerable difference in anterior-posterior distribution of fibres along the mesial cortical sensorimotor areas between the ventral and dorsal GPi connectivity. This finding of distinct GPi connectivity profiles further confirms the clinical evidence that the ventral and dorsal GPi belong to different functional and anatomic motor subsystems. Their involvement could play an important role in promoting clinical DBS effects in dystonia.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Imagen de Difusión Tensora/métodos , Trastornos Distónicos/patología , Trastornos Distónicos/terapia , Globo Pálido/patología , Fibras Nerviosas Mielínicas/patología , Red Nerviosa/patología , Adulto , Anciano , Conectoma/métodos , Estimulación Encefálica Profunda/instrumentación , Electrodos Implantados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Plasticidad Neuronal , Resultado del Tratamiento
5.
Clin Neurophysiol ; 158: 137-148, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38219403

RESUMEN

OBJECTIVE: Both cognitive and primary motor networks alter with advancing age in humans. The networks activated in response to external environmental stimuli supported by theta oscillations remain less well explored. The present study aimed to characterize the effects of aging on the functional connectivity of response-related theta networks during sensorimotor tasks. METHODS: Electroencephalographic signals were recorded in young and middle-to-older age adults during three tasks performed in two modalities, auditory and visual: a simple reaction task, a Go-NoGo task, and a choice-reaction task. Response-related theta oscillations were computed. The phase-locking value (PLV) was used to analyze the spatial synchronization of primary motor and motor control theta networks. RESULTS: Performance was overall preserved in older adults. Independently of the task, aging was associated with reorganized connectivity of the contra-lateral primary motor cortex. In younger adults, it was synchronized with motor control regions (intra-hemispheric premotor/frontal and medial frontal). In older adults, it was only synchronized with intra-hemispheric sensorimotor regions. CONCLUSIONS: Motor theta networks of older adults manifest a functional decoupling between the response-generating motor cortex and motor control regions, which was not modulated by task variables. The overall preserved performance in older adults suggests that the increased connectivity within the sensorimotor network is associated with an excessive reliance on sensorimotor feedback during movement execution compensating for a deficient cognitive regulation of motor regions during sensorimotor reactions. SIGNIFICANCE: New evidence is provided for the reorganization of motor networks during sensorimotor reactions already at the transition from middle to old age.


Asunto(s)
Envejecimiento , Corteza Motora , Humanos , Anciano , Envejecimiento/fisiología , Electroencefalografía , Corteza Motora/fisiología , Movimiento/fisiología , Imagen por Resonancia Magnética
6.
Neuroimage Clin ; 40: 103541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37972450

RESUMEN

OBJECTIVE: Investigate the brain functional networks associated with motor impairment in people with Parkinson's disease (PD). BACKGROUND: PD is primarily characterized by motor dysfunction. Resting-state functional connectivity (RsFC) offers a unique opportunity to non-invasively characterize brain function. In this study, we hypothesized that the motor dysfunction observed in people with PD involves atypical connectivity not only in motor but also in higher-level attention networks. Understanding the interaction between motor and non-motor RsFC that are related to the motor signs could provide insights into PD pathophysiology. METHODS: We used data from 88 people with PD (mean age: 68.2(SD:10), 55 M/33F) coming from 2 cohorts. Motor severity was assessed in practical OFF-medication state, using MDS-UPDRS Part-III motor scores (mean: 49 (SD:10)). RsFC was characterized using an atlas of 384 regions that were grouped into 13 functional networks. Associations between RsFC and motor severity were assessed independently for each RsFC using predictive modeling. RESULTS: The top 5 % models that predicted the MDS-UPDRS-III motor scores with effect size >0.5 were the connectivity between (1) the somatomotor and Subcortical-Basal-ganglia, (2) somatomotor and Visual and (3) CinguloOpercular (CiO) and language/Ventral attention (Lan/VeA) network pairs. DISCUSSION: Our findings suggest that, along with motor networks, visual- and attention-related cortical networks are also associated with the motor symptoms of PD. Non-motor networks may be involved indirectly in motor-coordination. When people with PD have deficits in motor networks, more attention may be needed to carry out formerly automatic motor functions, consistent with compensatory mechanisms in parkinsonian movement disorders.


Asunto(s)
Enfermedad de Parkinson , Humanos , Anciano , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Imagen por Resonancia Magnética , Ganglios Basales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico
7.
Surg Neurol Int ; 13: 105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399885

RESUMEN

Background: Focal motor epilepsy is difficult to localize within the epileptogenic zone because ictal activity quickly spreads to the motor cortex through ictal networks. We previously reported the usefulness of gamma oscillation (30-70 Hz) regularity (GOR) correlation analysis using interictal electrocorticographic (ECoG) data to depict epileptogenic networks. We conducted GOR correlation analysis using ictal ECoG data to visualize the ictal networks originating from the epileptogenic zone in two cases - a 26-year-old woman with negative motor seizures and a 53-year-old man with supplementary motor area (SMA) seizures. Case Description: In both cases, we captured several habitual seizures during monitoring after subdural electrode implantation and performed GOR correlation analysis using ictal ECoG data. A significantly high GOR suggestive of epileptogenicity was identified in the SMA ipsilateral to the lesions, which were connected to the motor cortex through supposed ictal networks. We resected the high GOR locations in the SMA and the patients' previously identified tumors were removed. The patients were seizure-free without any neurological deficits after surgery. Conclusion: The GOR correlation analysis using ictal ECoG data could be a powerful tool for visualizing ictal networks in focal motor epilepsy.

8.
Front Neurol ; 13: 868792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693021

RESUMEN

Background: Many different trials were assessed for rehabilitation of patients with amyotrophic lateral sclerosis (ALS), with non-unique results. Beside the effects on muscle trophism, some of the encouraging results of physical training could be ascribed to the modulation of cortical excitability, which was found hyperexcited in ALS. Objective: The effects of tactile skin stimulation in the modulation of the sensory-motor integrative networks in healthy subjects were assayed through the paired associative stimulation (PAS) protocol. Methods: In total, 15 healthy subjects were enrolled. In the standard PAS session, the average amplitude of the motor evoked potential (MEP) after 10 stimuli of transcranial magnetic stimulation (TMS) was measured at the baseline and after the PAS protocol (0, 10, 20, 30, and 60 min). In the skin stimulation session, the average amplitude of the MEP was measured before and after 10 min of skin stimulation over the hand. Subsequently, each subject underwent the PAS stimulation and the measure of the average amplitude of the MEP (0, 10, 20, 30, and 60 min). Results: The tactile skin stimulation on healthy subjects increases the PAS-induced sensory-motor network hyperexcitability in healthy subjects. Conclusion: Skin stimulation should be avoided in the physiotherapeutic approaches for patients with ALS, given the possible hyperexciting effects on the already upmodulated sensory-motor networks. They can be taken into account for diseases characterized by downregulation of cortical and transcortical networks.

9.
J Clin Med ; 11(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35806954

RESUMEN

It has been suggested that neuroplasticity-promoting neuromodulation can restore sensory-motor pathways after spinal cord injury (SCI), reactivating the dormant locomotor neuronal circuitry. We introduce a neuro-rehabilitative approach that leverages locomotor training with multi-segmental spinal cord transcutaneous electrical stimulation (scTS). We hypothesized that scTS neuromodulates spinal networks, complementing the neuroplastic effects of locomotor training, result in a functional progression toward recovery of locomotion. We conducted a case-study to test this approach on a 27-year-old male classified as AIS A with chronic SCI. The training regimen included task-driven non-weight-bearing training (1 month) followed by weight-bearing training (2 months). Training was paired with multi-level continuous and phase-dependent scTS targeting function-specific motor pools. Results suggest a convergence of cross-lesional networks, improving kinematics during voluntary non-weight-bearing locomotor-like stepping. After weight-bearing training, coordination during stepping improved, suggesting an important role of afferent feedback in further improvement of voluntary control and reorganization of the sensory-motor brain-spinal connectome.

10.
Brain Sci ; 12(11)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36421893

RESUMEN

Transcranial direct current stimulation (TDCS) on the primary motor cortex (M1) has been reported to be effective in fibromyalgia (FM). Our previous works have shown hypometabolism of motor networks in FM using Functional Near Infrared Spectroscopy (fNIRS), which could contribute to pain symptoms. To investigate if a single Transcranial Direct Current Stimulation (TDCS) session can restore the reduced metabolism expected in FM patients, we compared metabolic activity in FM patients and controls during a finger-tapping task in basal condition, sham condition, and under anodal TDCS on M1. During the finger tapping task, a continuous wave 20 channel fNIRS system was placed across the bilateral central-frontal areas in 22 healthy controls and 54 FM patients. Subjects were randomly assigned to real TDCS or sham stimulation. The finger-tapping slowness did not change after real and sham stimulation. After real TDCS stimulation, FM patients showed an increased activation of cortical motor regions (t-statistic = -2.5246, p-value = 0.0125 for the stimulated hemisphere and t-statistic = -4.6638, p-value = 0.0001 for the non-stimulated hemisphere). The basal differences between FM and controls reverted after real TDCS, while this effect was not observed for sham stimulation. A single TDCS session of the cortical motor network seemed able to restore basic cortical hypometabolism in FM patients. Further studies could clarify the long-term effect of M1 stimulation on cortical metabolism, and its relevance in pain processing and clinical features.

11.
Front Neurosci ; 16: 896746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033609

RESUMEN

In the seed-based method for studying functional connectivity (FC), seed selection is relevant. Here, we propose a new methodological approach for resting-state FC analysis of hand motor networks using the individual hand motor hotspot (hMHS) as seed. Nineteen right-handed healthy volunteers underwent a transcranial magnetic stimulation (TMS) session and resting-state fMRI. For each subject, the hMHS in both hemispheres was identified by TMS with the contralateral abductor pollicis brevis muscle as the target, the site eliciting the highest and most reliable motor-evoked potentials. Seed regions were built on coordinates on the cortex corresponding to the individual left and right hMHSs. For comparison, the left and right Brodmann's area 4 (BA4) masks extracted from a standard atlas were used as seed. The left and right hMHSs showed FC patterns at rest mainly including sensorimotor regions, with a bilateral connectivity only for the left hMHS. The statistical contrast BA4 > hMHS for both hemispheres showed different extension and lateralization of the functionally connected cortical regions. On the contrary, no voxels survived the opposite contrast (hMHS > BA4). This suggests that detection of individual hand motor seeds by TMS allows to identify functionally connected motor networks that are more specific with respect to those obtained starting from the a priori atlas-based identification of the primary motor cortex.

12.
Front Hum Neurosci ; 15: 662016, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456692

RESUMEN

Developmental stuttering (DS) is a disturbance of the normal rhythm of speech that may be interpreted as very debilitating in the most affected cases. Interventions for DS are historically based on the behavioral modifications of speech patterns (e.g., through speech therapy), which are useful to regain a better speech fluency. However, a great variability in intervention outcomes is normally observed, and no definitive evidence is currently available to resolve stuttering, especially in the case of its persistence in adulthood. In the last few decades, DS has been increasingly considered as a functional disturbance, affecting the correct programming of complex motor sequences such as speech. Compatibly, understanding of the neurophysiological bases of DS has dramatically improved, thanks to neuroimaging, and techniques able to interact with neural tissue functioning [e.g., non-invasive brain stimulation (NIBS)]. In this context, the dysfunctional activity of the cortico-basal-thalamo-cortical networks, as well as the defective patterns of connectivity, seems to play a key role, especially in sensorimotor networks. As a consequence, a direct action on the functionality of "defective" or "impaired" brain circuits may help people who stutter to manage dysfluencies in a better way. This may also "potentiate" available interventions, thus favoring more stable outcomes of speech fluency. Attempts aiming at modulating (and improving) brain functioning of people who stutter, realized by using NIBS, are quickly increasing. Here, we will review these recent advancements being applied to the treatment of DS. Insights will be useful not only to assess whether the speech fluency of people who stutter may be ameliorated by acting directly on brain functioning but also will provide further suggestions about the complex and dynamic pathophysiology of DS, where causal effects and "adaptive''/''maladaptive" compensation mechanisms may be strongly overlapped. In conclusion, this review focuses future research toward more specific, targeted, and effective interventions for DS, based on neuromodulation of brain functioning.

13.
Brain Inform ; 8(1): 5, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33745089

RESUMEN

In this study, the relationship of orienting of attention, motor control and the Stimulus- (SDN) and Goal-Driven Networks (GDN) was explored through an innovative method for fMRI analysis considering all voxels in four experimental conditions: standard target (Goal; G), novel (N), neutral (Z) and noisy target (NG). First, average reaction times (RTs) for each condition were calculated. In the second-level analysis, 'distracted' participants, as indicated by slower RTs, evoked brain activations and differences in both hemispheres' neural networks for selective attention, while the participants, as a whole, demonstrated mainly left cortical and subcortical activations. A context analysis was run in the behaviourally distracted participant group contrasting the trials immediately prior to the G trials, namely one of the Z, N or NG conditions, i.e. Z.G, N.G, NG.G. Results showed different prefrontal activations dependent on prior context in the auditory modality, recruiting between 1 to 10 prefrontal areas. The higher the motor response and influence of the previous novel stimulus, the more prefrontal areas were engaged, which extends the findings of hierarchical studies of prefrontal control of attention and better explains how auditory processing interferes with movement. Also, the current study addressed how subcortical loops and models of previous motor response affected the signal processing of the novel stimulus, when this was presented laterally or simultaneously with the target. This multitasking model could enhance our understanding on how an auditory stimulus is affecting motor responses in a way that is self-induced, by taking into account prior context, as demonstrated in the standard condition and as supported by Pulvinar activations complementing visual findings. Moreover, current BCI works address some multimodal stimulus-driven systems.

14.
Brain Behav ; 10(1): e01490, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31801182

RESUMEN

INTRODUCTION: Our hands are the primary means for motor interaction with the environment, and their neural organization is fundamentally asymmetric: While most individuals can perform easy motor tasks with two hands equally well, only very few individuals can perform complex fine motor tasks with both hands at a similar level of performance. The reason why this phenomenon is so rare is not well understood. Professional drummers represent a unique population to study it, as they have remarkable abilities to perform complex motor tasks with their two limbs independently. METHODS: Here, we used a multimethod neuroimaging approach to investigate the structural, functional, and biochemical correlates of fine motor behavior in professional drummers (n = 20) and nonmusical controls (n = 24). RESULTS: Our results show that drummers have higher microstructural diffusion properties in the corpus callosum than controls. This parameter also predicts drumming performance and GABA levels in the motor cortex. Moreover, drummers show less activation in the motor cortex when performing a finger-tapping task than controls. CONCLUSION: In conclusion, professional drumming is associated with a more efficient neuronal design of cortical motor areas as well as a stronger link between commissural structure and biochemical parameters associated with motor inhibition.


Asunto(s)
Cuerpo Calloso/diagnóstico por imagen , Corteza Motora/metabolismo , Desempeño Psicomotor/fisiología , Ácido gamma-Aminobutírico/metabolismo , Adulto , Neuroimagen Funcional/métodos , Mano/fisiología , Humanos , Masculino , Actividad Motora/fisiología , Música , Profesionalismo , Análisis Espectral/métodos
15.
Brain Lang ; 205: 104774, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32135384

RESUMEN

Previous studies regarding developmental stuttering (DS) suggest that motor neural networks are strongly affected. Transcranial magnetic stimulation (TMS) was used to investigate neural activation of the primary motor cortex in DS during movement execution, and the influence of muscle representations involved in movements on "surrounding" ones. TMS was applied over the contralateral abductor digiti minimi (ADM) motor representation, at rest and during the movement of homologue first dorsal interosseous muscles (tonic contraction, phasic movements cued by acoustic signalling, and "self-paced" movements). Results highlighted a lower cortico-spinal excitability of ADM in the left hemisphere of stutterers, and an enhanced intracortical inhibition in their right motor cortex (in comparison to fluent speakers). Abnormal intracortical functioning was especially evident during phasic contractions cued by "external" acoustic signals. An exaggerated inhibition of muscles not directly involved in intended movements, in stuttering, may be useful to obtain more efficient motor control. This was stronger during contractions cued by "external" signals, highlighting mechanisms likely used by stutterers during fluency-evoking conditions.


Asunto(s)
Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Músculo Esquelético/fisiología , Red Nerviosa/fisiología , Tartamudeo/terapia , Estimulación Magnética Transcraneal/métodos , Adulto , Femenino , Mano/fisiología , Humanos , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Tartamudeo/fisiopatología , Adulto Joven
16.
Q J Exp Psychol (Hove) ; 72(6): 1401-1411, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30352540

RESUMEN

Imagery research has identified two main visual perspectives, external visual imagery (EVI, third person) and internal visual imagery (IVI, first person). Based upon findings from brain imaging literature showing that different neural substrates are recruited for IVI and EVI perspectives, and that IVI activates motor system brain areas, we hypothesised that a concurrent action dual task would cause greater interference in performance for IVI than EVI. In a first experiment, participants were allocated to either an IVI or an EVI group, and were tasked with moving an onscreen marker towards a target in three blocked conditions: imagery, imagery with a concurrent motor dual-task of sequencing, and a math control. An interaction between imagery group and condition was driven by greater root mean square error for participants in the dual-task condition in the IVI group compared with the EVI group. We replicated the experiment with an eye-tracking objective measure of IVI; the results again showed that participants in the IVI group made more errors in motor movements, and an interference effect in eye movements, during the dual-task sequencing condition compared with the EVI group. The results of the two experiments reveal that a secondary motor task does interfere with IVI, providing behavioural evidence that IVI appears to rely on motor system processes more than EVI. These results have important implications for the use of visual imagery perspectives across a number of domains, with this paper being an essential reference for those conducting visual imagery perspectives research.


Asunto(s)
Función Ejecutiva/fisiología , Imaginación/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Adulto , Medidas del Movimiento Ocular , Femenino , Humanos , Masculino , Adulto Joven
17.
Neuroimage Clin ; 22: 101784, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30925383

RESUMEN

Many studies have used functional magnetic resonance imaging to unravel the neuronal underpinnings of motor system abnormalities in Parkinson's disease, indicating functional inhibition at the level of basal ganglia-thalamo-cortical motor networks. The study aim was to extend the characterization of functional motor changes in Parkinson's Disease by dissociating between two phases of action (i.e. motor planning and motor execution) during an automated unilateral finger movement sequence with the left and right hand, separately. In essence, we wished to identify neuronal dysfunction and potential neuronal compensation before (planning) and during (execution) automated sequential motor behavior in unmedicated early stage Parkinson's Disease patients. Twenty-two Parkinson's Disease patients (14 males; 53 ±â€¯11 years; Hoehn and Yahr score 1.4 ±â€¯0.6; UPDRS (part 3) motor score 16 ±â€¯6) and 22 healthy controls (14 males; 49 ±â€¯12 years) performed a pre-learnt four finger sequence (index, ring, middle and little finger, in order), either self-initiated (FREE) or externally triggered (REACT), within an 8-second time window. Findings were most pronounced during FREE with the clinically most affected side, where motor execution revealed significant underactivity of contralateral primary motor cortex, contralateral posterior putamen (sensorimotor territory), ipsilateral anterior cerebellum / cerebellar vermis, along with underactivity in supplementary motor area (based on ROI analyses only), corroborating previous findings in Parkinson's Disease. During motor planning, Parkinson's Disease patients showed a significant relative overactivity in dorsolateral prefrontal cortex (DLPFC), suggesting a compensatory overactivity. To a variable extent this relative overactivity in the DLPFC went along with a relative overactivity in the precuneus and the ipsilateral anterior cerebellum/cerebellar vermis Our study illustrates that a refined view of disturbances in motor function and compensatory processes can be gained from experimental designs that try to dissociate motor planning from motor execution, emphasizing that compensatory mechanisms are triggered in Parkinson's Disease when voluntary movements are conceptualized for action.


Asunto(s)
Cerebelo/fisiopatología , Neuroimagen Funcional , Actividad Motora/fisiología , Corteza Motora/fisiopatología , Red Nerviosa/fisiopatología , Enfermedad de Parkinson/fisiopatología , Corteza Prefrontal/fisiopatología , Putamen/fisiopatología , Adulto , Cerebelo/diagnóstico por imagen , Femenino , Dedos/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Putamen/diagnóstico por imagen , Aprendizaje Seriado/fisiología
18.
eNeuro ; 6(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31270128

RESUMEN

Identified neurons and the networks they compose produce stereotypical, albeit individually unique, activity across members of a species. We propose, for a motor circuit driven by a central pattern generator (CPG), that the uniqueness derives mainly from differences in synaptic strength rather than from differences in intrinsic membrane conductances. We studied a dataset of recordings from six leech (Hirudo sp.) heartbeat control networks, containing complete spiking activity patterns from inhibitory premotor interneurons, motor output spike patterns, and synaptic strength patterns to investigate the source of uniqueness. We used a conductance-based multicompartmental motor neuron model to construct a bilateral motor circuit model, and controlled it by playing recorded input spike trains from premotor interneurons to generate output inhibitory synaptic patterns similar to experimental measurements. By generating different synaptic conductance parameter sets of this circuit model, we found that relative premotor synaptic strengths impinging onto motor neurons must be different across individuals to produce animal-specific output burst phasing. Obtaining unique outputs from each individual's circuit model did not require different intrinsic ionic conductance parameters. Furthermore, changing intrinsic conductances failed to compensate for modified synaptic strength patterns. Thus, the pattern of synaptic strengths of motor neuron inputs is critical for the phasing of this motor circuit and can explain individual differences. When intrinsic conductances were allowed to vary, they exhibited the same conductance correlations across individuals, suggesting a motor neuron "type" required for proper network function. Our results are general and may translate to other systems and neuronal networks that control output phasing.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Sanguijuelas/fisiología , Neuronas Motoras/fisiología , Sinapsis/fisiología , Potenciales de Acción , Animales , Corazón/fisiología , Interneuronas/fisiología , Modelos Neurológicos
19.
Front Neurosci ; 12: 353, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29896082

RESUMEN

Interventional therapy using brain-computer interface (BCI) technology has shown promise in facilitating motor recovery in stroke survivors; however, the impact of this form of intervention on functional networks outside of the motor network specifically is not well-understood. Here, we investigated resting-state functional connectivity (rs-FC) in stroke participants undergoing BCI therapy across stages, namely pre- and post-intervention, to identify discriminative functional changes using a machine learning classifier with the goal of categorizing participants into one of the two therapy stages. Twenty chronic stroke participants with persistent upper-extremity motor impairment received neuromodulatory training using a closed-loop neurofeedback BCI device, and rs-functional MRI (rs-fMRI) scans were collected at four time points: pre-, mid-, post-, and 1 month post-therapy. To evaluate the peak effects of this intervention, rs-FC was analyzed from two specific stages, namely pre- and post-therapy. In total, 236 seeds spanning both motor and non-motor regions of the brain were computed at each stage. A univariate feature selection was applied to reduce the number of features followed by a principal component-based data transformation used by a linear binary support vector machine (SVM) classifier to classify each participant into a therapy stage. The SVM classifier achieved a cross-validation accuracy of 92.5% using a leave-one-out method. Outside of the motor network, seeds from the fronto-parietal task control, default mode, subcortical, and visual networks emerged as important contributors to the classification. Furthermore, a higher number of functional changes were observed to be strengthening from the pre- to post-therapy stage than the ones weakening, both of which involved motor and non-motor regions of the brain. These findings may provide new evidence to support the potential clinical utility of BCI therapy as a form of stroke rehabilitation that not only benefits motor recovery but also facilitates recovery in other brain networks. Moreover, delineation of stronger and weaker changes may inform more optimal designs of BCI interventional therapy so as to facilitate strengthened and suppress weakened changes in the recovery process.

20.
Clin Neurophysiol ; 128(6): 952-964, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28431323

RESUMEN

Developmental stuttering (DS) is a disruption of the rhythm of speech, and affected people may be unable to execute fluent voluntary speech. There are still questions about the exact causes of DS. Evidence suggests there are differences in the structure and functioning of motor systems used for preparing, executing, and controlling motor acts, especially when they are speech related. Much research has been obtained using neuroimaging methods, ranging from functional magnetic resonance to diffusion tensor imaging and electroencephalography/magnetoencephalography. Studies using transcranial magnetic stimulation (TMS) in DS have been uncommon until recently. This is surprising considering the relationship between the functionality of the motor system and DS, and the wide use of TMS in motor-related disturbances such as Parkinson's Disease, Tourette's Syndrome, and dystonia. Consequently, TMS could shed further light on motor aspects of DS. The present work aims to investigate the use of TMS for understanding DS neural mechanisms by reviewing TMS papers in the DS field. Until now, TMS has contributed to the understanding of the excitatory/inhibitory ratio of DS motor functioning, also helping to better understand and critically review evidence about stuttering mechanisms obtained from different techniques, which allowed the investigation of cortico-basal-thalamo-cortical and white matter/connection dysfunctions.


Asunto(s)
Tartamudeo/fisiopatología , Estimulación Magnética Transcraneal/métodos , Potenciales Evocados Motores , Humanos , Tartamudeo/diagnóstico , Tartamudeo/terapia , Estimulación Magnética Transcraneal/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA