RESUMEN
Climate change causes organisms, including species that act as parasite reservoirs and vectors, to shift their distribution to higher altitudes, affecting wildlife infestation patterns. We studied how ectoparasite distributions varied with altitude using two rodent species, Montemys delectorum and Rhabdomys dilectus, at different elevations (1500-3500 m). The ectoparasites infesting the two rodent species were influenced by the host sex, species, and temperature. We expected host density to predict parasite infestation patterns, because hosts in higher densities should have more parasites due to increased contact between individuals. However, temperature, not host density, affected ectoparasite distribution. Since temperatures decrease with elevation, parasite prevalences and abundances were lower at higher elevations, highlighting that the cold conditions at higher elevations limit reproduction and development-this shows that higher elevation zones are ideal for conservation. The rodents and ectoparasite species described in this study have been reported as vectors of diseases of medical and veterinary importance, necessitating precautions. Moreover, Mount Meru is a refuge for a number of endemic and threatened species on the IUCN Red List. Thus, the parasitic infection can also be an additional risk to these critical species as well as biodiversity in general. Therefore, our study lays the groundwork for future wildlife disease surveillance and biodiversity conservation management actions. The study found a previously uncharacterized mite species in the Mesostigmata group that was previously known to be a parasite of honeybees. Further investigations may shed light into the role of this mite species on Mount Meru.