Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 52(4): 683-699.e11, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294408

RESUMEN

Mucociliary clearance through coordinated ciliary beating is a major innate defense removing pathogens from the lower airways, but the pathogen sensing and downstream signaling mechanisms remain unclear. We identified virulence-associated formylated bacterial peptides that potently stimulated ciliary-driven transport in the mouse trachea. This innate response was independent of formyl peptide and taste receptors but depended on key taste transduction genes. Tracheal cholinergic chemosensory cells expressed these genes, and genetic ablation of these cells abrogated peptide-driven stimulation of mucociliary clearance. Trpm5-deficient mice were more susceptible to infection with a natural pathogen, and formylated bacterial peptides were detected in patients with chronic obstructive pulmonary disease. Optogenetics and peptide stimulation revealed that ciliary beating was driven by paracrine cholinergic signaling from chemosensory to ciliated cells operating through muscarinic M3 receptors independently of nerves. We provide a cellular and molecular framework that defines how tracheal chemosensory cells integrate chemosensation with innate defense.


Asunto(s)
Acetilcolina/inmunología , Proteínas Bacterianas/farmacología , Cilios/inmunología , Depuración Mucociliar/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Canales Catiónicos TRPM/inmunología , Tráquea/inmunología , Acetilcolina/metabolismo , Animales , Proteínas Bacterianas/inmunología , Transporte Biológico , Cilios/efectos de los fármacos , Cilios/metabolismo , Femenino , Formiatos/metabolismo , Expresión Génica , Humanos , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Optogenética/métodos , Comunicación Paracrina/inmunología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/inmunología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Papilas Gustativas/inmunología , Papilas Gustativas/metabolismo , Tráquea/efectos de los fármacos , Tráquea/patología , Virulencia
2.
EMBO Rep ; 25(3): 1176-1207, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316902

RESUMEN

For mucociliary clearance of pathogens, tracheal multiciliated epithelial cells (MCCs) organize coordinated beating of cilia, which originate from basal bodies (BBs) with basal feet (BFs) on one side. To clarify the self-organizing mechanism of coordinated intracellular BB-arrays composed of a well-ordered BB-alignment and unidirectional BB-orientation, determined by the direction of BB to BF, we generated double transgenic mice with GFP-centrin2-labeled BBs and mRuby3-Cep128-labeled BFs for long-term, high-resolution, dual-color live-cell imaging in primary-cultured tracheal MCCs. At early timepoints of MCC differentiation, BB-orientation and BB-local alignment antecedently coordinated in an apical microtubule-dependent manner. Later during MCC differentiation, fluctuations in BB-orientation were restricted, and locally aligned BB-arrays were further coordinated to align across the entire cell (BB-global alignment), mainly in an apical intermediate-sized filament-lattice-dependent manner. Thus, the high coordination of the BB-array was established for efficient mucociliary clearance as the primary defense against pathogen infection, identifying apical cytoskeletons as potential therapeutic targets.


Asunto(s)
Cuerpos Basales , Citoesqueleto , Ratones , Animales , Microtúbulos , Cilios , Células Epiteliales
3.
Am J Respir Cell Mol Biol ; 71(3): 282-293, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38691660

RESUMEN

Single nucelotide polymorphisms (SNPs) at the FAM13A locus are among the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases; however, the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: "long" and "short," but their functions remain unknown, partly because of a lack of isoform conservation in mice. We performed in-depth characterization of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase-activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate the RhoGAP activity of this domain. In Xenopus laevis, which conserve the long-isoform, Fam13a deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long-isoform deficiency did not affect multiciliogenesis but reduced cilia coordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform coordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance.


Asunto(s)
Cilios , Proteínas Activadoras de GTPasa , Depuración Mucociliar , Isoformas de Proteínas , Xenopus laevis , Animales , Humanos , Células Cultivadas , Cilios/metabolismo , Células Epiteliales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Mucosa Respiratoria/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-39316674

RESUMEN

In cystic fibrosis, the airway gel-forming mucin MUC5B accumulates in the airways, preventing clearance of pathogens like Pseudomonas aeruginosa (PA). The CFTR-/- (KO) rat model exhibits a similar accumulation of Muc5b. Our lab has shown that increased Muc5b precipitates development of chronic PA infection. We hypothesized that reducing Muc5b in the KO rat airway would prevent occlusive mucus plugs and development of persistent PA infection. 6-month-old KO rats received Muc5b or scramble siRNA via intratracheal instillation. Rats were then inoculated with 106 colony forming units of mucoid P. aeruginosa isolate PAM57-15 and euthanized at 3- or 14-days post infection (dpi) to assess acute and persistent infection. At 14dpi, Muc5b siRNA treated KO rats had increased weight, decreased neutrophilic inflammation, and reduced mucus plugging in the small airways compared to scramble-treated KO and WT rats. These results indicate that pharmacologic intervention of Muc5b reduces mucus plugging during persistent PA infection.

5.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L406-L414, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39104315

RESUMEN

Obesity is a risk factor for increased morbidity and mortality in viral respiratory infection. Mucociliary clearance (MCC) in the airway is the primary host defense against viral infections. However, the impact of obesity on MCC is unclear, prompting this study. Using murine tracheal tissue culture and in vitro influenza A virus (IAV) infection models, we analyzed cilia-driven flow and ciliary beat frequency (CBF) in the airway epithelium to evaluate MCC. Short-term IAV infection increased cilia-driven flow and CBF in control mice, but not in high-fat diet-induced obese mice. Basal cilia-driven flow and CBF were also lower in obese mice than in control mice. Mechanistically, the increase of extracellular adenosine triphosphate (ATP) release during IAV infection, which was observed in the control mice, was abolished in the obese mice; however, the addition of ATP increased cilia-driven flow and CBF both in control and obese mice to a similar extent. In addition, RNA sequencing and reverse transcription-polymerase chain reaction revealed the downregulation of several cilia-related genes, including Dnah1, Dnal1, Armc4, and Ttc12 (the dynein-related genes); Ulk4 (the polychaete differentiation gene); Cep164 (the ciliogenesis and intraflagellar transport gene); Rsph4a, Cfap206, and Ppil6 (the radial spoke structure and assembly gene); and Drc3(the nexin-dynein regulatory complex genes) in obese murine tracheal tissues compared with their control levels. In conclusion, our studies demonstrate that obesity attenuates MCC under basal conditions and during IAV infection by downregulating the expression of cilia-related genes and suppressing the release of extracellular ATP, thereby increasing the susceptibility and severity of IAV infection.NEW & NOTEWORTHY Our study shows that obesity impairs airway mucociliary clearance (MCC), an essential physical innate defense mechanism for viral infection. Mechanically, this is likely due to the obesity-induced downregulation of cilia-related genes and attenuation of extracellular ATP release. This study provides novel insights into the mechanisms driving the higher susceptibility and severity of viral respiratory infections in individuals with obesity.


Asunto(s)
Cilios , Depuración Mucociliar , Obesidad , Mucosa Respiratoria , Animales , Cilios/metabolismo , Cilios/patología , Obesidad/metabolismo , Obesidad/patología , Obesidad/fisiopatología , Obesidad/complicaciones , Ratones , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Ratones Endogámicos C57BL , Adenosina Trifosfato/metabolismo , Masculino , Tráquea/metabolismo , Tráquea/virología , Tráquea/patología , Virus de la Influenza A , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/metabolismo , Dieta Alta en Grasa/efectos adversos
6.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L415-L422, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39104314

RESUMEN

Cystic fibrosis (CF) is a genetic disorder characterized by recurrent airway infections, inflammation, impaired mucociliary clearance, and progressive decline in lung function. The disease may start in the small airways; however, this is difficult to prove due to the limited accessibility of the small airways with the current single-photon mucociliary clearance assay. Here, we developed a dynamic positron emission tomography assay with high spatial and temporal resolution. We tested that mucociliary clearance is abnormal in the small airways of newborn cystic fibrosis pigs. Clearance of [68Ga]-tagged macroaggregated albumin from small airways started immediately after delivery and continued for the duration of the study. Initial clearance was fast but slowed down a few minutes after delivery. Cystic fibrosis pigs' small airways cleared significantly less than non-CF pigs' small airways (non-CF 25.1 ± 3.1% vs. CF 14.6 ± 0.1%). Stimulation of the cystic fibrosis airways with the purinergic secretagogue uridine-5'-triphosphate (UTP) further impaired clearance (non-CF with UTP 20.9 ± 0.3% vs. CF with UTP 13.0 ± 1.8%). None of the cystic fibrosis pigs treated with UTP (n = 6) cleared more than 20% of the delivered dose. These data indicate that mucociliary clearance in the small airways is fast and can easily be missed if the assay is not sensitive enough. The data also indicate that mucociliary clearance is impaired in the small airways of cystic fibrosis pigs. This defect is exacerbated by stimulation of mucus secretions with purinergic agonists.NEW & NOTEWORTHY We developed a novel positron emission tomography scan assay with unprecedented temporal and spatial resolution to measure mucociliary clearance in the small airways. We proved a long-standing but unproven assertion that mucociliary clearance is inherently abnormal in the small airways of newborn cystic fibrosis piglets that are otherwise free of infection or inflammation. This technique can be easily extended to other airway diseases such as asthma, idiopathic pulmonary fibrosis, or chronic obstructive pulmonary disease.


Asunto(s)
Fibrosis Quística , Depuración Mucociliar , Animales , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Porcinos , Tomografía de Emisión de Positrones/métodos , Pulmón/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/patología , Animales Recién Nacidos
7.
Ecotoxicol Environ Saf ; 273: 116090, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364346

RESUMEN

Airway epithelium, the first defense barrier of the respiratory system, facilitates mucociliary clearance against inflammatory stimuli, such as pathogens and particulates inhaled into the airway and lung. Inhaled particulate matter 2.5 (PM2.5) can penetrate the alveolar region of the lung, and it can develop and exacerbate respiratory diseases. Although the pathophysiological effects of PM2.5 in the respiratory system are well known, its impact on mucociliary clearance of airway epithelium has yet to be clearly defined. In this study, we used two different 3D in vitro airway models, namely the EpiAirway-full-thickness (FT) model and a normal human bronchial epithelial cell (NHBE)-based air-liquid interface (ALI) system, to investigate the effect of diesel exhaust particles (DEPs) belonging to PM2.5 on mucociliary clearance. RNA-sequencing (RNA-Seq) analyses of EpiAirway-FT exposed to DEPs indicated that DEP-induced differentially expressed genes (DEGs) are related to ciliary and microtubule function and inflammatory-related pathways. The exposure to DEPs significantly decreased the number of ciliated cells and shortened ciliary length. It reduced the expression of cilium-related genes such as acetylated α-tubulin, ARL13B, DNAH5, and DNAL1 in the NHBEs cultured in the ALI system. Furthermore, DEPs significantly increased the expression of MUC5AC, whereas they decreased the expression of epithelial junction proteins, namely, ZO1, Occludin, and E-cadherin. Impairment of mucociliary clearance by DEPs significantly improved the release of epithelial-derived inflammatory and fibrotic mediators such as IL-1ß, IL-6, IL-8, GM-CSF, MMP-1, VEGF, and S100A9. Taken together, it can be speculated that DEPs can cause ciliary dysfunction, hyperplasia of goblet cells, and the disruption of the epithelial barrier, resulting in the hyperproduction of lung injury mediators. Our data strongly suggest that PM2.5 exposure is directly associated with ciliary and epithelial barrier dysfunction and may exacerbate lung injury.


Asunto(s)
Lesión Pulmonar , Emisiones de Vehículos , Humanos , Emisiones de Vehículos/toxicidad , Lesión Pulmonar/metabolismo , Mucosa Respiratoria , Material Particulado/metabolismo , Células Epiteliales , Epitelio
8.
J Allergy Clin Immunol ; 152(2): 538-550, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36638921

RESUMEN

BACKGROUND: Job syndrome is a disease of autosomal dominant hyper-IgE syndrome (AD-HIES). Patients harboring STAT3 mutation are particularly prone to airway remodeling and airway infections. OBJECTIVES: Airway epithelial cells play a central role as the first line of defense against pathogenic infection and express high levels of STAT3. This study thus interrogates how AD-HIES STAT3 mutations impact the physiological functions of airway epithelial cells. METHODS: This study created human airway basal cells expressing 4 common AD-HIES STAT3 mutants (R382W, V463del, V637M, and Y657S). In addition, primary airway epithelial cells were isolated from a patient with Job syndrome who was harboring a STAT3-S560del mutation and from mice harboring a STAT3-V463del mutation. Cell proliferation, differentiation, barrier function, bacterial elimination, and innate immune responses to pathogenic infection were quantitatively analyzed. RESULTS: STAT3 mutations reduce STAT3 protein phosphorylation, nuclear translocation, transcription activity, and protein stability in airway basal cells. As a consequence, STAT3-mutated airway basal cells give rise to airway epithelial cells with abnormal cellular composition and loss of coordinated mucociliary clearance. Notably, AD-HIES STAT3 airway epithelial cells are defective in bacterial killing and fail to initiate vigorous proinflammatory responses and neutrophil transepithelial migration in response to an experimental model of Pseudomonas aeruginosa infection. CONCLUSIONS: AD-HIES STAT3 mutations confer numerous abnormalities to airway epithelial cells in cell differentiation and host innate immunity, emphasizing their involvement in the pathogenesis of lung complications in Job syndrome. Therefore, therapies must address the epithelial defects as well as the previously noted immune cell defects to alleviate chronic infections in patients with Job syndrome.


Asunto(s)
Síndrome de Job , Humanos , Ratones , Animales , Síndrome de Job/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Diferenciación Celular , Células Epiteliales/metabolismo , Mutación
9.
Vestn Otorinolaringol ; 89(4): 26-29, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-39171873

RESUMEN

The article presents the results of a study that included 127 children aged 8 to 17 years with a diagnosis of turbinate hypertrophy. The children are divided into three groups depending on the chosen vasotomy method. The methods of vasotomy were determined, after which there was a faster restoration of mucociliary clearance of the mucous membrane of the lower nasal concha.


Asunto(s)
Hipertrofia , Depuración Mucociliar , Mucosa Nasal , Cornetes Nasales , Humanos , Depuración Mucociliar/fisiología , Cornetes Nasales/cirugía , Niño , Femenino , Masculino , Adolescente , Mucosa Nasal/cirugía , Mucosa Nasal/fisiopatología , Hipertrofia/fisiopatología , Hipertrofia/cirugía , Resultado del Tratamiento , Obstrucción Nasal/cirugía , Obstrucción Nasal/fisiopatología , Obstrucción Nasal/diagnóstico , Obstrucción Nasal/etiología
10.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L765-L775, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847709

RESUMEN

Airway mucociliary clearance (MCC) is required for host defense and is often diminished in chronic lung diseases. Effective clearance depends upon coordinated actions of the airway epithelium and a mobile mucus layer. Dysregulation of the primary secreted airway mucin proteins, MUC5B and MUC5AC, is associated with a reduction in the rate of MCC; however, how other secreted proteins impact the integrity of the mucus layer and MCC remains unclear. We previously identified the gene Bpifb1/Lplunc1 as a regulator of airway MUC5B protein levels using genetic approaches. Here, we show that BPIFB1 is required for effective MCC in vivo using Bpifb1 knockout (KO) mice. Reduced MCC in Bpifb1 KO mice occurred in the absence of defects in epithelial ion transport or reduced ciliary beat frequency. Loss of BPIFB1 in vivo and in vitro altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC. Finally, we detected colocalization of BPIFB1 and MUC5B in secretory granules in mice and the protein mesh of secreted mucus in human airway epithelia cultures. Collectively, our findings demonstrate that BPIFB1 is an important component of the mucociliary apparatus in mice and a key component of the mucus protein network.NEW & NOTEWORTHY BPIFB1, also known as LPLUNC1, was found to regulate mucociliary clearance (MCC), a key aspect of host defense in the airway. Loss of this protein was also associated with altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC.


Asunto(s)
Enfermedades Pulmonares , Depuración Mucociliar , Ratones , Humanos , Animales , Depuración Mucociliar/fisiología , Sistema Respiratorio/metabolismo , Moco/metabolismo , Enfermedades Pulmonares/metabolismo , Ratones Noqueados
11.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L557-L570, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36852921

RESUMEN

Electronic cigarettes (e-cigs) are often promoted as safe alternatives to smoking based on the faulty perception that inhaling nicotine is safe until other harmful chemicals in cigarette smoke are absent. Previously, others and we have reported that, similar to cigarette smoke, e-cig aerosols decrease CFTR-mediated ion transport across airway epithelium. However, it is unclear whether such defective epithelial ion transport by e-cig aerosols occurs in vivo and what the singular contribution of inhaled nicotine is to impairments in mucociliary clearance (MCC), the primary physiologic defense of the airways. Here, we tested the effects of nicotine aerosols from e-cigs in primary human bronchial epithelial (HBE) cells and two animal models, rats and ferrets, known for their increasing physiologic complexity and potential for clinical translation, followed by in vitro and in vivo electrophysiologic assays for CFTR activity and micro-optical coherence tomography (µOCT) image analyses for alterations in airway mucus physiology. Data presented in this report indicate nicotine in e-cig aerosols causes 1) reduced CFTR and epithelial Na+ channel (ENaC)-mediated ion transport, 2) delayed MCC, and 3) diminished airway surface hydration, as determined by periciliary liquid depth analysis. Interestingly, the common e-cig vehicles vegetable glycerin and propylene glycol did not affect CFTR function or MCC in vivo despite their significant adverse effects in vitro. Overall, our studies contribute to an improved understanding of inhaled nicotine effects on lung health among e-cig users and inform pathologic mechanisms involved in altered host defense and increased risk for tobacco-associated lung diseases.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Animales , Humanos , Ratas , Nicotina/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Depuración Mucociliar , Hurones , Aerosoles y Gotitas Respiratorias , Pulmón , Aerosoles
12.
Respir Res ; 24(1): 267, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925434

RESUMEN

BACKGROUND: Airway tuft cells, formerly called brush cells have long been described only morphologically in human airways. More recent RNAseq studies described a chemosensory cell population, which includes tuft cells, by a distinct gene transcription signature. Yet, until which level in the tracheobronchial tree in native human airway epithelium tuft cells occur and if they function as regulators of innate immunity, e.g., by regulating mucociliary clearance, remained largely elusive. METHODS: We performed immunohistochemistry, RT-PCR and immunoblotting analyses for various tuft cell markers to confirm the presence of this cell type in human tracheal samples. Immunohistochemistry was conducted to study the distribution of tuft cells along the intrapulmonary airways in humans. We assessed the influence of bitter substances and the taste transduction pathway on mucociliary clearance in mouse and human tracheal samples by measuring particle transport speed. RESULTS: Tuft cells identified by the expression of their well-established marker POU class 2 homeobox 3 (POU2F3) were present from the trachea to the bronchioles. We identified choline acetyltransferase in POU2F3 expressing cells as well as the transient receptor potential melastatin 5 (TRPM5) channel in a small population of tracheal epithelial cells with morphological appearance of tuft cells. Application of bitter substances, such as denatonium, led to an increase in mucociliary clearance in human tracheal preparations. This was dependent on activation of the TRPM5 channel and involved cholinergic and nitric oxide signalling, indicating a functional role for human tuft cells in the regulation of mucociliary clearance. CONCLUSIONS: We were able to detect tuft cells in the tracheobronchial tree down to the level of the bronchioles. Moreover, taste transduction and cholinergic signalling occur in the same cells and regulate mucociliary clearance. Thus, tuft cells are potentially involved in the regulation of innate immunity in human airways.


Asunto(s)
Depuración Mucociliar , Tráquea , Humanos , Ratones , Animales , Tráquea/fisiología , Transducción de Señal , Gusto , Colinérgicos/metabolismo
13.
Cell Commun Signal ; 21(1): 306, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904180

RESUMEN

Chronic rhinosinusitis (CRS) is a pathological condition characterized by persistent inflammation in the upper respiratory tract and paranasal sinuses. The epithelium serves as the first line of defense against potential threats and protects the nasal mucosa. The fundamental mechanical barrier is formed by the cell-cell contact and mucociliary clearance (MCC) systems. The physical-mechanical barrier is comprised of many cellular structures, including adhesion junctions and tight junctions (TJs). To this end, different factors, such as the dysfunction of MCC, destruction of epithelial barriers, and tissue remodeling, are related to the onset and development of CRS. Recently published studies reported the critical role of different microorganisms, such as Staphylococcus aureus and Pseudomonas aeruginosa, in the induction of the mentioned factors. Bacteria could result in diminished ciliary stimulation capacity, and enhance the chance of CRS by reducing basal ciliary beat frequency. Additionally, bacterial exoproteins have been demonstrated to disrupt the epithelial barrier and induce downregulation of transmembrane proteins such as occludin, claudin, and tricellulin. Moreover, bacteria exert an influence on TJ proteins, leading to an increase in the permeability of polarized epithelial cells. Noteworthy, it is evident that the activation of TLR2 by staphylococcal enterotoxin can potentially undermine the structural integrity of TJs and the epithelial barrier through the induction of pro-inflammatory cytokines. The purpose of this article is an attempt to investigate the possible role of the most important microorganisms associated with CRS and their pathogenic mechanisms against mucosal surfaces and epithelial barriers in the paranasal sinuses. Video Abstract.


Asunto(s)
Pseudomonas aeruginosa , Sinusitis , Humanos , Staphylococcus aureus , Depuración Mucociliar , Sinusitis/microbiología , Sinusitis/patología , Mucosa Nasal/metabolismo , Mucosa Nasal/microbiología , Mucosa Nasal/patología , Uniones Estrechas , Bacterias , Enfermedad Crónica
14.
Am J Respir Crit Care Med ; 205(7): 761-768, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35023825

RESUMEN

Rationale: Mucin homeostasis is fundamental to airway health. Upregulation of airway mucus glycoprotein MUC5B is observed in diverse common lung diseases and represents a potential therapeutic target. In mice, Muc5b is required for mucociliary clearance and for controlling inflammation after microbial exposure. The consequences of its loss in humans are unclear. Objectives: The goal of this study was to identify and characterize a family with congenital absence of MUC5B protein. Methods: We performed whole-genome sequencing in an adult proband with unexplained bronchiectasis, impaired pulmonary function, and repeated Staphylococcus aureus infection. Deep phenotyping over a 12-year period included assessments of pulmonary radioaerosol mucociliary clearance. Genotyping with reverse phenotyping was organized for eight family members. Extensive experiments, including immunofluorescence staining and mass spectrometry for mucins, were performed across accessible sample types. Measurements and Main Results: The proband, and her symptomatic sibling who also had extensive sinus disease with nasal polyps, were homozygous for a novel splicing variant in the MUC5B gene (NM_002458.2: c.1938 + 1G>A). MUC5B was absent from saliva, sputum, and nasal samples. Mucociliary clearance was impaired in the proband, and large numbers of apoptotic macrophages were present in sputum. Three siblings heterozygous for the familial MUC5B variant were asymptomatic but had a shared pattern of mild lung function impairments. Conclusions: Congenital absence of MUC5B defines a new category of genetic respiratory disease. The human phenotype is highly concordant with that of the Muc5b-/- murine model. Further study of individuals with decreased MUC5B production could provide unique mechanistic insights into airway mucus biology.


Asunto(s)
Enfermedades Pulmonares , Mucinas , Adulto , Animales , Femenino , Humanos , Pulmón/metabolismo , Enfermedades Pulmonares/metabolismo , Ratones , Mucina 5AC/genética , Mucina 5B/genética , Mucinas/metabolismo , Depuración Mucociliar/genética , Moco/metabolismo
15.
Eur Arch Otorhinolaryngol ; 280(5): 2359-2364, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36854810

RESUMEN

PURPOSE: Autosomal dominant polycystic kidney disease (ADPKD) is a renal disease with genetic transmisson. Mutations in the PKD1 and PKD2 genes, which encode integral membrane proteins of the cilia of primary renal tubule epithelial cells, are seen in ADPKD. The aim of this study was to evaluate the sinonasal epithelium, which is epithelium with cilia, by measuring the nasal mucociliary clearance time, and to investigate the effect of ADPKD on nasal mucociliary clearance. METHODS: The study included 34 patients, selected from patients followed up in the Nephrology Clinic, and 34 age and gender-matched control group subjects. The nasal mucociliary clearance time (NMCT) was measured with the saccharin test. RESULTS: The mean age of the study subjects was 47.15 ± 14.16 years in the patient group and 47.65 ± 13.85 years in the control group. The eGFR rate was determined as mean 72.06 ± 34.26 mL/min in the patient group and 99.79 ± 17.22 mL/min in the control group (p < 0.001). The NMCT was determined to be statistically significantly longer in the patient group (903.6 ± 487.8 s) than in the control group (580 ± 259 s) (p = 0.006). CONCLUSIONS: The study results showed that the NMCT was statistically significantly longer in patients with ADPKD compared to the control group, but in the linear regression analysis results, no correlation was determined between eGFR and NMCT.


Asunto(s)
Depuración Mucociliar , Nariz , Riñón Poliquístico Autosómico Dominante , Adulto , Humanos , Persona de Mediana Edad , Depuración Mucociliar/fisiología , Mutación , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/fisiopatología , Sacarina , Canales Catiónicos TRPP/genética , Proteínas de la Membrana/genética , Senos Paranasales/fisiopatología , Mucosa Nasal/fisiopatología , Nariz/fisiopatología
16.
Comput Chem Eng ; 1792023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37946856

RESUMEN

Delivery of aerosols to the lung can treat various lung diseases. However, the conducting airways are coated by a protective mucus layer with complex properties that make this form of delivery difficult. Mucus is a non-Newtonian fluid and is cleared from the lungs over time by ciliated cells. Further, its gel-like structure hinders the diffusion of particles through it. Any aerosolized treatment of lung diseases must penetrate the mucosal barrier. Using computational fluid dynamics, a model of the airway mucus and periciliary layer was constructed to simulate the transport of impacted aerosol particles. The model predicts the dosage fraction of particles of a certain size that penetrate the mucus and reach the underlying tissue, as well as the distance downstream of the dosage site where tissue concentration is maximized. Reactions that may occur in the mucus are also considered, with simulated data for the interaction of a model virus and an antibody.

17.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569753

RESUMEN

Chronic rhinosinusitis (CRS) with (CRSwNP) or without (CRSsNP) nasal polyps is a prevalent and heterogeneous disorder existing as a spectrum of clinical conditions with complex underlying pathomechanisms. CRS comprises a broad syndrome characterized by multiple immunological features involving complex interactions between the genes, the microbiome, host- and microbiota-derived exosomes, the epithelial barrier, and environmental and micromilieu exposures. The main pathophysiological feature is an epithelial barrier disruption, accompanied by microbiome alterations and unpredictable and multifactorial immunologic overreactions. Extrinsic pathogens and irritants interact with multiple epithelial receptors, which show distinct expression patterns, activate numerous signaling pathways, and lead to diverse antipathogen responses. CRSsNP is mainly characterized by fibrosis and mild inflammation and is often associated with Th1 or Th17 immunological profiles. CRSwNP appears to be associated with moderate or severe type 2 (T2) or Th2 eosinophilic inflammation. The diagnosis is based on clinical, endoscopic, and imaging findings. Possible CRS biomarkers from the peripheral blood, nasal secretions, tissue biopsies, and nasally exhaled air are studied to subgroup different CRS endotypes. The primary goal of CRS management is to maintain clinical control by nasal douching with isotonic or hypertonic saline solutions, administration of nasal and systemic steroids, antibiotics, biologic agents, or, in persistent and more severe cases, appropriate surgical procedures.

18.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(2): 275-284, 2023 Feb 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-36999475

RESUMEN

Mucociliary clearance system is the primary innate defense mechanism of the lung. It plays a vital role in protecting airways from microbes and irritants infection. Mucociliary clearance system, which is mediated by the actions of airway and submucosal gland epithelial cells, plays a critical role in a multilayered defense system via secreting fluids, electrolytes, antimicrobial and anti-inflammatory proteins, and mucus onto airway surfaces. Changes in environment, drugs or diseases can lead to mucus overproduction and cilia dysfunction, which in turn decrease the rate of mucociliary clearance and enhance mucus gathering. The dysfunction of mucociliary clearance system often occurs in several respiratory diseases, such as primary ciliary dysfunction, cystic fibrosis, asthma and chronic obstructive pulmonary disease, which are characterized by goblet cell metaplasia, submucosal gland cell hypertrophy, mucus hypersecretion, cilia adhesion, lodging and loss, and airway obstruction.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Enfermedades Respiratorias , Humanos , Depuración Mucociliar , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Moco/metabolismo , Pulmón , Sistema Respiratorio
19.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L536-L547, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36098422

RESUMEN

Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis (CF), resulting in recurrent respiratory infections and exacerbations. Strategies to rehydrate airway mucus including inhibition of the epithelial sodium channel (ENaC) have the potential to improve mucosal defense by enhancing mucociliary clearance (MCC) and reducing the risk of progressive decline in lung function. In the current work, we evaluated the effects of AZD5634, an ENaC inhibitor that shows extended lung retention and safety profile as compared with previously evaluated candidate drugs, in healthy and CF preclinical model systems. We found that AZD5634 elicited a potent inhibition of amiloride-sensitive current in non-CF airway cells and airway cells derived from F508del-homozygous individuals with CF that effectively increased airway surface liquid volume and improved mucociliary transport (MCT) rate. AZD5634 also demonstrated efficacious inhibition of ENaC in sheep bronchial epithelial cells, translating to dose-dependent improvement of mucus clearance in healthy sheep in vivo. Conversely, nebulization of AZD5634 did not notably improve airway hydration or MCT in CF rats that exhibit an MCC defect, consistent with findings from a first single-dose evaluation of AZD5634 on MCC in people with CF. Overall, these findings suggest that CF animal models demonstrating impaired mucus clearance translatable to the human situation may help to successfully predict and promote the successful translation of ENaC-directed therapies to the clinic.


Asunto(s)
Fibrosis Quística , Canales Epiteliales de Sodio , Humanos , Ratas , Ovinos , Animales , Bloqueadores del Canal de Sodio Epitelial/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Amilorida/farmacología , Depuración Mucociliar/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística/tratamiento farmacológico , Mucosa Respiratoria
20.
Am J Hum Genet ; 104(2): 229-245, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30665704

RESUMEN

Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.


Asunto(s)
Cilios/patología , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/fisiopatología , Proteínas de Microfilamentos/deficiencia , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas de Xenopus/deficiencia , Animales , Trastornos de la Motilidad Ciliar/patología , Modelos Animales de Enfermedad , Exones/genética , Femenino , Eliminación de Gen , Genes Letales , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas Asociadas a Microtúbulos/genética , Fenotipo , Rotación , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA