Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 89(5): 883-903, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38880649

RESUMEN

Immune system and bone marrow stromal cells play an important role in maintaining normal hematopoiesis. Lymphoid neoplasia disturbs not only development of immune cells, but other immune response mechanisms as well. Multipotent mesenchymal stromal cells (MSCs) of the bone marrow are involved in immune response regulation through both intercellular interactions and secretion of various cytokines. In hematological malignancies, the bone marrow stromal microenvironment, including MSCs, is altered. Aim of this study was to describe the differences of MSCs' immunological function in the patients with acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). In ALL, malignant cells arise from the early precursor cells localized in bone marrow, while in DLBCL they arise from more differentiated B-cells. In this study, only the DLBCL patients without bone marrow involvement were included. Growth parameters, surface marker expression, genes of interest expression, and secretion pattern of bone marrow MSCs from the patients with ALL and DLBCL at the onset of the disease and in remission were studied. MSCs from the healthy donors of corresponding ages were used as controls. It has been shown that concentration of MSCs in the bone marrow of the patients with ALL is reduced at the onset of the disease and is restored upon reaching remission; in the patients with DLBCL this parameter does not change. Proliferative capacity of MSCs did not change in the patients with ALL; however, the cells of the DLBCL patients both at the onset and in remission proliferated significantly faster than those from the donors. Expression of the membrane surface markers and expression of the genes important for differentiation, immunological status maintenance, and cytokine secretion differed significantly in the MSCs of the patients from those of the healthy donors and depended on nosology of the disease. Secretomes of the MSCs varied greatly; a number of proteins associated with immune response regulation, differentiation, and maintenance of hematopoietic stem cells were depleted in the secretomes of the cells from the patients. Lymphoid neoplasia leads to dramatic changes in the functional immunological status of MSCs.


Asunto(s)
Linfoma de Células B Grandes Difuso , Células Madre Mesenquimatosas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/metabolismo , Masculino , Adulto , Femenino , Persona de Mediana Edad , Células de la Médula Ósea/inmunología , Proliferación Celular , Adulto Joven
2.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397098

RESUMEN

Multipotent mesenchymal stromal cells (MSCs) integrate hormone and neuromediator signaling to coordinate tissue homeostasis, tissue renewal and regeneration. To facilitate the investigation of MSC biology, stable immortalized cell lines are created (e.g., commercially available ASC52telo). However, the ASC52telo cell line has an impaired adipogenic ability and a depressed response to hormones, including 5-HT, GABA, glutamate, noradrenaline, PTH and insulin compared to primary cells. This markedly reduces the potential of the ASC52telo cell line in studying the mechanisms of hormonal control of MSC's physiology. Here, we have established a novel immortalized culture of adipose tissue-derived MSCs via forced telomerase expression after lentiviral transduction. These immortalized cell cultures demonstrate high proliferative potential (up to 40 passages), delayed senescence, as well as preserved primary culture-like functional activity (sensitivity to hormones, ability to hormonal sensitization and differentiation) and immunophenotype up to 17-26 passages. Meanwhile, primary adipose tissue-derived MSCs usually irreversibly lose their properties by 8-10 passages. Observed characteristics of reported immortalized human MSC cultures make them a feasible model for studying molecular mechanisms, which regulate the functional activities of these cells, especially when primary cultures or commercially available cell lines are not appropriate.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Línea Celular , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Hormonas/metabolismo , Proliferación Celular
3.
Vestn Otorinolaringol ; 89(2): 21-27, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38805459

RESUMEN

Nasal septal perforation (NSP) is a complex problem in otorhinolaryngology, which leads to impaired nasal breathing and dryness in the nose. This reduces the patient's quality of life and leads to psychological discomfort. The treatment of nasal septum perforation is selected taking into account the clinical manifestations, perforation parameters and general condition of the patient. Currently, a large number of different surgical methods have been described in order to closing the defect of nasal septum. To date, there is no universally accepted method for closing NSP, which stimulates the search and development of new treatment options. OBJECTIVE: Under experimental conditions, to study a new method for closing nasal septum perforation using a collagen scaffold together with adipose stromal vascular fraction containing multipotent mesenchymal stromal cells. MATERIAL AND METHODS: The experiment was carried out on a model of nasal septum perforation in 24 male rabbits divided into four groups, depending on the construct, implanted into the defect zone: the 1st group was the control group - without the introduction of implantation material; the 2nd group - collagen scaffold without adipose stromal vascular fraction; the 3rd group - collagen scaffold with xenogenic adipose stromal vascular fraction; the 4th group - collagen scaffold with allogeneic adipose stromal vascular fraction with further dynamic evaluation of endoscopic control on day 14, after 1 month, 3 months, and 6 months. At month 6, the animals were removed from the experiment, followed by morphological examination in color with hematoxylin and eosin, as well as safranin and methyl green. RESULTS: As a result of the experiment using adipose stromal vascular fraction of allogeneic and xenogenic origin, closing of perforation of the nasal septum of a rabbit for 3 months of dynamic endoscopic control, as well as according to morphological research, was demonstrated. CONCLUSION: Our study showed that the use of adipose stromal vascular fraction containing not only endothelial cells and pericytes, but also multipotent mesenchymal stromal cells in combination with a collagen scaffold closes the perforation of the nasal septum in a rabbit, without increasing the risk of violations of habitual vital activity.


Asunto(s)
Tejido Adiposo , Modelos Animales de Enfermedad , Perforación del Tabique Nasal , Animales , Conejos , Perforación del Tabique Nasal/cirugía , Perforación del Tabique Nasal/etiología , Tejido Adiposo/trasplante , Andamios del Tejido , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Tabique Nasal/cirugía , Resultado del Tratamiento , Colágeno
4.
J Transl Med ; 21(1): 802, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950242

RESUMEN

BACKGROUND: Wharton's Jelly (WJ) Mesenchymal Stromal Cells (MSC) have emerged as an attractive allogeneic therapy for a number of indications, except for bone-related conditions requiring new tissue formation. This may be explained by the apparent recalcitrance of MSC,WJ to differentiate into the osteogenic lineage in vitro, as opposed to permissive bone marrow (BM)-derived MSCs (MSC,BM) that readily commit to bone cells. Consequently, the actual osteogenic in vivo capacity of MSC,WJ is under discussion. METHODS: We investigated how physiological bone environments affect the osteogenic commitment of recalcitrant MSCs in vitro and in vivo. To this end, MSC of BM and WJ origin were co-cultured and induced for synchronous osteogenic differentiation in vitro using transwells. For in vivo experiments, immunodeficient mice were injected intratibially with a single dose of human MSC and bone formation was evaluated after six weeks. RESULTS: Co-culture of MSC,BM and MSC,WJ resulted in efficient osteogenesis in both cell types after three weeks. However, MSC,WJ failed to commit to bone cells in the absence of MSC,BM's osteogenic stimuli. In vivo studies showed successful bone formation within the medullar cavity of tibias in 62.5% of mice treated with MSC, WJ. By contrast, new formed trabeculae were only observed in 25% of MSC,BM-treated mice. Immunohistochemical staining of human COXIV revealed the persistence of the infused cells at the site of injection. Additionally, cells of human origin were also identified in the brain, heart, spleen, kidney and gonads in some animals treated with engineered MSC,WJ (eMSC,WJ). Importantly, no macroscopic histopathological alterations, ectopic bone formation or any other adverse events were detected in MSC-treated mice. CONCLUSIONS: Our findings demonstrate that in physiological bone microenvironment, osteogenic commitment of MSC,WJ is comparable to that of MSC,BM, and support the use of off-the-shelf allogeneic MSC,WJ products in bone repair and bone regeneration applications.


Asunto(s)
Células Madre Mesenquimatosas , Gelatina de Wharton , Humanos , Animales , Ratones , Osteogénesis , Gelatina de Wharton/metabolismo , Diferenciación Celular , Técnicas de Cocultivo , Células Cultivadas , Proliferación Celular
5.
Int J Mol Sci ; 24(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37240298

RESUMEN

In patients with acute myeloid leukemia (AML), malignant cells modify the properties of multipotent mesenchymal stromal cells (MSCs), reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the role of MSCs in supporting leukemia cells and the restoration of normal hematopoiesis by analyzing ex vivo MSC secretomes at the onset of AML and in remission. The study included MSCs obtained from the bone marrow of 13 AML patients and 21 healthy donors. The analysis of proteins contained in the MSCs-conditioned medium demonstrated that secretomes of patient MSCs differed little between the onset of AML and remission; pronounced differences were observed between MSC secretomes of AML patients and healthy donors. The onset of AML was accompanied by a decrease in the secretion of proteins related to ossification, transport, and immune response. In remission, but not at the onset, secretion of proteins responsible for cell adhesion, immune response, and complement was reduced compared to donors. We conclude that AML causes crucial and, to a large extent, irreversible changes in the secretome of bone marrow MSCs ex vivo. In remission, functions of MSCs remain impaired despite the absence of tumor cells and the formation of benign hematopoietic cells.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Humanos , Médula Ósea/metabolismo , Secretoma , Diferenciación Celular , Leucemia Mieloide Aguda/metabolismo , Células de la Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo
6.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38069411

RESUMEN

Fibrosis and the associated decline in organ functionality lead to an almost 50% mortality rate in developed countries. Multipotent mesenchymal stromal cells (MSC) were shown to suppress the development and progression of fibrosis through secreted factors including specific non-coding RNAs transferred within extracellular vesicles (EV). However, age-associated chronic inflammation can provoke MSC senescence and change secretome composition, thereby affecting their antifibrotic properties. Alternatively activated macrophages (M2-type) are key players in chronic inflammation that may interact with MSC through paracrine mechanisms and decrease their antifibrotic functions. To confirm this hypothesis, we evaluated the M2-macrophage conditioned medium (CM-M2) effect on human adipose-tissue-derived MSC senescence in vitro. We found that CM-M2, as well as a pro-senescence agent, hydrogen peroxide (H2O2), increased p21+-MSC number and secretion of IL-6 and MCP-1, which are considered main senescence-associated secretory phenotype (SASP) components. Thus, both exposures led to the senescent phenotype acquisition of MSC. EV from both CM-M2 and H2O2-exposed MSC, which showed a decreased effect on the suppression of TGFß-induced fibroblast-to-myofibroblast differentiation compared to EV from control MSC according to αSMA level and the αSMA+-stress fiber reduction. After two weeks of subsequent cultivation under standard conditions, MSC demonstrated a decrease in senescence hallmarks and fibroblast differentiation suppression via EV. These results suggest that M2-macrophage-induced chronic inflammation can reversibly induce MSC senescence, which reduces the MSC's ability to inhibit fibroblast-to-myofibroblast differentiation.


Asunto(s)
Senescencia Celular , Células Madre Mesenquimatosas , Humanos , Peróxido de Hidrógeno/farmacología , Macrófagos , Inflamación , Fibrosis
7.
Int J Mol Sci ; 24(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298382

RESUMEN

Disruption of endometrial regeneration, fibrosis formation, and intrauterine adhesions underlie the development of "thin" endometrium and/or Asherman's syndrome (AS) and are a common cause of infertility and a high risk for adverse obstetric outcomes. The methods used (surgical adhesiolysis, anti-adhesive agents, and hormonal therapy) do not allow restoration of the regenerative properties of the endometrium. The experience gained today with cell therapy using multipotent mesenchymal stromal cells (MMSCs) proves their high regenerative and proliferative properties in tissue damage. Their contribution to regenerative processes is still poorly understood. One of these mechanisms is based on the paracrine effects of MMSCs associated with the stimulation of cells of the microenvironment by secreting extracellular vesicles (EVs) into the extracellular space. EVs, whose source is MMSCs, are able to stimulate progenitor cells and stem cells in damaged tissues and exert cytoprotective, antiapoptotic, and angiogenic effects. This review described the regulatory mechanisms of endometrial regeneration, pathological conditions associated with a decrease in endometrial regeneration, and it presented the available data from studies on the effect of MMSCs and their EVs on endometrial repair processes, and the involvement of EVs in human reproductive processes at the level of implantation and embryogenesis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Enfermedades Uterinas , Femenino , Humanos , Endometrio/patología , Células Madre Mesenquimatosas/patología , Enfermedades Uterinas/patología , Células Madre/patología , Vesículas Extracelulares/patología
8.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239936

RESUMEN

Rodent hindlimb unloading (HU) model was developed to elucidate responses/mechanisms of adverse consequences of space weightlessness. Multipotent mesenchymal stromal cells (MMSCs) were isolated from rat femur and tibia bone marrows and examined ex vivo after 2 weeks of HU and subsequent 2 weeks of restoration of load (HU + RL). In both bones, decrease of fibroblast colony forming units (CFU-f) after HU with restoration after HU + RL detected. In CFU-f and MMSCs, levels of spontaneous/induced osteocommitment were similar. MMSCs from tibia initially had greater spontaneous mineralization of extracellular matrix but were less sensitive to osteoinduction. There was no recovery of initial levels of mineralization in MMSCs from both bones during HU + RL. After HU, most bone-related genes were downregulated in tibia or femur MMSCs. After HU + RL, the initial level of transcription was restored in femur, while downregulation persisted in tibia MMSCs. Therefore, HU provoked a decrease of osteogenic activity of BM stromal precursors at transcriptomic and functional levels. Despite unidirectionality of changes, the negative effects of HU were more pronounced in stromal precursors from distal limb-tibia. These observations appear to be on demand for elucidation of mechanisms of skeletal disorders in astronauts in prospect of long-term space missions.


Asunto(s)
Suspensión Trasera , Roedores , Ratas , Animales , Suspensión Trasera/fisiología , Tibia/fisiología , Médula Ósea , Fémur/fisiología
9.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762048

RESUMEN

Muscle and skeleton structures are considered most susceptible to negative factors of spaceflights, namely microgravity. Three-dimensional clinorotation is a ground-based simulation of microgravity. It provides an opportunity to elucidate the effects of microgravity at the cellular level. The extracellular matrix (ECM) content, transcriptional profiles of genes encoding ECM and remodelling molecules, and secretory profiles were investigated in a heterotypic primary culture of bone marrow cells after 14 days of 3D clinorotation. Simulated microgravity negatively affected stromal lineage cells, responsible for bone tissue formation. This was evidenced by the reduced ECM volume and stromal cell numbers, including multipotent mesenchymal stromal cells (MSCs). ECM genes encoding proteins responsible for matrix stiffness and cell-ECM contacts were downregulated. In a heterotypic population of bone marrow cells, the upregulation of genes encoding ECM degrading molecules and the formation of a paracrine profile that can stimulate ECM degradation, may be mechanisms of osteodegenerative events that develop in real spaceflight.


Asunto(s)
Células Madre Mesenquimatosas , Ingravidez , Ratones , Animales , Médula Ósea , Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas/metabolismo , Células del Estroma/metabolismo , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas
10.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38203461

RESUMEN

Multipotent mesenchymal stromal cells (MSCs) regulate tissue repair through paracrine activity, with secreted proteins being significant contributors. Human tissue repair commonly results in fibrosis, where fibroblast differentiation into myofibroblasts is a major cellular mechanism. MSCs' paracrine activity can inhibit fibrosis development. We previously demonstrated that the separation of MSC secretome, represented by conditioned medium (CM), into subfractions enriched with extracellular vesicles (EV) or soluble factors (SF) boosts EV and SF antifibrotic effect. This effect is realized through the inhibition of fibroblast-to-myofibroblast differentiation in vitro. To unravel the mechanisms of MSC paracrine effects on fibroblast differentiation, we performed a comparative proteomic analysis of MSC secretome fractions. We found that CM was enriched in NF-κB activators and confirmed via qPCR that CM, but not EV or SF, upregulated NF-κB target genes (COX2, IL6, etc.) in human dermal fibroblasts. Furthermore, we revealed that EV and SF were enriched in TGF-ß, Notch, IGF, and Wnt pathway regulators. According to scRNAseq, 11 out of 13 corresponding genes were upregulated in a minor MSC subpopulation disappearing in profibrotic conditions. Thus, protein enrichment of MSC secretome fractions and cellular subpopulation patterns shift the balance in fibroblast-to-myofibroblast differentiation, which should be considered in studies of MSC paracrine effects and the therapeutic use of MSC secretome.


Asunto(s)
Células Madre Mesenquimatosas , Proteoma , Humanos , FN-kappa B , Proteómica , Secretoma , Medios de Cultivo Condicionados/farmacología , Fibrosis
11.
Bull Exp Biol Med ; 174(4): 544-548, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36894814

RESUMEN

We studied the influence of activated innate and adaptive immune cells on the production of growth factors by human adipose tissue multipotent mesenchymal stromal cells (MSC). MSC showed immunosuppressive properties in vitro: decreased activation and proliferation of stimulated immune cells. T-cell interaction with MSC resulted with increased secretion of EGF, PDGF-AB/BB, FGF-2, and VEGF growth factors. Co-culturing with natural killer cells also stimulated TGFα production. The intensity of the effect varied depending on the type of immune cells. Natural killer caused a more significant increase in PDGF-AB/BB and FGF-2 secretion, while VEGF secretion increased stronger after co-culturing with T cells. The obtained data indicate the possibility of increasing reparative potential of MSC under the influence of inflammatory microenvironment.


Asunto(s)
Microambiente Celular , Inflamación , Células Madre Mesenquimatosas , Humanos , Becaplermina , Proliferación Celular , Microambiente Celular/inmunología , Técnicas de Cocultivo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor A de Crecimiento Endotelial Vascular , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Comunicación Paracrina/inmunología , Inflamación/inmunología , Inflamación/metabolismo
12.
Bull Exp Biol Med ; 174(4): 556-563, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36894815

RESUMEN

In acute leukemia, the stromal microenvironment of the bone marrow that regulates hematopoiesis is modified under the influence of malignant cells. Chemotherapy also adversely affects stromal cells. Multipotent mesenchymal stromal cells (MSC) are involved in the formation of the stromal microenvironment and in the regulation of normal and tumor hematopoietic cells. The properties of MSC from the bone marrow of patients with acute myeloid and lymphoid leukemia were studied at the onset of the disease and after achieving remission. The immunophenotype and the level of gene expression were analyzed in MSC of 34 patients. In MSC from patients with acute leukemia, the expression of CD105 and CD274 was significantly reduced in comparison with MSC from healthy donors. At the onset of the disease, the expression of IL6, JAG1, PPARG, IGF1, and PDGFRA was enhanced, while the expression of IL1B, IL8, SOX9, ANG1, and TGFB was reduced. All these changes affect the course of the disease in patients and can be the targets of therapeutic intervention.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Humanos , Leucemia Mieloide Aguda/metabolismo , Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo , Hematopoyesis , Células del Estroma/patología , Células de la Médula Ósea/metabolismo , Microambiente Tumoral
13.
Bull Exp Biol Med ; 175(3): 371-375, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37561376

RESUMEN

Changes in the transcriptional activity of genes involved in the epigenetic regulation of adipose tissue multipotent mesenchymal stromal cells were analyzed in vitro at different O2 levels. DNA microarray study showed that the most pronounced changes in gene expression, including genes responsible for the epigenetic regulation of mesenchymal stromal cells, occurred at 3% O2. A lower number of genes changed the expression at 1% O2, and a minimum response was observed at 5% O2 in comparison with standard culturing conditions (20% O2). The greatest number of differentially expressed genes were genes responsible for the regulation of histones; the genes encoding products that regulate chromatin, DNA, and RNA constituted a lower part. Thus, the degree of hypoxia can modify the response of multipotent mesenchymal stromal cells at the level of epigenetic regulators.


Asunto(s)
Células Madre Mesenquimatosas , Oxígeno , Oxígeno/farmacología , Oxígeno/metabolismo , Epigénesis Genética , Células del Estroma/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/metabolismo , Células Cultivadas
14.
Bull Exp Biol Med ; 176(2): 283-289, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38194072

RESUMEN

In patients with acute leukemia, not only normal hematopoiesis, but also bone marrow stromal microenvironment is damaged. Multipotent mesenchymal stromal cells (MSC) are essential for the formation and function of the stromal microenvironment. Analysis of changes in MSC is important for the development of new approaches to leukemia therapy. The metabolism of mitochondria in MSC, relative content of mitochondrial DNA, and expression levels of genes encoding PGC-1α and Nrf2 proteins, important regulators of biogenesis, were studied using real-time PCR. Relative content of mitochondrial DNA does not change in MSC of acute leukemia patients at the onset of disease or in remission. Relative expression level of the gene encoding PGC-1α protein in MSC does not change significantly. However, relative expression level of the gene encoding Nrf2, an important antioxidant activity regulator, insignificantly decreases in patients at the onset of acute leukemia, and this decrease becomes significant upon reaching remission.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células Madre Mesenquimatosas/metabolismo , Microambiente Tumoral
15.
Bull Exp Biol Med ; 174(1): 125-130, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36437339

RESUMEN

We compared angiogenic effects of conditioned medium from mesenchymal stromal cell (MSC) monoculture and co-culture of MSC with endothelial cells (EC). Conditioned medium from 24-h EC-MSC co-cultures significantly stimulated the proliferation and migration of EC in monoculture and growth of the vascular network of the chorioallantoic membrane of the quail embryo in ovo in comparison with the conditioned medium from MSC monoculture. Conditioned medium from the co-culture contained increased levels of angiogenic factors (FGF-2, MCP-1, PDGF-AB/BB, IL-6, IL-8, etc.), which could explain the revealed effects. We hypothesized that a similar mechanism of EC-mediated enhancement of functional activity of MSC could be involved in reparative angiogenesis in the target tissues in vivo.


Asunto(s)
Células Endoteliales , Células Madre Mesenquimatosas
16.
Bull Exp Biol Med ; 172(5): 637-641, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35352257

RESUMEN

The properties of bone marrow-derived multipotent mesenchymal stromal cells (MSC) of patients with aplastic anemia at the onset of the disease are studied insufficiently. The aim of this work was to test the ability of MSC from patients with aplastic anemia to maintain hematopoietic precursors and to analyze the expression of genes associated with hematopoiesis and immune response. The ability of MSC to maintain hematopoietic precursors was determined by counting cobblestone area-forming cells; gene expression was analyzed by quantitative PCR. It was shown that MSC of patients with aplastic anemia preserve their ability to maintain hematopoietic precursors. Pronounced changes in the expression of the VEGFA and ANGPT1 genes were found. MSC from aplastic anemia patients with PNH clone significantly differ from those from aplastic anemia patients without PNH clone in terms of the expression of the SDF1, IL1R, and VEGFA genes. Changes in gene expression can be associated with the pathogenesis of the disease.


Asunto(s)
Anemia Aplásica , Células Madre Mesenquimatosas , Anemia Aplásica/genética , Anemia Aplásica/patología , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Expresión Génica , Hematopoyesis , Humanos , Células Madre Mesenquimatosas/metabolismo
17.
Bull Exp Biol Med ; 173(1): 128-132, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35618969

RESUMEN

Multipotent mesenchymal stromal cells (MSC) were administered to patients after allogeneic hematopoietic stem cell transplantation to prevent the development of acute graft-versus- host disease (GVHD). The injection of MSC did not always prevent the development of GVHD. The aim of the work was to compare the secretome of MSC effective and ineffective in the prevention of GVHD. MSC were obtained from the bone marrow of hematopoietic stem cells donors. The secretome was studied using a TripleTOF 5600+ mass spectrometer with a NanoSpray III ion source coupled to a NanoLC Ultra 2D Plus nano-HPLC System. A total of 1,965 proteins were analyzed. Analysis of the secretome of effective and ineffective MSC samples revealed significant differences in the secretion of 1,119 proteins associated with ribosomes, exosomes, focal contacts, and others. Analysis of proteins secreted by MSC can be used to identify prognostically effective samples.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Trasplante Homólogo
18.
Reumatologia ; 60(3): 213-219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875720

RESUMEN

Inroduction: The results of experimental and clinical studies in recent years indicate that the transplantation of multipotent mesenchymal stromal cells (MMSCs) is a possible approach for the "restoration" of the immune system of patients with autoimmune diseases, in particular, rheumatoid arthritis. However, the strength and duration of the effect vary greatly, which indicates incomplete correction of the tested parameters, thereby opening up the prospect of improving this method of treatment by choosing dose-time parameters and methods of their administration. The aim of this research was to determine the indices of cellular immunity in animals with adjuvant arthritis and therapy with cryopreserved MMSCs derived from adipose and cartilage tissues. Material and methods: Adjuvant arthritis in male rats was modeled by subplantar administration of Freund's complete adjuvant. On day 7 of modeling, experimental animals were administered with saline (control group) or cryopreserved MMSCs from adipose or cartilaginous tissue locally or generalized. On day 28 after therapy the body weight, spleen index and cellularity, and content of CD3+, CD4+, CD8+, CD4+CD25+ cells in the spleen were determined. Results: In the control group of animals, the inflammation was pronounced, as evidenced by a significant increase in the studied parameters throughout the observation period. The use of cryopreserved MMSCs from adipose and cartilaginous tissues led to the restoration of T regulatory cells (Treg) on day 28. Generalized administration of cells had a more pronounced therapeutic effect compared to the animals with local administration. These data can be used to justify and develop a therapeutic approach to rheumatoid arthritis in clinical practice. Conclusions: Cell therapy with cryopreserved MMSCs from investigated sources provided by both local and generalized administration to animals with adjuvant arthritis has a correcting effect on the cellular immunity.

19.
Acta Vet Hung ; 68(4): 405-412, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33656452

RESUMEN

In the present pilot study, we evaluated different supplemental therapies using autologous multipotent mesenchymal stromal cells (MMSCs) for the treatment of cranial cruciate ligament defects in dogs. We used tibial tuberosity advancement (TTA) and augmented it by supportive therapy with MMSCs in three patient groups. In the first patient group, the dogs were injected with MMSCs directly into the treated stifle one month after surgery. In the second group, MMSCs were delivered in a silk fibroin scaffold which was placed in the osteotomy gap during surgery. In the third group, MMSCs were first mixed with bone tissue and blood from the patient and delivered into the osteotomy gap during surgery. In the control group, patients underwent the TTA procedure but did not receive MMSC treatment. In the group of patients who received cells in the silk fibroin scaffold during surgery, the osteotomy gap did not heal, presumably due to the low absorption of silk fibroin. Patients who received MMSCs mixed with bone tissue and blood during surgery into the osteotomy gap recovered clinically faster and had better healing of the osteotomy gap than dogs from the other two treated groups and from the control group, as assessed by clinical examination and quantification of radiographs. In conclusion, dogs that received stem cells directly into the osteotomy gap (Group 3) recovered faster compared to dogs from Groups 1 (MMSCs injected into the joint one month after surgery), 2 (cells implanted into the osteotomy gap in a silk fibroin scaffold), and the control group that did not receive additional MMSCs treatment.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Enfermedades de los Perros , Células Madre Mesenquimatosas , Animales , Ligamento Cruzado Anterior , Lesiones del Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/veterinaria , Enfermedades de los Perros/cirugía , Perros , Proyectos Piloto , Rodilla de Cuadrúpedos/cirugía , Tibia/cirugía
20.
Bull Exp Biol Med ; 170(4): 537-543, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33725246

RESUMEN

We analyzed the state of intracellular compartments and production of cytokines in MSC depending on the culture density. MSC were growth-arrested with mitomycin C and seeded at a density of 300-7000 cell/cm2. MSC in low-density cultures had 2-fold higher levels of transmembrane mitochondrial potential (MitoTracker Red) and endogenous ROS (CMH2DCFDA), lysosomal compartments were less acidified (LysoTracker Green DND26), the production of immunoregulatory and angiogenic mediators VEGF, IL-6, IL-8, MCP-1, TGF-ß was more intensive. It was assumed that culture density can be an effective tool for phenotypic polarization of MSC providing directional changes in their properties.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular/fisiología , Células Cultivadas , Quimiocina CCL2/metabolismo , Técnicas de Cocultivo , Citocinas/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA