Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37039557

RESUMEN

SARS-CoV-2 evolves rapidly in part because of its high mutation rate. Here, we examine whether this mutational process itself has changed during viral evolution. To do this, we quantify the relative rates of different types of single-nucleotide mutations at 4-fold degenerate sites in the viral genome across millions of human SARS-CoV-2 sequences. We find clear shifts in the relative rates of several types of mutations during SARS-CoV-2 evolution. The most striking trend is a roughly 2-fold decrease in the relative rate of G→T mutations in Omicron versus early clades, as was recently noted by Ruis et al. (2022. Mutational spectra distinguish SARS-CoV-2 replication niches. bioRxiv, doi:10.1101/2022.09.27.509649). There is also a decrease in the relative rate of C→T mutations in Delta, and other subtle changes in the mutation spectrum along the phylogeny. We speculate that these changes in the mutation spectrum could arise from viral mutations that affect genome replication, packaging, and antagonization of host innate-immune factors, although environmental factors could also play a role. Interestingly, the mutation spectrum of Omicron is more similar than that of earlier SARS-CoV-2 clades to the spectrum that shaped the long-term evolution of sarbecoviruses. Overall, our work shows that the mutation process is itself a dynamic variable during SARS-CoV-2 evolution and suggests that human SARS-CoV-2 may be trending toward a mutation spectrum more similar to that of other animal sarbecoviruses.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Humanos , SARS-CoV-2 , Mutación , Tasa de Mutación , Genoma Viral
2.
Microbiology (Reading) ; 170(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687010

RESUMEN

Spontaneous mutations are the ultimate source of novel genetic variation on which evolution operates. Although mutation rate is often discussed as a single parameter in evolution, it comprises multiple distinct types of changes at the level of DNA. Moreover, the rates of these distinct changes can be independently influenced by genomic background and environmental conditions. Using fluctuation tests, we characterized the spectrum of spontaneous mutations in Escherichia coli grown in low and high glucose environments. These conditions are known to affect the rate of spontaneous mutation in wild-type MG1655, but not in a ΔluxS deletant strain - a gene with roles in both quorum sensing and the recycling of methylation products used in E. coli's DNA repair process. We find an increase in AT>GC transitions in the low glucose environment, suggesting that processes relating to the production or repair of this mutation could drive the response of overall mutation rate to glucose concentration. Interestingly, this increase in AT>GC transitions is maintained by the glucose non-responsive ΔluxS deletant. Instead, an elevated rate of GC>TA transversions, more common in a high glucose environment, leads to a net non-responsiveness of overall mutation rate for this strain. Our results show how relatively subtle changes, such as the concentration of a carbon substrate or loss of a regulatory gene, can substantially influence the amount and nature of genetic variation available to selection.


Asunto(s)
Escherichia coli , Glucosa , Tasa de Mutación , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa/metabolismo , Mutación , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Reparación del ADN/genética , Percepción de Quorum/genética
3.
Eur Arch Otorhinolaryngol ; 281(7): 3577-3586, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38400873

RESUMEN

PURPOSE: Hearing loss (HL) is often monogenic. The clinical importance of genetic testing in HL may further increase when gene therapy products become available. Diagnoses are, however, complicated by a high genetic and allelic heterogeneity, particularly of autosomal dominant (AD) HL. This work aimed to characterize the mutational spectrum of AD HL in Austria. METHODS: In an ongoing prospective study, 27 consecutive index patients clinically diagnosed with non-syndromic AD HL, including 18 previously unpublished cases, were analyzed using whole-exome sequencing (WES) and gene panels. Novel variants were characterized using literature and bioinformatic means. Two additional Austrian medical centers provided AD HL mutational data obtained with in-house pipelines. Other Austrian cases of AD HL were gathered from literature. RESULTS: The solve rate (variants graded as likely pathogenic (LP) or pathogenic (P)) within our cohort amounted to 59.26% (16/27). MYO6 variants were the most common cause. One third of LP/P variants were truncating variants in haploinsufficiency genes. Ten novel variants in HL genes were identified, including six graded as LP or P. In one cohort case and one external case, the analysis uncovered previously unrecognized syndromic presentations. CONCLUSION: More than half of AD HL cases analyzed at our center were solved with WES. Our data demonstrate the importance of genetic testing, especially for the diagnosis of syndromic presentations, enhance the molecular knowledge of genetic HL, and support other laboratories in the interpretation of variants.


Asunto(s)
Secuenciación del Exoma , Mutación , Humanos , Austria , Masculino , Femenino , Estudios Prospectivos , Adulto , Niño , Adolescente , Preescolar , Persona de Mediana Edad , Adulto Joven , Pruebas Genéticas/métodos , Genes Dominantes , Anciano , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/diagnóstico , Lactante
4.
Indian J Clin Biochem ; 39(2): 276-282, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577139

RESUMEN

Lung cancer is a severe and the leading cause of cancer related deaths in men and women all over the world. Tumor suppressor protein (TP53) encoded by the TP53 gene which plays a pivotal role in various cellular tumor suppression processes viz cell cycle arrest and apoptosis. Henceforth, the present study was aimed to TP53 exon4 variants from lung carcinoma. Histopathologic and clinically proven 20 patients of lung cancer were enrolled in this study the average age of patients was 45 ± 8 years which categorized as early onset of lung cancer. Genomic DNA was isolated from the blood specimen of patients. Extracted DNA was subjected to PCR amplification for exon 4 of TP53 using appropriate primers and subsequently amplified products were applied to nucleotide alterations via using the DNA sanger sequencing. The genetic analysis documented five variants in exon4 of TP53 which include viz. 4 substitutions [c.215 > C at codon 72, C. 358-359AA > GG at codon 120] were highly prevalent, occurring in 63% and 25% frequency in patients. Other two variants viz. C. 358 A > C at codon 120, C. 365T > G at codon 122 were present at frequency of 15% whilst one deletion variant [152 del C] was found with 5% frequency. Furthermore, alterations on codon 72, 120,122 and 51 were characterized as possibly damaging by Poly Phen-2 and decreased stability using stability bioinformatic tool. Taken together all these findings infer that TP53 gene involved in modulation and susceptibility to lung cancer.

5.
Proc Biol Sci ; 289(1987): 20221747, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36382519

RESUMEN

The raw material for viral evolution is provided by intra-host mutations occurring during replication, transcription or post-transcription. Replication and transcription of Coronaviridae proceed through the synthesis of negative-sense 'antigenomes' acting as templates for positive-sense genomic and subgenomic RNA. Hence, mutations in the genomes of SARS-CoV-2 and other coronaviruses can occur during (and after) the synthesis of either negative-sense or positive-sense RNA, with potentially distinct patterns and consequences. We explored for the first time the mutational spectrum of SARS-CoV-2 (sub)genomic and anti(sub)genomic RNA. We use a high-quality deep sequencing dataset produced using a quantitative strand-aware sequencing method, controlled for artefacts and sequencing errors, and scrutinized for accurate detection of within-host diversity. The nucleotide differences between negative- and positive-sense strand consensus vary between patients and do not show dependence on age or sex. Similarities and differences in mutational patterns between within-host minor variants on the two RNA strands suggested strand-specific mutations or editing by host deaminases and oxidative damage. We observe generally neutral and slight negative selection on the negative strand, contrasting with purifying selection in ORF1a, ORF1b and S genes of the positive strand of the genome.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ARN Viral/genética , Genoma Viral , Mutación , Genómica
6.
Mol Biol Evol ; 37(11): 3118-3130, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33219379

RESUMEN

Mutation and recombination are the primary sources of genetic variation. To better understand the evolution of genetic variation, it is crucial to comprehensively investigate the processes involving mutation accumulation and recombination. In this study, we performed mutation accumulation experiments on four heterozygous diploid yeast species in the Saccharomycodaceae family to determine spontaneous mutation rates, mutation spectra, and losses of heterozygosity (LOH). We observed substantial variation in mutation rates and mutation spectra. We also observed high LOH rates (1.65-11.07×10-6 events per heterozygous site per cell division). Biases in spontaneous mutation and LOH together with selection ultimately shape the variable genome-wide nucleotide landscape in yeast species.


Asunto(s)
Genoma Fúngico , Hanseniaspora/genética , Pérdida de Heterocigocidad , Tasa de Mutación , Acumulación de Mutaciones
7.
Antimicrob Agents Chemother ; 65(10): e0089121, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34339280

RESUMEN

Mutagenesis is integral for bacterial evolution and the development of antibiotic resistance. Environmental toxins and stressors are known to elevate the rate of mutagenesis through direct DNA toxicity, known as stress-associated mutagenesis, or via a more general stress-induced process that relies on intrinsic bacterial pathways. Here, we characterize the spectra of mutations induced by an array of different stressors using high-throughput sequencing to profile thousands of spectinomycin-resistant colonies of Bacillus subtilis. We found 69 unique mutations in the rpsE and rpsB genes, and that each stressor leads to a unique and specific spectrum of antibiotic-resistance mutations. While some mutations clearly reflected the DNA damage mechanism of the stress, others were likely the result of a more general stress-induced mechanism. To determine the relative fitness of these mutants under a range of antibiotic selection pressures, we used multistrain competitive fitness experiments and found an additional landscape of fitness and resistance. The data presented here support the idea that the environment in which the selection is applied (mutagenic stressors that are present), as well as changes in local drug concentration, can significantly alter the path to spectinomycin resistance in B. subtilis.


Asunto(s)
Bacillus subtilis , Espectinomicina , Antibacterianos/farmacología , Bacillus subtilis/genética , Daño del ADN/genética , Farmacorresistencia Microbiana , Mutación , Espectinomicina/farmacología
8.
Ann Oncol ; 32(3): 412-421, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33307203

RESUMEN

BACKGROUND: The accumulation of somatic mutations contributes to ageing and cancer. Sunlight is the principal aetiological factor associated with skin cancer development. However, genetic and phenotypic factors also contribute to skin cancer risk. This study aimed at exploring the role of photoaging, as well as other well-known epidemiological risk factors, in the accumulation of somatic mutations in cancer-free human epidermis. MATERIAL AND METHODS: We deeply sequenced 46 genes in normal skin biopsies from 123 healthy donors, from which phenotypic data (including age, pigmentation-related genotype and phenotype) and sun exposure habits were collected. We determined the somatic mutational burden, mutational signatures, clonal selection and frequency of driver mutations in all samples. RESULTS: Our results reveal an exponential accumulation of UV-related somatic mutations with age, matching skin cancer incidence. The increase of mutational burden is in turn modified by an individual's skin phototype. Somatic mutations preferentially accumulated in cutaneous squamous cell carcinoma cancer genes and clonally expanded with age, with distinct mutational processes underpinning different age groups. Our results suggest a loss of fidelity in transcription-coupled repair later in life. CONCLUSION: Our findings reveal that ageing is not only associated with an exponential increase in the number of somatic mutations accumulated in normal epidermis, but also with selection and expansion of cancer-associated mutations. Aged, sun-exposed normal skin is thus an extended mosaic of multiple clones with driver mutations, poised for the acquisition of transforming events.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Anciano , Carcinoma de Células Escamosas/epidemiología , Carcinoma de Células Escamosas/genética , Humanos , Mutación , Piel , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/genética , Luz Solar/efectos adversos
9.
Hum Mutat ; 41(1): 38-57, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31517426

RESUMEN

C1 inhibitor (C1Inh) deficiency is responsible for hereditary angioedema (C1-INH-HAE) and caused by variants of the SERPING1/C1INH/C1NH gene. C1Inh is the major control of kallikrein-kinin system. C1Inh deficiency leads to its uncontrolled activation, with subsequent generation of the vasoactive peptide bradykinin. This update documents 748 different SERPING1 variants, including published variants and additional 120 unpublished ones. They were identified as heterozygous variants (n = 729), as homozygous variants in 10 probands and as compound heterozygous variants (nine combinations). Six probands with heterozygous variants exhibited gonadal mosaicism. Probands with heterozygous (n = 72) and homozygous (n = 1) variants were identified as de novo cases. Overall, 58 variants were found at positions showing high residue conservation among serpins, and have been referred to as a mousetrap function of C1Inh: reactive center loop, gate, shutter, breach, and hinge. C1Inh phenotype analysis identified dysfunctional serpin variants with failed serpin-protease association and a residual 105-kDa species after incubation with target protease. Regarding this characteristic, in conditions with low antigenic C1Inh, 74 C1-INH-HAE probands presented with an additional so-called intermediate C1-INH-HAE phenotype. The present update addresses a comprehensive SERPING1 variant spectrum that facilitates genotype-phenotype correlations, highlighting residues of strategic importance for serpin function and for identification of C1Inh deficiency as serpinopathy.


Asunto(s)
Angioedemas Hereditarios/diagnóstico , Angioedemas Hereditarios/genética , Proteína Inhibidora del Complemento C1/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Alelos , Proteína Inhibidora del Complemento C1/química , Biología Computacional , Bases de Datos Genéticas , Estudios de Asociación Genética/métodos , Genotipo , Haploinsuficiencia , Humanos , Modelos Moleculares , Conformación Proteica , Empalme del ARN , Relación Estructura-Actividad
10.
J Endocrinol Invest ; 43(11): 1577-1590, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32253725

RESUMEN

PURPOSE: X-linked hypophosphatemia (XLH) is the most common inherited renal phosphate wasting disorder and is often misdiagnosed as vitamin D deficiency. This study aims to provide clinical and mutational characteristics of 65 XLH pediatric patients in southern China. METHODS: In this work, a combination of DNA sequencing and qPCR analysis was used to study the PHEX gene in 80 pediatric patients diagnosed with hypophosphatemia. The clinical and laboratory data of confirmed 65 XLH patients were assessed and analyzed retrospectively. RESULTS: In 65 XLH patients from 61 families, 51 different variants in the PHEX gene were identified, including 23 previously reported variants and 28 novel variants. In this cohort of XLH patients, the c.1601C>T(p.Pro534Leu) variant appears more frequently. Fourteen uncommon XLH cases were described, including four boys with de novo mosaic variants, eight patients with large deletions and a pair of monozygotic twins. The clinical manifestations in this cohort are very similar to those previously reported. CONCLUSION: This study extends the mutational spectrum of the PHEX gene, which will contribute to accurate diagnosis. This study also suggests a supplementary qPCR or MLPA assay may be performed along with classical sequencing to confirm the gross insertion/deletion.


Asunto(s)
Raquitismo Hipofosfatémico Familiar/genética , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Polimorfismo de Nucleótido Simple , Adolescente , Edad de Inicio , Sustitución de Aminoácidos , Pueblo Asiatico/genética , Niño , Preescolar , China/epidemiología , Estudios de Cohortes , Análisis Mutacional de ADN , Raquitismo Hipofosfatémico Familiar/epidemiología , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Masculino , Mutación Missense , Linaje , Estudios Retrospectivos , Análisis de Secuencia de ADN
11.
BMC Musculoskelet Disord ; 21(1): 220, 2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32278351

RESUMEN

BACKGROUND: Klippel-Feil syndrome (KFS) represents a rare anomaly characterized by congenital fusion of the cervical vertebrae. The underlying molecular etiology remains largely unknown because of the genetic and phenotypic heterogeneity. METHODS: We consecutively recruited a Chinese cohort of 37 patients with KFS. The clinical manifestations and radiological assessments were analyzed and whole-exome sequencing (WES) was performed. Additionally, rare variants in KFS cases and controls were compared using genetic burden analysis. RESULTS: We primarily examined rare variants in five reported genes (GDF6, MEOX1, GDF3, MYO18B and RIPPLY2) associated with KFS and detected three variants of uncertain significance in MYO18B. Based on rare variant burden analysis of 96 candidate genes related to vertebral segmentation defects, we identified BAZ1B as having the highest probability of association with KFS, followed by FREM2, SUFU, VANGL1 and KMT2D. In addition, seven patients were proposed to show potential oligogenic inheritance involving more than one variants in candidate genes, the frequency of which was significantly higher than that in the in-house controls. CONCLUSIONS: Our study presents an exome-sequenced cohort and identifies five novel genes potentially associated with KFS, extending the spectrum of known mutations contributing to this syndrome. Furthermore, the genetic burden analysis provides further evidence for potential oligogenic inheritance of KFS.


Asunto(s)
Síndrome de Klippel-Feil/genética , Herencia Multifactorial , Mutación , Factores de Transcripción/genética , Adolescente , Adulto , Estudios de Casos y Controles , Vértebras Cervicales/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Síndrome de Klippel-Feil/diagnóstico por imagen , Masculino , Linaje , Radiografía , Adulto Joven
12.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33203024

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare, monogenic disorder affecting the degradation of the main inhibitory neurotransmitter γ-amino butyric acid (GABA). Pathogenic variants in the ALDH5A1 gene that cause an enzymatic dysfunction of succinic semialdehyde dehydrogenase (SSADH) lead to an accumulation of potentially toxic metabolites, including γ-hydroxybutyrate (GHB). Here, we present a patient with a severe phenotype of SSADHD caused by a novel genetic variant c.728T > C that leads to an exchange of leucine to proline at residue 243, located within the highly conserved nicotinamide adenine dinucleotide (NAD)+ binding domain of SSADH. Proline harbors a pyrrolidine within its side chain known for its conformational rigidity and disruption of protein secondary structures. We investigate the effect of this novel variant in vivo, in vitro, and in silico. We furthermore examine the mutational spectrum of all previously described disease-causing variants and computationally assess all biologically possible missense variants of ALDH5A1 to identify mutational hotspots.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Simulación por Computador , Discapacidades del Desarrollo , Mutación Missense , Succionato-Semialdehído Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Sustitución de Aminoácidos , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/genética , Células HEK293 , Humanos , Dominios Proteicos , Succionato-Semialdehído Deshidrogenasa/genética , Succionato-Semialdehído Deshidrogenasa/metabolismo
13.
Hum Mutat ; 40(11): e1-e23, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31209999

RESUMEN

BRCA1 BRCA2 mutational spectrum in the Middle East, North Africa, and Southern Europe is not well characterized. The unique history and cultural practices characterizing these regions, often involving consanguinity and inbreeding, plausibly led to the accumulation of population-specific founder pathogenic sequence variants (PSVs). To determine recurring BRCA PSVs in these locales, a search in PUBMED, EMBASE, BIC, and CIMBA was carried out combined with outreach to researchers from the relevant countries for unpublished data. We identified 232 PSVs in BRCA1 and 239 in BRCA2 in 25 of 33 countries surveyed. Common PSVs that were detected in four or more countries were c.5266dup (p.Gln1756Profs), c.181T>G (p.Cys61Gly), c.68_69del (p.Glu23Valfs), c.5030_5033del (p.Thr1677Ilefs), c.4327C>T (p.Arg1443Ter), c.5251C>T (p.Arg1751Ter), c.1016dup (p.Val340Glyfs), c.3700_3704del (p.Val1234Glnfs), c.4065_4068del (p.Asn1355Lysfs), c.1504_1508del (p.Leu502Alafs), c.843_846del (p.Ser282Tyrfs), c.798_799del (p.Ser267Lysfs), and c.3607C>T (p.Arg1203Ter) in BRCA1 and c.2808_2811del (p.Ala938Profs), c.5722_5723del (p.Leu1908Argfs), c.9097dup (p.Thr3033Asnfs), c.1310_1313del (p. p.Lys437Ilefs), and c.5946del (p.Ser1982Argfs) for BRCA2. Notably, some mutations (e.g., p.Asn257Lysfs (c.771_775del)) were observed in unrelated populations. Thus, seemingly genotyping recurring BRCA PSVs in specific populations may provide first pass BRCA genotyping platform.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Predisposición Genética a la Enfermedad , Variación Genética , Grupos de Población/genética , África del Norte , Alelos , Población Negra , Minería de Datos , Bases de Datos Genéticas , Europa (Continente) , Genotipo , Humanos , Medio Oriente , Proyectos de Investigación , Población Blanca
14.
Int J Mol Sci ; 20(4)2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30791524

RESUMEN

Rare inherited coagulation disorders (RICDs) are congenital deficiencies of the plasma proteins that are involved in blood coagulation, which generally lead to lifelong bleeding manifestations. These diseases are generally qualitative and/or quantitative defects that are associated with monoallelic or biallelic mutations in the relevant gene. Among RICDs, factor V (FV) deficiency is one of the least characterized at the molecular level. Here, we investigated four unrelated patients with reduced plasma FV levels (three severe, one mild), which were associated with a moderately severe bleeding tendency. Sequence analysis of the FV gene identified seven different variants, five hitherto unknown (p.D1669G, c.5789-11C>A, c.5789-12C>A, c.5789-5T>G, and c.6528G>C), and two previously reported (c.158+1G>A and c.5789G>A). The possible pathogenic role of the newly identified missense variant was studied by in silico approaches. The remaining six genetic defects (all putative splicing mutations) were investigated for their possible effects on pre-mRNA splicing by transient transfection experiments in HeLa cells with plasmids expressing appropriate hybrid minigenes. The preparation of minigene constructs was instrumental to demonstrate that the two adjacent variants c.5789-11C>A and c.5789-12C>A are indeed present in cis in the analyzed FV-deficient patient (thus leading to the c.5789-11_12CC>AA mutation). Ex vivo experiments demonstrated that each variant causes either a skipping of the relevant exon or the activation of cryptic splice sites (exonic or intronic), eventually leading to the introduction of a premature termination codon.


Asunto(s)
Deficiencia del Factor V/genética , Variación Genética , Empalme del ARN , Alelos , Empalme Alternativo , Secuencia de Aminoácidos , Línea Celular , Biología Computacional/métodos , Factor V/química , Factor V/genética , Deficiencia del Factor V/metabolismo , Regulación de la Expresión Génica , Genotipo , Humanos , Modelos Moleculares , Mutación , Conformación Proteica , ARN Mensajero/genética , Análisis de Secuencia de ADN
15.
BMC Evol Biol ; 18(1): 126, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30157765

RESUMEN

BACKGROUND: Temperature is a major determinant of spontaneous mutation, but the precise mode, and the underlying mechanisms, of the temperature influences remain less clear. Here we used a mutation accumulation approach combined with whole-genome sequencing to investigate the temperature dependence of spontaneous mutation in an Escherichia coli strain. Experiments were performed under aerobic conditions at 25, 28 and 37 °C, three temperatures that were non-stressful for the bacterium but caused significantly different bacterial growth rates. RESULTS: Mutation rate did not differ between 25 and 28 °C, but was higher at 37 °C. Detailed analyses of the molecular spectrum of mutations were performed; and a particularly interesting finding is that higher temperature led to a bias of mutation to coding, relative to noncoding, DNA. Furthermore, the temperature response of mutation rate was extremely similar to that of metabolic rate, consistent with an idea that metabolic rate predicts mutation rate. CONCLUSIONS: Temperature affects mutation rate and the types of mutation supply, both being crucial for the opportunity of natural selection. Our results help understand how temperature drives evolutionary speed of organisms and thus the global patterns of biodiversity. This study also lend support to the metabolic theory of ecology for linking metabolic rate and molecular evolution rate.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Tasa de Mutación , Mutación/genética , Temperatura , Emparejamiento Base/genética , Escherichia coli/crecimiento & desarrollo , Mutación INDEL/genética
16.
Cell Physiol Biochem ; 47(5): 1853-1861, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29961066

RESUMEN

BACKGROUND/AIMS: Acute myeloid leukemia (AML) of French-American-British (FAB) subtypes M0 and M1 are both poorly differentiated AML, but their mutational spectrum and molecular characteristics remain unknown. This study aimed to explore the mutational spectrum and prognostic factors of AML-M0 and M1. METHODS: Sixty-five AML patients derived from The Cancer Genome Atlas (TCGA) database were enrolled in this study. Whole-genome sequencing was performed to depict the mutational spectrum of each patient. Clinical characteristics at diagnosis, including peripheral blood (PB) white blood cell counts (WBC), blast percentages in PB and bone marrow (BM), FAB subtypes and the frequencies of known recurrent genetic mutations were described. Survival was estimated using the Kaplan-Meier methods and log-rank test. Univariate and multivariate Cox proportional hazard models were constructed for event-free survival (EFS) and overall survival (OS), using a limited backward elimination procedure. RESULTS: Forty-six patients had more than five recurrent genetic mutations. FLT3 had the highest mutation frequency (n=20, 31%), followed by NPM1 (n=18, 28%), DNMT3A (n=16, 25%), IDH1 (n=14, 22%), IDH2 (n=12, 18%), RUNX1 (n=11, 17%) and TET2 (n=7, 11%). Univariate analysis showed that age ≥60 years and TP53 mutations had adverse effect on EFS (P=0.015, P=0.036, respectively) and OS (P=0.003, P=0.004, respectively), WBC count ≥50×109/L and FLT3-ITD negatively affected EFS (P=0.003, P=0.034, respectively), whereas NPM1 mutations had favorable effect on OS (P=0.035) and allogeneic hematopoietic stem cell transplantation (allo-HSCT) on EFS and OS (all P< 0.001). Multivariate analysis suggested that allo-HSCT and NPM1 mutations were independent favorable prognostic factors for EFS and OS (all P< 0.05), WBC count ≥50×109/L was an independent risk factor for EFS (P=0.002) and TP53 mutations for OS (P=0.043). CONCLUSIONS: Our study provided new insights into the mutational spectrum and molecular signatures of AML-M0 and M1. We proposed that FLT3-ITD, NPM1 and TP53 be identified as markers for risk stratification of AML-M0 and M1. Patients with AML-M0 and M1 would likely benefit from allo-HSCT.


Asunto(s)
Biomarcadores de Tumor/genética , Bases de Datos Factuales , Leucemia Mieloide Aguda , Mutación , Proteínas de Neoplasias/genética , Anciano , Supervivencia sin Enfermedad , Femenino , Humanos , Leucemia Mieloide Aguda/clasificación , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Nucleofosmina , Medición de Riesgo , Tasa de Supervivencia
17.
BMC Cancer ; 18(1): 926, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30257646

RESUMEN

BACKGROUND: Breast cancer is the most common cancer in women. 12-15% of all tumors are triple-negative breast cancers (TNBC). So far, TNBC has been mainly associated with mutations in BRCA1. The presence of other predisposing genes seems likely since DNA damage repair is a complex process that involves several genes. Therefore we investigated if mutations in other genes are involved in cancer development and whether TNBC is an additional indicator of mutational status besides family history and age of onset. METHODS: We performed a germline panel-based screening of 10 high and low-moderate penetrance breast cancer susceptibility genes (BRCA1, BRCA2, ATM, CDH1, CHEK2, NBN, PALB2, RAD51C, RAD51D and TP53) in 229 consecutive individuals affected with TNBC unselected for age, family history or bilateral disease. Within this cohort we compared the number of mutation carriers fulfilling clinical selection criteria with the total number of carriers identified. RESULTS: Age at diagnosis ranged from 23 to 80 years with an average age of 50.2 years. In 57 women (24.9%) we detected a pathogenic mutation, with a higher frequency (29.7%) in the group manifesting cancer before 60 years. Deleterious BRCA1 mutations occurred in 14.8% of TNBC patients. These were predominantly recurrent frameshift mutations (24/34, 70.6%). Deleterious BRCA2 mutations occurred in 5.7% of patients, all but one (c.1813dupA) being unique. While no mutations were found in CDH1 and TP53, 10 mutations were detected in one of the six other predisposition genes. Remarkably, neither of the ATM, RAD51D, CHEK2 and PALB2 mutation carriers had a family history. Furthermore, patients with non-BRCA1/2 mutations were not significantly younger than mutation negative women (p = 0.3341). Most importantly, among the 57 mutation carriers, ten (17.5%) would be missed using current clinical testing criteria including five (8%) with BRCA1/2 mutations. CONCLUSIONS: In summary, our data confirm and expand previous studies of a high frequency of germline mutations in genes associated with ineffective repair of DNA damage in women with TNBCs. Neither age of onset, contralateral disease nor family history were able to discern all mutation positive individuals. Therefore, TNBC should be considered as an additional criterion for panel based genetic testing.


Asunto(s)
Análisis Mutacional de ADN/métodos , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias de la Mama Triple Negativas/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Selección de Paciente , Penetrancia , Análisis de Secuencia de ADN , Adulto Joven
18.
Scand J Clin Lab Invest ; 78(3): 211-218, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29390883

RESUMEN

Phenylketonuria (PKU, OMIM 261600) caused by phenylalanine hydroxylase (PAH) deficiency is an autosomal recessive disease that is characterized by abnormalities of phenylalanine metabolism. In this study, a total of 77 patients, originating from the central region of China and who were diagnosed with PAH deficiency at the third affiliated hospital of Zhengzhou University, were enrolled in this study. The 13 exons and 12 flanking introns of the PAH gene were analyzed by Sanger sequencing and next generation sequencing. The sequencing data were aligned to the hg19, PAHvdb and HGMD databases to characterize the genotypes of PKU patients, and genotype-phenotype correlations and BH4 responsiveness predictions were performed using BIOPKUdb. In total, 149 alleles were characterized among the 154 PKU alleles. These mutations were located in exons 2-13, and intron 12 of the PAH gene, with a relative frequency of ≥5%, for EX6-96A>G, p.R241C, p.R243Q, p.V399V and p.R53H. Additionally, a novel variant, p.D84G, was identified. The genotype correlated with clinical symptoms in 33.3-100% of the cases, depending on the disease severity, and BH4 responsiveness predictions show that only five patients with MHP-PKU and one patient with Mild-PKU were predicted to be BH4 responsive. In conclusion, we have characterized the mutational spectrum of PAH in the central region of China and have identified a novel mutation. The hotspot mutation information might be useful for screening, diagnosis and treatment of PKU.


Asunto(s)
Biopterinas/análogos & derivados , Genotipo , Mutación , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/genética , Alelos , Biopterinas/uso terapéutico , Niño , Preescolar , China , Exones , Femenino , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Intrones , Masculino , Fenilalanina Hidroxilasa/deficiencia , Fenilcetonurias/diagnóstico , Fenilcetonurias/enzimología , Índice de Severidad de la Enfermedad
19.
FEMS Yeast Res ; 17(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087675

RESUMEN

Life is maintained through alternating phases of cell division and quiescence. The causes and consequences of spontaneous mutations have been extensively explored in proliferating cells, and the major sources include errors of DNA replication and DNA repair. The foremost consequences are genetic variations within a cell population that can lead to heritable diseases and drive evolution. While most of our knowledge on DNA damage response and repair has been gained through cells actively dividing, it remains essential to also understand how DNA damage is metabolized in cells which are not dividing. In this review, we summarize the current knowledge concerning the type of lesions that arise in non-dividing budding and fission yeast cells, as well as the pathways used to repair them. We discuss the contribution of these models to our current understanding of age-related pathologies.


Asunto(s)
Reparación del ADN , Mutación , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Modelos Biológicos
20.
Bioessays ; 37(2): 123-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25370372

RESUMEN

Here, we propose that the heterogeneity of mutational types in populations underpins alternative pathways of evolutionary adaptation. Point mutations, deletions, insertions, transpositions and duplications cause different biological effects and provide distinct adaptive possibilities. Experimental evidence for this notion comes from the mutational origins of adaptive radiations in large, clonal bacterial populations. Independent sympatric lineages with different phenotypes arise from distinct genetic events including gene duplication, different insertion sequence movements and several independent point mutations. The breadth of the mutational spectrum in the ancestral population should be viewed as a form of bet-hedging, reducing the risk of evolutionary dead ends and complementing the phenotypic and epigenetic heterogeneities that improve the survival capabilities of a population. Different mutational events arise from distinct cellular processes and are subject to separate environmental impacts, so the availability of any particular type of mutation may constrain or promote adaptive pathways in populations.


Asunto(s)
Adaptación Fisiológica/fisiología , Adaptación Fisiológica/genética , Evolución Biológica , Roturas del ADN de Doble Cadena , Escherichia coli/genética , Mutación/genética , Selección Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA