Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(3): 102978, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36739949

RESUMEN

The mitochondrial phospholipid cardiolipin (CL) is critical for numerous essential biological processes, including mitochondrial dynamics and energy metabolism. Mutations in the CL remodeling enzyme TAFAZZIN cause Barth syndrome, a life-threatening genetic disorder that results in severe physiological defects, including cardiomyopathy, skeletal myopathy, and neutropenia. To study the molecular mechanisms whereby CL deficiency leads to skeletal myopathy, we carried out transcriptomic analysis of the TAFAZZIN-knockout (TAZ-KO) mouse myoblast C2C12 cell line. Our data indicated that cardiac and muscle development pathways are highly decreased in TAZ-KO cells, consistent with a previous report of defective myogenesis in this cell line. Interestingly, the muscle transcription factor myoblast determination protein 1 (MyoD1) is significantly repressed in TAZ-KO cells and TAZ-KO mouse hearts. Exogenous expression of MyoD1 rescued the myogenesis defects previously observed in TAZ-KO cells. Our data suggest that MyoD1 repression is caused by upregulation of the MyoD1 negative regulator, homeobox protein Mohawk, and decreased Wnt signaling. Our findings reveal, for the first time, that CL metabolism regulates muscle differentiation through MyoD1 and identify the mechanism whereby MyoD1 is repressed in CL-deficient cells.


Asunto(s)
Síndrome de Barth , Cardiolipinas , Proteína MioD , Animales , Ratones , Aciltransferasas/genética , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Ratones Noqueados , Músculos/metabolismo , Factores de Transcripción/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo
2.
Histopathology ; 84(5): 776-793, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38114270

RESUMEN

AIMS: Spindle-cell/sclerosing rhabdomyosarcomas (SS-RMS) are clinically and genetically heterogeneous. They include three well-defined molecular subtypes, of which those with EWSR1/FUS::TFCP2 rearrangements were described only recently. This study aimed to evaluate five new cases of SS-RMS and to perform a clinicopathological and statistical analysis of all TFCP2-rearranged SS-RMS described in the English literature to more comprehensively characterize this rare tumour type. METHODS AND RESULTS: Cases were retrospectively selected and studied by immunohistochemistry, fluorescence in situ hybridization with EWSR1/FUS and TFCP2 break-apart probes, next-generation sequencing (Archer FusionPlex Sarcoma kit and TruSight RNA Pan-Cancer Panel). The PubMed database was searched for relevant peer-reviewed English reports. Five cases of SS-RMS were found. Three cases were TFCP2 rearranged SS-RMS, having FUSex6::TFCP2ex2 gene fusion in two cases and triple gene fusion EWSR1ex5::TFCP2ex2, VAX2ex2::ALKex2 and VAX2intron2::ALKex2 in one case. Two cases showed rhabdomyoblastic differentiation and spindle-round cell/sclerosing morphology, but were characterized by novel genetic fusions including EWSR1ex8::ZBTB41ex7 and PLOD2ex8::RBM6ex7, respectively. In the statistical analysis of all published cases, CDKN2A or ALK alterations, the use of standard chemotherapy and age at presentation in the range of 18-24 years were negatively correlated to overall survival. CONCLUSION: EWSR1/FUS::TFCP2-rearranged SS-RMS is a rare rhabdomyosarcoma subtype, affecting predominantly young adults with average age at presentation 34 years (median 29.5 years; age range 7-86 years), with a predilection for craniofacial bones, rapid clinical course with frequent bone and lung metastases, and poor prognosis (3-year overall survival rate 28%).


Asunto(s)
Rabdomiosarcoma , Factores de Transcripción , Adulto Joven , Niño , Humanos , Adulto , Adolescente , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Hibridación Fluorescente in Situ , Estudios Retrospectivos , Factores de Transcripción/genética , Proteína EWS de Unión a ARN/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Fusión Génica , Biomarcadores de Tumor/genética , Proteínas de Unión al ARN/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Proteínas de Unión al ADN/genética
3.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891908

RESUMEN

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Asunto(s)
Citocinas , Quinasas Quinasa Quinasa PAM , Atrofia Muscular , Animales , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/etiología , Atrofia Muscular/tratamiento farmacológico , Ratones , Citocinas/metabolismo , Debilidad Muscular/metabolismo , Debilidad Muscular/tratamiento farmacológico , Miostatina/metabolismo , Miostatina/antagonistas & inhibidores , Proteínas Musculares/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Fosforilación/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Zearalenona/farmacología , Zearalenona/análogos & derivados
4.
Anim Genet ; 54(4): 526-535, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36871966

RESUMEN

Intramuscular fat (IMF) is one of the most important indexes of pork taste quality. Diacylglycerol acyltransferase 1 (DGAT1), belonging to the acyl-coenzyme A: DGAT enzymes family, is a rate-limiting enzyme responsible for the final step of triglyceride (TG) synthesis. It is involved in TG storage in skeletal muscle; however, the underlying mechanism is not well understood. This study aimed to uncover functional mutations that can influence DGAT1 expression and consequently affect IMF deposition in pork. Two experimental groups containing individuals with high and low IMF content (6.23 ± 0.20 vs. 1.25 ± 0.05, p < 0.01) were formed from 260 Duroc × Large White × Yorkshire (D × L × Y) cross-bred pigs. A novel SNP c.-379 C>T was uncovered in the DGAT1 gene using comparative sequencing with pool DNA of high- and low-IMF groups. The IMF content of CT genotype individuals (3.19 ± 0.11%) was higher than that of CC genotype individuals (2.86 ± 0.11%) when analyzing 260 D × L × Y pigs (p < 0.05). The DGAT1 expression levels revealed a significant positive correlation with IMF content (r = 0.33, p < 0.01). Luciferase assay revealed that the DGAT1 promoter with the c.-379 T allele has a higher transcription activity than that bearing the C allele in C2C12 myoblast cells, but not in 3T3-L1 pre-adipocytes. Online prediction followed by chromatin immunoprecipitation-polymerase chain reaction assay confirmed that myogenic determination factor 1 (MYOD1) binds to the DGAT1 promoter with the c.-379 C allele but not the T allele. In vitro experiments demonstrated that MYOD1 represses DGAT1 transcription and lipogenesis. As a muscle-specific transcription factor, MYOD1 can inhibit the transcription of DGAT1 with the c.-379 C allele in muscle cells. However, in the absence of MYOD1 binding to the mutated DGAT1 promoter with the c.-379 T allele, DGAT1 expresses at a higher level in the muscle cells of the c.-379 T genotype, leading to more intramyocellular lipid accumulation than in the muscle cells of the c.-379 C genotype. The SNP c.-379 C>T in the promoter region of the DGAT1 gene provides a promising molecular marker for improving pork IMF content without affecting other fat depots.


Asunto(s)
Diacilglicerol O-Acetiltransferasa , Músculo Esquelético , Porcinos , Animales , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Músculo Esquelético/metabolismo , Regulación de la Expresión Génica , Mutación , Lípidos
5.
Anim Biotechnol ; 34(9): 4927-4937, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37199180

RESUMEN

This study was to investigate the correlations of myogenic differentiation 1 (MYOD1) gene polymorphisms with carcass traits and its expression with breast muscle development in pigeons. Four SNPs were found in the pigeon MYOD1 gene. Correlation analysis showed that individuals with AA genotype at both SNPs g.2967A > G (p < .01) and g.3044G > A (p < .05) have significantly higher live weight (LW), carcass weight (CW), semi-eviscerated weight (SEW), eviscerated weight (EW) and breast muscle weight (BMW). Moreover, the two SNPs also had the same significant effects on MYOD1 mRNA expression levels in breast muscle of pigeons, ie, the AA genotype showed higher MYOD1 mRNA expression levels. The diameter and cross-section area of muscle fibers continuously increased from 0w to 4w (p < .05), accompanied with the increasing expression of MYOD1 gene, while the density decreased (p < .05) dramatically from 0w to 1w and continuously fell over in the next few weeks (p > .05). What's more, the expression level of MYOD1 gene was positively correlated with a diameter (r = 0.937, p < .05) and cross-sectional area (r = 0.956, p < .01) of myofiber, and negatively correlated with density (r = -0.769, p < .01). The results showed that individuals with AA genotype at both SNPs g.2967A > G and g.3044G > A have showed higher carcass traits (LW, CW, SEW, EW, and BMW) and higher MYOD1 mRNA expression level in breast muscle than AB and BB genotypes. Moreover, the expression level of MYOD1 gene was closely correlated with muscle characteristic traits, indicating variants of MYOD1 gene was closely related to muscle development and could be a potential candidate gene in marker-assisted selection of pigeons.


Asunto(s)
Columbidae , Carne , Humanos , Animales , Columbidae/genética , Fenotipo , Genotipo , Músculos , ARN Mensajero , Polimorfismo de Nucleótido Simple/genética
6.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108353

RESUMEN

Skeletal muscle development from embryonic stages to hatching is critical for poultry muscle growth, during which DNA methylation plays a vital role. However, it is not yet clear how DNA methylation affects early embryonic muscle development between goose breeds of different body size. In this study, whole genome bisulfite sequencing (WGBS) was conducted on leg muscle tissue from Wuzong (WZE) and Shitou (STE) geese on embryonic day 15 (E15), E23, and post-hatch day 1. It was found that at E23, the embryonic leg muscle development of STE was more intense than that of WZE. A negative correlation was found between gene expression and DNA methylation around transcription start sites (TSSs), while a positive correlation was observed in the gene body near TTSs. It was also possible that earlier demethylation of myogenic genes around TSSs contributes to their earlier expression in WZE. Using pyrosequencing to analyze DNA methylation patterns of promoter regions, we also found that earlier demethylation of the MyoD1 promoter in WZE contributed to its earlier expression. This study reveals that DNA demethylation of myogenic genes may contribute to embryonic leg muscle development differences between Wuzong and Shitou geese.


Asunto(s)
Desmetilación del ADN , Gansos , Animales , Gansos/genética , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/fisiología , Metilación de ADN , Desarrollo de Músculos/genética
7.
Arkh Patol ; 85(1): 10-15, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-36785957

RESUMEN

BACKGROUND: Anomalies of the FOXO1 gene in alveolar rhabdomyosarcoma are associated with a worse clinical prognosis, which determines the high value of studying the status of this gene when choosing a therapy strategy. The «gold standard¼ for determining FOXO1 gene rearrangements is currently the fluorescent in situ hybridization (FISH) technique. OBJECTIVE: Study of the relationship between canonical FOXO1 translocation and immunohistochemical expression of new surrogate markers in alveolar rhabdomyosarcoma to determine their predictive value. MATERIAL AND METHODS: 139 cases of rhabdomyosarcoma were retrospectively studied. The study used tissue matrix technology (TMA). On sections obtained from TMA blocks, the FISH technique was implemented using the locus-specific probe MetaSystems XL FOXO1 Break Apart (Metasystems, Germany). Immunohistochemical studies were performed on similar sections from TMA blocks with OLIG2 (Cell Marque Antibodies, clone 211F1.1) and MUC4 (Cell Marque Antibodies, clone 8G7) antibodies. RESULTS: The final expression analysis and statistical processing using a 2x2 contingency table and Fisher's exact test passed 111 cases (76 without FOXO1 rearrangement and 35 with rearrangement). The specificity of OLIG2 and MUC4 expression for FOXO1-rearranged alveolar rhabdomyosarcoma was 85.53% and 80.26%, respectively (p<0.01). CONCLUSION: The present study confirms the high predictive value of the expression of surrogate markers OLIG2 and MUC4 in determining the genetic status of alveolar rhabdomyosarcoma, which makes it possible to predict with high specificity the detection of the FOXO1 gene rearrangement.


Asunto(s)
Rabdomiosarcoma Alveolar , Humanos , Rabdomiosarcoma Alveolar/diagnóstico , Rabdomiosarcoma Alveolar/genética , Rabdomiosarcoma Alveolar/metabolismo , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Hibridación Fluorescente in Situ/métodos , Proteína Forkhead Box O1/genética , Estudios Retrospectivos , Biomarcadores , Translocación Genética/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo
8.
Histopathology ; 80(1): 98-108, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34958505

RESUMEN

Rhabdomyosarcomas comprise the single largest category of soft tissue sarcomas in children and adolescents in the United States, occurring in 4.5 million people aged below 20 years. Based on the clinicopathological features and genetic abnormalities identified, rhabdomyosarcomas are classified into embryonal, alveolar, spindle cell/sclerosing and pleomorphic subtypes. Each subtype shows distinctive morphology and has characteristic genetic abnormalities. This review discusses the evolution of the classification of rhabdomyosarcoma to the present day, together with a discussion of key histomorphological and genetic features of each subtype and the diagnostic approach to these tumours.


Asunto(s)
Biomarcadores de Tumor/genética , Rabdomiosarcoma/patología , Neoplasias de los Tejidos Blandos/patología , Proteína Forkhead Box O1/genética , Humanos , Proteína MioD/genética , Rabdomiosarcoma/clasificación , Rabdomiosarcoma/genética , Neoplasias de los Tejidos Blandos/clasificación , Neoplasias de los Tejidos Blandos/genética
9.
Pediatr Blood Cancer ; 69(4): e29511, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35129294

RESUMEN

Children and adolescents with rhabdomyosarcoma (RMS) comprise a heterogeneous population with variable overall survival rates ranging between approximately 6% and 100% depending on defined risk factors. Although the risk stratification of patients has been refined across five decades of collaborative group studies, molecular prognostic biomarkers beyond FOXO1 fusion status have yet to be incorporated prospectively in upfront risk-based therapy assignments. This review describes the evolution of risk-based therapy and the current risk stratification, defines a new risk stratification incorporating novel biomarkers, and provides the rationale for the current and upcoming Children's Oncology Group RMS studies.


Asunto(s)
Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Adolescente , Niño , Fusión Génica , Humanos , Rabdomiosarcoma/terapia , Medición de Riesgo , Factores de Riesgo
10.
J Pathol ; 255(1): 52-61, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34086347

RESUMEN

The myogenic differentiation 1 gene (MYOD1) p.L122R somatic mutation was first discovered in a subset of clinically aggressive embryonal rhabdomyosarcomas and has since been described in both pediatric and adult spindle cell/sclerosing rhabdomyosarcomas. Relatively little is known about the clinical, molecular, and histopathological features of these tumors in children. In order to further characterize the genomic and clinical features of pediatric MYOD1-mutant sarcomas, we evaluated a cohort of soft-tissue sarcoma patients treated at Texas Children's Hospital. Tumor DNA was subjected to next-generation panel sequencing and/or Sanger sequencing of the MYOD1 hotspot mutation. The MYOD1 p.L122R mutation was identified in six tumors, with a variant allele fraction greater than 0.8 in three cases, suggestive of loss of heterozygosity. One sclerosing rhabdomyosarcoma lacking the MYOD1 hotspot mutation was observed to have a MYOD1 copy number gain, also with evidence of loss of heterozygosity. Cancer gene panel sequencing revealed potentially targetable alterations in six of seven (86%) patients with MYOD1 alterations, including four patients with an alteration in the PI3K-AKT pathway: two hotspot PIK3CA mutations and deletions in PTEN and TSC2. On histopathologic review, MYOD1-altered tumors exhibited spindle and/or round cells and varying degrees of hyaline sclerosis. At last follow-up, six patients had died of disease and the seventh progressed early and was subsequently lost to follow-up. Both pre- and post-therapy patient-derived xenograft models were generated from one patient's tumor. These models were confirmed to harbor the MYOD1 and PIK3CA mutations seen in the primary tumor and were shown to be sensitive to PI3K/mTOR inhibition in vitro and in vivo. In conclusion, this study adds to recent reports describing the clinicopathologic and genomic features of MYOD1-altered soft-tissue sarcomas in children, including dismal prognosis and potential molecular targets for therapy. The novel preclinical models developed will facilitate further biological and preclinical study of this rare and aggressive tumor. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteína MioD/genética , Rabdomiosarcoma/genética , Neoplasias de los Tejidos Blandos/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Adolescente , Animales , Antineoplásicos/farmacología , Niño , Femenino , Genómica , Humanos , Imidazoles/farmacología , Masculino , Ratones , Mutación , Quinolinas/farmacología , Rabdomiosarcoma/patología , Neoplasias de los Tejidos Blandos/patología , Adulto Joven
11.
J Nanobiotechnology ; 20(1): 95, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35209908

RESUMEN

BACKGROUND: The promising therapeutic strategy for the treatment of peripheral artery disease (PAD) is to restore blood supply and promote regeneration of skeletal muscle regeneration. Increasing evidence revealed that prostaglandin E2 (PGE2), a lipid signaling molecule, has significant therapeutic potential for tissue repair and regeneration. Though PGE2 has been well reported in tissue regeneration, the application of PGE2 is hampered by its short half-life in vivo and the lack of a viable system for sustained release of PGE2. RESULTS: In this study, we designed and synthesized a new PGE2 release matrix by chemically bonding PGE2 to collagen. Our results revealed that the PGE2 matrix effectively extends the half-life of PGE2 in vitro and in vivo. Moreover, the PGE2 matrix markedly improved neovascularization by increasing angiogenesis, as confirmed by bioluminescence imaging (BLI). Furthermore, the PGE2 matrix exhibits superior therapeutic efficacy in the hindlimb ischemia model through the activation of MyoD1-mediated muscle stem cells, which is consistent with accelerated structural recovery of skeletal muscle, as evidenced by histological analysis. CONCLUSIONS: Our findings highlight the chemical bonding strategy of chemical bonding PGE2 to collagen for sustained release and may facilitate the development of PGE2-based therapies to significantly improve tissue regeneration.


Asunto(s)
Dinoprostona , Neovascularización Fisiológica , Animales , Modelos Animales de Enfermedad , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Isquemia/tratamiento farmacológico , Isquemia/patología , Músculo Esquelético
12.
J Cell Mol Med ; 25(20): 9586-9596, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34510713

RESUMEN

Human pluripotent stem cells have the potential to differentiate into various cell types including skeletal muscles (SkM), and they are applied to regenerative medicine or in vitro modelling for intractable diseases. A simple differentiation method is required for SkM cells to accelerate neuromuscular disease studies. Here, we established a simple method to convert human pluripotent stem cells into SkM cells by using temperature-sensitive Sendai virus (SeV) vector encoding myoblast determination protein 1 (SeV-Myod1), a myogenic master transcription factor. SeV-Myod1 treatment converted human embryonic stem cells (ESCs) into SkM cells, which expressed SkM markers including myosin heavy chain (MHC). We then removed the SeV vector by temporal treatment at a high temperature of 38℃, which also accelerated mesodermal differentiation, and found that SkM cells exhibited fibre-like morphology. Finally, after removal of the residual human ESCs by pluripotent stem cell-targeting delivery of cytotoxic compound, we generated SkM cells with 80% MHC positivity and responsiveness to electrical stimulation. This simple method for myogenic differentiation was applicable to human-induced pluripotent stem cells and will be beneficial for investigations of disease mechanisms and drug discovery in the future.


Asunto(s)
Diferenciación Celular , Vectores Genéticos , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Virus Sendai , Calcio/metabolismo , Señalización del Calcio , Diferenciación Celular/genética , Células Cultivadas , Reprogramación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Vectores Genéticos/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Desarrollo de Músculos/genética , Virus Sendai/genética , Temperatura , Transgenes
13.
Pediatr Blood Cancer ; 68(9): e29085, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33913590

RESUMEN

BACKGROUND/OBJECTIVES: Rhabdomyosarcoma (RMS) is characterized by the expression of the myogenic regulatory protein MYOD1. Histologic types include alveolar, embryonal (ERMS), and spindle cell sclerosing RMS (SRMS). SRMS harbors MYOD1 mutations in a subset of adult cases in association with poor prognosis. DESIGN/METHODS: To study the level of MYOD1 protein expression and its clinical significance, we have analyzed variable numbers of pediatric (<18 years of age) and adult (age range ≥18 to 35 years) ERMS and SRMS cases for presence or absence of MYOD1 immunoreactivity in correlation with clinical outcome and MYOD1 L122R mutations. RESULTS: Lack of MYOD1 immunoreactivity, identified in 23.8% of nonalveolar RMS (non-ARMS) cases, was more prevalent in SRMS (44%) than ERMS (17.2%) and was significantly associated with low overall survival and unfavorable tumor sites (p < .05). Lack of MYOD1 immunoreactivity was not associated with MYOD1 L122R mutations, which were identified in 3/37 (8%) cases including only two of 31 (6.5%) pediatric cases, one of 11 or 9% pediatric SRMS, and one case of infant ERMS. CONCLUSION: These studies highlight the prognostic role of MYOD1 in non-ARMS. Lack of MYOD1 immunoreactivity is associated with poor prognosis in ERMS and SRMS. MYOD1 gene mutations are generally infrequent in pediatric RMS. Although mutations are predominant in SRMS, they may exceptionally occur in infantile ERMS.


Asunto(s)
Rabdomiosarcoma Alveolar , Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Adolescente , Adulto , Niño , Humanos , Lactante , Mutación , Proteína MioD/genética , Pronóstico , Rabdomiosarcoma/genética , Adulto Joven
14.
J Cell Physiol ; 235(10): 6625-6636, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31985035

RESUMEN

The proliferation and differentiation of myoblasts are essential for the regeneration and development of skeletal muscles. However, the process of skeletal muscle development in cattle is complex and needs to be further investigated. The microRNAs (miRNAs) are endogenous, small noncoding RNAs that play a critical role during skeletal muscle development. In this study, we evaluated the function of miR-885 in muscle development in cattle. The results found that the expression of miR-885 was gradually upregulated during myoblast proliferation, whereas progressively downregulated during myoblast differentiation. The overexpression of miR-885 promoted cell proliferation of myoblast in cattle. Moreover, we further noted that the overexpression miR-885 triggered the expression level of various marker genes involved in cell proliferation, including proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 2 (CDK2), and cyclin B1 (CCNB1). Furthermore, it was observed that overexpression of miR-885 inhibited cell differentiation, and significantly decreased messenger RNA and protein expression levels of myogenic differentiation 1 (MyoD1) and myogenin (MyoG) in primary bovine myoblasts. Moreover, the miR-885 inhibitor revealed that miR-885 inhibited cell proliferation and promoted cell differentiation. In addition, the overexpression of miR-885 markedly decreased MyoD1 expression in primary bovine myoblasts. The luciferase reporter assay, quantitative real-time polymerase chain reaction, and western blot (WB) further indicated that miR-885 directly binding to 3' UTR of MyoD1 gene during transcriptional regulation. Conclusively, these results signified that miR-885 could be critical for the proliferation and differentiation in primary bovine myoblast cells by targeting the MyoD1 gene in cattle.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular/genética , MicroARNs/genética , Proteína MioD/genética , Mioblastos/patología , Regiones no Traducidas 3'/genética , Animales , Bovinos , Regulación hacia Abajo/genética , Regulación de la Expresión Génica/genética , Desarrollo de Músculos/genética , Miogenina/genética , ARN Mensajero/genética , Transcripción Genética/genética , Regulación hacia Arriba/genética
16.
Arkh Patol ; 82(5): 33-41, 2020.
Artículo en Ruso | MEDLINE | ID: mdl-33054030

RESUMEN

Rhabdomyosarcoma (RMS) is a malignant soft tissue tumor originating from primitive mesenchymal cells, which is most common in children. OBJECTIVE: To qualitatively and quantitatively assess the expression of myogenic transcription factors on a large sample, to identify potential phenotypic differences, and to estimate the distribution and frequency of aberrant markers, such as ALK, PAX5, WT1, PCK, CAM5.2, SIX1, and Synaptophysin. MATERIAL AND METHODS: The investigation included 202 tumor tissue samples. Five tissue microarrays were assembled from the obtained material for subsequent histological and immunohistochemical studies. RESULTS: Embryonal RMS (ERMS) was diagnosed in 103 cases; alveolar RMS (ARMS) was detected in 80; spindle-cell/sclerosing RMS (SRMS) was found in 16 cases; epithelioid RMS (EpiRMS) was diagnosed in 2 patients. The expression of Myogenin and MyoD1 was detected in all the examined RMS tissue samples. ARMS was more characterized by staining at 1+ and 2+ intensities; at the same time, more than 50% of ERMS, SRMS, and EpiRMS cases showed staining at 1+ intensity. ALK expression was investigated using the D5F3 and p80 clones. The D5F3 clone displayed a higher staining intensity than the p80 clone (p<0.05). The expression of PAX5 was observed in 13 of 75 ARMS cases. That of WT1 and SIX1 was found in all RMS groups. CONCLUSION: The morphological diagnosis of RMS requires a careful assessment of all of the above factors, especially taking into account the variability in the expression of myogenic transcription factors and the high level of phenotypic aberration.


Asunto(s)
Rabdomiosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Biomarcadores de Tumor/genética , Niño , Humanos , Miogenina/genética , Rabdomiosarcoma/genética , Neoplasias de los Tejidos Blandos/genética
17.
Histopathology ; 74(6): 933-943, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30604891

RESUMEN

AIMS: Spindle cell/sclerosing rhabdomyosarcomas (SC/SRMS) feature spindled and/or rounded rhabdomyosarcomatous cells within variably hyalinised stroma. Only 30-67% of SC/SRMSs harbour neomorphic MYOD1 p.L122R mutations, indicating heterogeneity in this RMS type. We compared MYOD1-mutant and non-mutant cases to characterise the histological and genetic spectrum of mutated SC/SRMS. METHODS AND RESULTS: Seventeen RMSs with spindled, sclerosing or hybrid histology were sequenced to identify MYOD1 and PIK3CA mutations and reappraised to assess histological features and myogenic immunophenotypes. Twelve SC/SRMSs harboured MYOD1 mutations, including homozygous p.L122R (n = 8), heterozygous p.L122R (n = 3) and heterozygous p.E118K (n = 1). MYOD1-mutant tumours affected nine females and three males aged 8-64 years (median = 22.5), had a median size of 4.2 cm (range = 2-22) and involved the head and neck (n = 7), extremities (n = 4) and mediastinum (n = 1). Fascicular/spindle histology was predominant in four cases, including one with heterologous lipoblasts in focally myxoid stroma. Four sclerosing cases mainly comprised rounded cells, including one with multinucleated tumour cells. Four cases were histologically hybrid. The only PIK3CA (p.H1047R) mutation was detected in a predominantly spindled MYOD1-p.L122R-mutated case, but not in its laser-microdissected lipoblast-containing area. All MYOD1-mutant cases exhibited diffuse MYOD1 expression but patchy myogenin reactivity. At final follow-up (median = 13.5 months), recurrences (n = 4), metastases (n = 2) or both (n = 1) occurred in seven MYOD1-mutant cases; one had died of disease. Five non-mutated cases were reclassified as spindle embryonal (n = 3), dense embryonal (n = 1) and unclassifiable (n = 1) RMSs. CONCLUSION: MYOD1-mutant RMSs are uncommonly mutated with PIK3CA and behave aggressively with an expanded morphological and genetic spectrum, including lipoblastic differentiation, multinucleated cells and the alternative p.E118K mutation.


Asunto(s)
Proteína MioD/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Adolescente , Adulto , Niño , Fosfatidilinositol 3-Quinasa Clase I/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Estudios Retrospectivos , Sarcoma/genética , Sarcoma/patología , Adulto Joven
18.
Ann Diagn Pathol ; 36: 50-60, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30098515

RESUMEN

The present study was aimed at evaluating clinicopathologic and immunohistochemical (IHC) features of 300 rhabdomyosarcomas (RMSs), including differential IHC expression and prognostic value of myogenin and MyoD1 across various subtypes of RMSs. IHC expression of myogenin and MyoD1 was graded on the basis of percentage of tumor cells displaying positive intranuclear immunostaining i.e. grade 1 (1-25%); grade 2 (26-50%); grade 3 (51-76%) and grade 4 (76-100%).Clinical follow-up was available in 238 (79.3%) patients. Various clinicopathologic parameters were correlated with 3-year disease free survival (DFS) and overall survival (OS). There were 140 cases (46.7%) of alveolar RMS (ARMS), 90 of embryonal RMS (ERMS) (30%), 61 (20.3%) of spindle cell/sclerosing RMS and 9 cases (3%) of pleomorphic RMS. Most cases, barring pleomorphic RMSs, occurred in the first two decades (228 cases) (76%), frequently in males, in the head and neck region (126) (42%). By immunohistochemistry, desmin was positive in 292/299 (97.6%) tumors; myogenin in 238/267 (89.1%) and MyoD1 in 192/266 (72.2%) tumors. High myogenin expression (in ≥51% positive tumor cells) was significantly associated with ARMSs (95/121, 78.5%), as compared to other subtypes (48/117, 41%) (p value < 0.001). High MyoD1 expression (≥51% tumor cells) was seen in more cases of pure sclerosing, combined with spindle cell/sclerosing RMSs (10/10, 100%), as compared to the other subtypes (91/141, 67.4%) (p = 0.032). There was no significant difference between high myogenin expression and clinical outcomes. Patients without metastasis and harbouring tumors, measuring ≤5 cm showed a significant increase in OS, with p values = 0.01 and <0.001, respectively. ARMS was the most frequent subtype. There was a significant association between high myogenin expression and ARMSs and high MyoD1 expression and spindle cell/sclerosing RMSs. High myogenin expression did not correlate with clinical outcomes. Patients with smaller sized tumors and without metastasis had significantly better clinical outcomes.


Asunto(s)
Biomarcadores de Tumor/análisis , Músculo Esquelético/metabolismo , Miogenina/metabolismo , Rabdomiosarcoma/patología , Adulto , Niño , Diagnóstico Diferencial , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica/métodos , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma/mortalidad
19.
J Med Genet ; 53(4): 264-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26733463

RESUMEN

BACKGROUND: Lethal fetal akinesia deformation sequence (FADS) describes a clinically and genetically heterogeneous phenotype that includes fetal akinesia, intrauterine growth retardation, arthrogryposis and developmental anomalies. Affected babies die as a result of pulmonary hypoplasia. We aimed to identify the underlying genetic cause of this disorder in a family in which there were three affected individuals from two sibships. METHODS: Autosomal-recessive inheritance was suggested by a family history of consanguinity and by recurrence of the phenotype between the two sibships. We performed exome sequencing of the affected individuals and their unaffected mother, followed by autozygosity mapping and variant filtering to identify the causative gene. RESULTS: Five autozygous regions were identified, spanning 31.7 Mb of genomic sequence and including 211 genes. Using standard variant filtering criteria, we excluded all variants as being the likely pathogenic cause, apart from a single novel nonsense mutation, c.188C>A p.(Ser63*) (NM_002478.4), in MYOD1. This gene encodes an extensively studied transcription factor involved in muscle development, which has nonetheless not hitherto been associated with a hereditary human disease phenotype. CONCLUSIONS: We provide the first description of a human phenotype that appears to result from MYOD1 mutation. The presentation with FADS is consistent with a large body of data demonstrating that in the mouse, MyoD is a major controller of precursor cell commitment to the myogenic differentiation programme.


Asunto(s)
Artrogriposis/genética , Retardo del Crecimiento Fetal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Proteína MioD/genética , Feto Abortado , Animales , Artrogriposis/patología , Exoma/genética , Femenino , Retardo del Crecimiento Fetal/patología , Humanos , Pulmón/patología , Ratones , Mutación , Linaje , Fenotipo , Embarazo
20.
J Sci Food Agric ; 97(15): 5176-5185, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28437004

RESUMEN

BACKGROUND: Most countries have banned the use of 4,4'-dichlorodiphenyltrichloroethane (DDT). However, owing to its extremely high lipophilic characteristics, DDT and its metabolite 4,4'-dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and in many types of food. The positive correlation between exposure to insecticides, including DDT and DDE, and weight gain, resulting in impaired energy metabolism in offspring following perinatal DDT and DDE exposure, was previously reported. Therefore the influence of DDT and DDE on myogenesis using C2C12 myoblasts was investigated in this study. RESULTS: DDT and DDE decreased myotube formation dose- and time-dependently. Among myogenic regulatory factors, DDT and DDE mainly decreased MyoD1 and Myf5 expression. DDT and DDE treatment also altered Myostatin expression, phosphorylation of protein kinase B, p70 ribosomal protein S6 kinase, forkhead box O protein 3 and mammalian target of rapamycin, resulting in attenuation of myotube formation. CONCLUSION: These results may have significant implications for understanding the effects of developmental exposure of DDT and DDE on myogenesis and development of obesity and type 2 diabetes later in life. © 2017 Society of Chemical Industry.


Asunto(s)
DDT/toxicidad , Diclorodifenil Dicloroetileno/toxicidad , Insecticidas/toxicidad , Desarrollo de Músculos/efectos de los fármacos , Mioblastos/citología , Animales , Línea Celular , Expresión Génica/efectos de los fármacos , Ratones , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA