Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105643, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199574

RESUMEN

Intestinal epithelia express two long myosin light-chain kinase (MLCK) splice variants, MLCK1 and MLCK2, which differ by the absence of a complete immunoglobulin (Ig)-like domain 3 within MLCK2. MLCK1 is preferentially associated with the perijunctional actomyosin ring at steady state, and this localization is enhanced by inflammatory stimuli including tumor necrosis factor (TNF). Here, we sought to identify MLCK1 domains that direct perijunctional MLCK1 localization and their relevance to disease. Ileal biopsies from Crohn's disease patients demonstrated preferential increases in MLCK1 expression and perijunctional localization relative to healthy controls. In contrast to MLCK1, MLCK2 expressed in intestinal epithelia is predominantly associated with basal stress fibers, and the two isoforms have distinct effects on epithelial migration and barrier regulation. MLCK1(Ig1-4) and MLCK1(Ig1-3), but not MLCK2(Ig1-4) or MLCK1(Ig3), directly bind to F-actin in vitro and direct perijunctional recruitment in intestinal epithelial cells. Further study showed that Ig1 is unnecessary, but that, like Ig3, the unstructured linker between Ig1 and Ig2 (Ig1/2us) is essential for recruitment. Despite being unable to bind F-actin or direct recruitment independently, Ig3 does have dominant negative functions that allow it to displace perijunctional MLCK1, increase steady-state barrier function, prevent TNF-induced MLCK1 recruitment, and attenuate TNF-induced barrier loss. These data define the minimal domain required for MLCK1 localization and provide mechanistic insight into the MLCK1 recruitment process. Overall, the results create a foundation for development of molecularly targeted therapies that target key domains to prevent MLCK1 recruitment, restore barrier function, and limit inflammatory bowel disease progression.


Asunto(s)
Actinas , Actomiosina , Humanos , Actinas/metabolismo , Actomiosina/metabolismo , Citocinesis , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Miosinas/metabolismo , Uniones Estrechas/metabolismo , Células CACO-2 , Factor de Necrosis Tumoral alfa/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 44(8): 1833-1851, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38957986

RESUMEN

BACKGROUND: Tight control of cytoplasmic Ca2+ concentration in endothelial cells is essential for the regulation of endothelial barrier function. Here, we investigated the role of Cavß3, a subunit of voltage-gated Ca2+ (Cav) channels, in modulating Ca2+ signaling in brain microvascular endothelial cells (BMECs) and how this contributes to the integrity of the blood-brain barrier. METHODS: We investigated the function of Cavß3 in BMECs by Ca2+ imaging and Western blot, examined the endothelial barrier function in vitro and the integrity of the blood-brain barrier in vivo, and evaluated disease course after induction of experimental autoimmune encephalomyelitis in mice using Cavß3-/- (Cavß3-deficient) mice as controls. RESULTS: We identified Cavß3 protein in BMECs, but electrophysiological recordings did not reveal significant Cav channel activity. In vivo, blood-brain barrier integrity was reduced in the absence of Cavß3. After induction of experimental autoimmune encephalomyelitis, Cavß3-/- mice showed earlier disease onset with exacerbated clinical disability and increased T-cell infiltration. In vitro, the transendothelial resistance of Cavß3-/- BMEC monolayers was lower than that of wild-type BMEC monolayers, and the organization of the junctional protein ZO-1 (zona occludens-1) was impaired. Thrombin stimulates inositol 1,4,5-trisphosphate-dependent Ca2+ release, which facilitates cell contraction and enhances endothelial barrier permeability via Ca2+-dependent phosphorylation of MLC (myosin light chain). These effects were more pronounced in Cavß3-/- than in wild-type BMECs, whereas the differences were abolished in the presence of the MLCK (MLC kinase) inhibitor ML-7. Expression of Cacnb3 cDNA in Cavß3-/- BMECs restored the wild-type phenotype. Coimmunoprecipitation and mass spectrometry demonstrated the association of Cavß3 with inositol 1,4,5-trisphosphate receptor proteins. CONCLUSIONS: Independent of its function as a subunit of Cav channels, Cavß3 interacts with the inositol 1,4,5-trisphosphate receptor and is involved in the tight control of cytoplasmic Ca2+ concentration and Ca2+-dependent MLC phosphorylation in BMECs, and this role of Cavß3 in BMECs contributes to blood-brain barrier integrity and attenuates the severity of experimental autoimmune encephalomyelitis disease.


Asunto(s)
Barrera Hematoencefálica , Señalización del Calcio , Encefalomielitis Autoinmune Experimental , Células Endoteliales , Animales , Femenino , Masculino , Ratones , Barrera Hematoencefálica/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/genética , Permeabilidad Capilar , Células Cultivadas , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Células Endoteliales/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Fosforilación
3.
Circulation ; 147(25): 1902-1918, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37128901

RESUMEN

BACKGROUND: Cardiac-specific myosin light chain kinase (cMLCK), encoded by MYLK3, regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure. METHODS: We generated the knock-in mice (Mylk3+/fs and Mylk3fs/fs) with a familial dilated cardiomyopathy-associated MYLK3 frameshift mutation (MYLK3+/fs) that had been identified previously by us (c.1951-1G>T; p.P639Vfs*15) and the human induced pluripotent stem cell-derived cardiomyocytes from the carrier of the mutation. We also developed a new small-molecule activator of cMLCK (LEUO-1154). RESULTS: Both mice (Mylk3+/fs and Mylk3fs/fs) showed reduced cMLCK expression due to nonsense-mediated messenger RNA decay, reduced MLC2v (ventricular myosin regulatory light chain) phosphorylation in the myocardium, and systolic dysfunction in a cMLCK dose-dependent manner. Consistent with this result, myocardium from the mutant mice showed an increased ratio of cardiac superrelaxation/disordered relaxation states that may contribute to impaired cardiac contractility. The phenotypes observed in the knock-in mice were rescued by cMLCK replenishment through the AAV9_MYLK3 vector. Human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation reduced cMLCK expression by 50% and contractile dysfunction, accompanied by an increased superrelaxation/disordered relaxation ratio. CRISPR-mediated gene correction, or cMLCK replenishment by AAV9_MYLK3 vector, successfully recovered cMLCK expression, the superrelaxation/disordered relaxation ratio, and contractile dysfunction. LEUO-1154 increased human cMLCK activity ≈2-fold in the Vmax for ventricular myosin regulatory light chain phosphorylation without affecting the Km. LEUO-1154 treatment of human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation restored the ventricular myosin regulatory light chain phosphorylation level and superrelaxation/disordered relaxation ratio and improved cardiac contractility without affecting calcium transients, indicating that the cMLCK activator acts as a myotrope. Finally, human myocardium from advanced heart failure with a wide variety of causes had a significantly lower MYLK3/PPP1R12B messenger RNA expression ratio than control hearts, suggesting an altered balance between myosin regulatory light chain kinase and phosphatase in the failing myocardium, irrespective of the causes. CONCLUSIONS: cMLCK dysregulation contributes to the development of cardiac systolic dysfunction in humans. Our strategy to restore cMLCK activity could form the basis of a novel myotropic therapy for advanced systolic heart failure.


Asunto(s)
Insuficiencia Cardíaca Sistólica , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosforilación , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Contracción Miocárdica/fisiología , ARN Mensajero/genética , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo
4.
Pharmacol Res ; 206: 107276, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944220

RESUMEN

The global incidence of cardiac diseases is increasing, imposing a substantial socioeconomic burden on healthcare systems. The pathogenesis of cardiovascular disease is complex and not fully understood, and the physiological function of the heart is inextricably linked to well-regulated cardiac muscle movement. Myosin light chain kinase (MLCK) is essential for myocardial contraction and diastole, cardiac electrophysiological homeostasis, vasoconstriction of vascular nerves and blood pressure regulation. In this sense, MLCK appears to be an attractive therapeutic target for cardiac diseases. MLCK participates in myocardial cell movement and migration through diverse pathways, including regulation of calcium homeostasis, activation of myosin light chain phosphorylation, and stimulation of vascular smooth muscle cell contraction or relaxation. Recently, phosphorylation of myosin light chains has been shown to be closely associated with the activation of myocardial exercise signaling, and MLCK mediates systolic and diastolic functions of the heart through the interaction of myosin thick filaments and actin thin filaments. It works by upholding the integrity of the cytoskeleton, modifying the conformation of the myosin head, and modulating innervation. MLCK governs vasoconstriction and diastolic function and is associated with the activation of adrenergic and sympathetic nervous systems, extracellular transport, endothelial permeability, and the regulation of nitric oxide and angiotensin II. Additionally, MLCK plays a crucial role in the process of cardiac aging. Multiple natural products/phytochemicals and chemical compounds, such as quercetin, cyclosporin, and ML-7 hydrochloride, have been shown to regulate cardiomyocyte MLCK. The MLCK-modifying capacity of these compounds should be considered in designing novel therapeutic agents. This review summarizes the mechanism of action of MLCK in the cardiovascular system and the therapeutic potential of reported chemical compounds in cardiac diseases by modifying MLCK processes.


Asunto(s)
Quinasa de Cadena Ligera de Miosina , Transducción de Señal , Humanos , Quinasa de Cadena Ligera de Miosina/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/enzimología , Fármacos Cardiovasculares/uso terapéutico , Fármacos Cardiovasculares/farmacología
5.
Exp Cell Res ; 424(2): 113508, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36764591

RESUMEN

In severe acute pancreatitis (SAP), intestinal mucosal barrier damage can cause intestinal bacterial translocation and induce or aggravate systemic infections. Heme oxygenase-1 (HO-1) is a validated antioxidant and cytoprotective agent. This research aimed to investigate the effect and mechanism of HO-1 on SAP-induced intestinal barrier damage in SAP rats. Healthy adult male Sprague-Dawley rats were randomly separated into the sham-operated group, SAP group, SAP + Hemin group, and SAP + Znpp group. The rat model of SAP was established by retrograde injection of sodium taurocholate (5%) into the biliopancreatic duct. Hemin (a potent HO-1 activator) and Znpp (a competitive inhibitor of HO-1) were injected intraperitoneally in the selected groups 24 h before SAP. Serum and intestinal tissue samples were collected for analysis after 24 h in each group. Hemin pretreatment significantly reduced systemic inflammation, intestinal oxidative stress, and intestinal epithelial apoptosis in SAP by increasing HO-1 expression. Meanwhile, pretreatment with Hemin abolished the inhibitory effect on the expression of the tight junction proteins and significantly inhibited the activation of the MLCK/P-MLC signaling pathway. Conversely, ZnPP completely reversed these effects. Our study indicates that upregulation of HO-1 expression attenuates the intestinal mucosal barrier damage in SAP. The protective effect of HO-1 on the intestine is attributed to MLCK/p-MLC signaling pathway inhibition.


Asunto(s)
Pancreatitis , Animales , Masculino , Ratas , Enfermedad Aguda , Hemo-Oxigenasa 1/metabolismo , Hemina/farmacología , Mucosa Intestinal/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Quinasa de Cadena Ligera de Miosina
6.
Oral Dis ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720551

RESUMEN

OBJECTIVE: Our previous studies have found that the composition ratio of Prevotella melaninogenica (Pm) on buccal mucosa surface of oral lichen planus (OLP) patients increased significantly compared with control. Furthermore, Pm could invade the epithelium of OLP patients. This study aimed to further explore the impact of Pm on oral keratinocytes. MATERIALS AND METHODS: The Pm-human oral keratinocyte (HOK) co-culture model was established to detect monolayer permeability, zona occludens-1 (ZO-1) expression, and intracellular survival of Pm. We performed RNA-seq followed by identification of differentially expressed genes (DEGs) and Gene Ontology (GO) analysis, with a particular focus on myosin light chain kinase (MLCK). An MLCK inhibitor ML-7 was utilized in Pm-HOK co-culture model to assess its effects on monolayer permeability and ZO-1 expression. RESULTS: HOK monolayer permeability was increased, and ZO-1 expression was decreased after co-culture (p < 0.05). Pm could survive in HOK cells. RNA-seq revealed MLCK was an upregulated common DEG. The expression of MLCK in the Pm-HOK co-culture model was upregulated. Inhibition of MLCK rescued the increased epithelial permeability, and ZO-1 expression was upregulated (p < 0.05). CONCLUSION: MLCK may be involved in disrupting epithelial barrier function by Pm.

7.
Ecotoxicol Environ Saf ; 257: 114940, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37099960

RESUMEN

Fluoride is a common contaminant of groundwater and agricultural commodity, which poses challenges to animal and human health. A wealth of research has demonstrated its detrimental effects on intestinal mucosal integrity; however, the underlying mechanisms remain obscure. This study aimed to investigate the role of the cytoskeleton in fluoride-induced barrier dysfunction. After sodium fluoride (NaF) treatment of the cultured Caco-2 cells, both cytotoxicity and cytomorphological changes (internal vacuoles or massive ablation) were observed. NaF lowered transepithelial electrical resistance (TEER) and enhanced paracellular permeation of fluorescein isothiocyanate dextran 4 (FD-4), indicating Caco-2 monolayers hyperpermeability. In the meantime, NaF treatment altered both the expression and distribution of the tight junction protein ZO-1. Fluoride exposure increased myosin light chain II (MLC2) phosphorylation and triggered actin filament (F-actin) remodeling. While inhibition of myosin II by Blebbistatin blocked NaF-induced barrier failure and ZO-1 discontinuity, the corresponding agonist Ionomycin had effects comparable to those of fluoride, suggesting that MLC2 serves as an effector. Given the mechanisms upstream of p-MLC2 regulation, further studies demonstrated that NaF activated RhoA/ROCK signaling pathway and myosin light chain kinase (MLCK), strikingly increasing the expression of both. Pharmacological inhibitors (Rhosin, Y-27632 and ML-7) reversed NaF-induced barrier breakdown and stress fiber formation. The role of intracellular calcium ions ([Ca2+]i) in NaF effects on Rho/ROCK pathway and MLCK was investigated. We found that NaF elevated [Ca2+]i, whereas chelator BAPTA-AM attenuated increased RhoA and MLCK expression as well as ZO-1 rupture, thus, restoring barrier function. Collectively, abovementioned results suggest that NaF induces barrier impairment via Ca2+-dependent RhoA/ROCK pathway and MLCK, which in turn triggers MLC2 phosphorylation and rearrangement of ZO-1 and F-actin. These results provide potential therapeutic targets for fluoride-induced intestinal injury.


Asunto(s)
Fluoruros , Quinasa de Cadena Ligera de Miosina , Animales , Humanos , Fosforilación , Células CACO-2 , Quinasa de Cadena Ligera de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/farmacología , Fluoruros/metabolismo , Calcio/metabolismo , Actinas/metabolismo , Uniones Estrechas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
8.
J Therm Biol ; 116: 103655, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37506522

RESUMEN

Intestinal barrier dysfunction often exists in the heat stroke (HS) pathological process, which increases intestinal permeability and induces endotoxemia. The upregulation of MLCK is a crucial player affecting intestinal permeability. This study aimed to explore whether inhibiting myosin light chain kinase (MLCK) can improve HS-induced intestinal injury in rats. Twelve-week-old Wistar male rats were divided into three groups: the control group, the HS model group, and the treatment group [HS model + ML-7 (MLCK inhibitor)]. HS impaired the tight junctions in the rat gut and increased permeability. Additionally, increased inflammatory factors in serum, activation of apoptosis, and downregulation of tight junction proteins were observed in intestinal cells. ML-7 significantly inhibited the MLCK/p-MLC2 signaling pathway, increased the expression of tight junction proteins, reduced intestinal permeability, reduced apoptosis and alleviated the intestinal damage caused by HS. ML-7 inhibited HS-induced apoptosis of intestinal epithelial cells by regulating the ERK/p38/HSP70 axis. Furthermore, inhibition of MLCK upregulated HSP70 expression through activation of the ERK pathway and inhibited cell apoptosis by abolishing the p38 MAPK pathway. In conclusion, inhibiting the MLCK/p-MLC2 signaling pathway reduces HS-induced intestinal permeability and protects the intestinal mucosal barrier.


Asunto(s)
Golpe de Calor , Enfermedades Intestinales , Ratas , Masculino , Animales , Quinasa de Cadena Ligera de Miosina/metabolismo , Ratas Wistar , Proteínas de Uniones Estrechas , Golpe de Calor/complicaciones
9.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36834577

RESUMEN

Hughes-Stovin syndrome is a rare disease characterized by thrombophlebitis and multiple pulmonary and/or bronchial aneurysms. The etiology and pathogenesis of HSS are incompletely known. The current consensus is that vasculitis underlies the pathogenic process, and pulmonary thrombosis follows arterial wall inflammation. As such, Hughes-Stovin syndrome may belong to the vascular cluster with lung involvement of Behçet syndrome, although oral aphtae, arthritis, and uveitis are rarely found. Behçet syndrome is a multifactorial polygenic disease with genetic, epigenetic, environmental, and mostly immunological contributors. The different Behçet syndrome phenotypes are presumably based upon different genetic determinants involving more than one pathogenic pathway. Hughes-Stovin syndrome may have common pathways with fibromuscular dysplasias and other diseases evolving with vascular aneurysms. We describe a Hughes-Stovin syndrome case fulfilling the Behçet syndrome criteria. A MYLK variant of unknown significance was detected, along with other heterozygous mutations in genes that may impact angiogenesis pathways. We discuss the possible involvement of these genetic findings, as well as other potential common determinants of Behçet/Hughes-Stovin syndrome and aneurysms in vascular Behçet syndrome. Recent advances in diagnostic techniques, including genetic testing, could help diagnose a specific Behçet syndrome subtype and other associated conditions to personalize the disease management.


Asunto(s)
Aneurisma , Síndrome de Behçet , Vasculitis , Humanos , Aneurisma/complicaciones , Aneurisma/diagnóstico , Aneurisma/patología , Síndrome de Behçet/diagnóstico , Arteria Pulmonar/patología , Vasculitis/patología
10.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362426

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by endothelial dysfunction, uncontrolled proliferation and migration of pulmonary arterial endothelial cells leading to increased pulmonary vascular resistance resulting in great morbidity and poor survival. Bone morphogenetic protein receptor II (BMPR2) plays an important role in the pathogenesis of PAH as the most common genetic mutation. Non-muscle myosin light chain kinase (nmMLCK) is an essential component of the cellular cytoskeleton and recent studies have shown that increased nmMLCK activity regulates biological processes in various pulmonary diseases such as asthma and acute lung injury. In this study, we aimed to discover the role of nmMLCK in the proliferation and migration of pulmonary arterial endothelial cells (HPAECs) in the pathogenesis of PAH. We used two cellular models relevant to the pathobiology of PAH including BMPR2 silenced and vascular endothelial growth factor (VEGF) stimulated HPAECs. Both models demonstrated an increase in nmMLCK activity along with a robust increase in cellular proliferation, inflammation, and cellular migration. The upregulated nmMLCK activity was also associated with increased ERK expression pointing towards a potential integral cytoplasmic interaction. Mechanistically, we confirmed that when nmMLCK is inhibited by MLCK selective inhibitor (ML-7), proliferation and migration are attenuated. In conclusion, our results demonstrate that nmMLCK upregulation in association with increased ERK expression may contribute to the pathogenesis of PAHby stimulating cellular proliferation and migration.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Animales , Hipertensión Pulmonar/metabolismo , Remodelación Vascular/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Células Endoteliales/metabolismo , Sistema de Señalización de MAP Quinasas , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Proliferación Celular , Arteria Pulmonar/patología , Hipertensión Arterial Pulmonar/genética , Hipertensión Pulmonar Primaria Familiar/metabolismo , Modelos Animales de Enfermedad
11.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163674

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that shows progressive muscle weakness. A few treatments exist including symptomatic therapies, which can prolong survival or reduce a symptom; however, no fundamental therapies have been found. As a therapeutic strategy, enhancing muscle force is important for patients' quality of life. In this study, we focused on skeletal muscle-specific myosin regulatory light chain kinase (skMLCK), which potentially enhances muscle contraction, as overexpression of skMLCK was thought to improve muscle function. The adeno-associated virus serotype 6 encoding skMLCK (AAV6/skMLCK) and eGFP (control) was produced and injected intramuscularly into the lower limbs of SOD1G37R mice, which are a familial ALS model. AAV6/skMLCK showed the successful expression of skMLCK in the muscle tissues. Although the control did not affect the muscle force in both of the WT and SOD1G37R mice, AAV6/skMLCK enhanced the twitch force of SOD1G37R mice and the tetanic force of WT and SOD1G37R mice. These results indicate that overexpression of skMLCK can enhance the tetanic force of healthy muscle as well as rescue weakened muscle function. In conclusion, the gene transfer of skMLCK has the potential to be a new therapy for ALS as well as for other neuromuscular diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Dependovirus/metabolismo , Técnicas de Transferencia de Gen , Músculo Esquelético/enzimología , Músculo Esquelético/fisiopatología , Quinasa de Cadena Ligera de Miosina/genética , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Inyecciones Intramusculares , Ratones Endogámicos C57BL , Tetania
12.
Korean J Physiol Pharmacol ; 26(6): 479-499, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302623

RESUMEN

The lack of a clonal renin-secreting cell line has greatly hindered the investigation of the regulatory mechanisms of renin secretion at the cellular, biochemical, and molecular levels. In the present study, we investigated whether it was possible to induce phenotypic switching of the renin-expressing clonal cell line As4.1 from constitutive inactive renin secretion to regulated active renin secretion. When grown to postconfluence for at least two days in media containing fetal bovine serum or insulin-like growth factor-1, the formation of cell-cell contacts via N-cadherin triggered downstream cellular signaling cascades and activated smooth muscle-specific genes, culminating in phenotypic switching to a regulated active renin secretion phenotype, including responding to the key stimuli of active renin secretion. With the use of phenotype-switched As4.1 cells, we provide the first evidence that active renin secretion via exocytosis is regulated by phosphorylation/dephosphorylation of the 20 kDa myosin light chain. The molecular mechanism of phenotypic switching in As4.1 cells described here could serve as a working model for full phenotypic modulation of other secretory cell lines with incomplete phenotypes.

13.
J Biol Chem ; 295(14): 4398-4410, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32086378

RESUMEN

Heart muscle contractility and performance are controlled by posttranslational modifications of sarcomeric proteins. Although myosin regulatory light chain (RLC) phosphorylation has been studied extensively in vitro and in vivo, the precise role of cardiac myosin light chain kinase (cMLCK), the primary kinase acting upon RLC, in the regulation of cardiomyocyte contractility remains poorly understood. In this study, using recombinantly expressed and purified proteins, various analytical methods, in vitro and in situ kinase assays, and mechanical measurements in isolated ventricular trabeculae, we demonstrate that human cMLCK is not a dedicated kinase for RLC but can phosphorylate other sarcomeric proteins with well-characterized regulatory functions. We show that cMLCK specifically monophosphorylates Ser23 of human cardiac troponin I (cTnI) in isolation and in the trimeric troponin complex in vitro and in situ in the native environment of the muscle myofilament lattice. Moreover, we observed that human cMLCK phosphorylates rodent cTnI to a much smaller extent in vitro and in situ, suggesting species-specific adaptation of cMLCK. Although cMLCK treatment of ventricular trabeculae exchanged with rat or human troponin increased their cross-bridge kinetics, the increase in sensitivity of myofilaments to calcium was significantly blunted by human TnI, suggesting that human cTnI phosphorylation by cMLCK modifies the functional consequences of RLC phosphorylation. We propose that cMLCK-mediated phosphorylation of TnI is functionally significant and represents a critical signaling pathway that coordinates the regulatory states of thick and thin filaments in both physiological and potentially pathophysiological conditions of the heart.


Asunto(s)
Contracción Miocárdica/fisiología , Miocardio/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Troponina I/metabolismo , Animales , Calcio/metabolismo , Humanos , Masculino , Miofibrillas/metabolismo , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/genética , Péptidos/análisis , Péptidos/química , Fosforilación , Ratas , Ratas Wistar , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal , Troponina I/química , Troponina I/genética
14.
Am J Physiol Regul Integr Comp Physiol ; 320(1): R1-R18, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112654

RESUMEN

Changes in vascular contractility are among the most important physiological effects of acute and chronic fetal hypoxia. Given the essential role of myosin light-chain kinase (MLCK) in smooth muscle contractility and its heterogeneous distribution, this study explores the hypothesis that subcellular changes in MLCK distribution contribute to hypoxic modulation of fetal carotid artery contractility. Relative to common carotid arteries from normoxic term fetal lambs (FN), carotids from fetal lambs gestated at high altitude (3,802 m) (FH) exhibited depressed contractility without changes in MLCK mRNA or protein abundance. Patterns of confocal colocalization of MLCK with α-actin and 20-kDa regulatory myosin light chain (MLC20) enabled calculation of subcellular MLCK fractions: 1) colocalized with the contractile apparatus, 2) colocalized with α-actin distant from the contractile apparatus, and 3) not colocalized with α-actin. Chronic hypoxia did not affect MLCK abundance in the contractile fraction, despite a concurrent decrease in contractility. Organ culture for 72 h under 1% O2 decreased total MLCK abundance in FN and FH carotid arteries, but decreased the contractile MLCK abundance only in FH carotid arteries. Correspondingly, culture under 1% O2 depressed contractility more in FH than FN carotid arteries. In addition, hypoxia appeared to attenuate ubiquitin-independent proteasomal degradation of MLCK, as reported for other proteins. In aggregate, these results demonstrate that the combination of chronic hypoxia followed by hypoxic culture can induce MLCK translocation among at least three subcellular fractions with possible influences on contractility, indicating that changes in MLCK distribution are a significant component of fetal vascular responses to hypoxia.


Asunto(s)
Arterias Carótidas/enzimología , Feto/irrigación sanguínea , Hipoxia/enzimología , Quinasa de Cadena Ligera de Miosina/metabolismo , Vasoconstricción , Altitud , Animales , Arterias Carótidas/fisiopatología , Hipoxia de la Célula , Estabilidad de Enzimas , Femenino , Edad Gestacional , Hipoxia/genética , Hipoxia/fisiopatología , Quinasa de Cadena Ligera de Miosina/genética , Técnicas de Cultivo de Órganos , Embarazo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Proteolisis , Oveja Doméstica , Ubiquitinación
15.
Clin Sci (Lond) ; 135(7): 963-977, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33792658

RESUMEN

RATIONALE: The myosin light chain kinase gene, MYLK, encodes three proteins via unique promoters, including the non-muscle isoform of myosin light chain kinase (nmMLCK), a cytoskeletal protein centrally involved in regulation of vascular integrity. As MYLK coding SNPs are associated with severe inflammatory disorders (asthma, acute respiratory distress syndrome (ARDS)), we explored clinically relevant inflammatory stimuli and promoter SNPs in nmMLCK promoter regulation. METHODS: Full-length or serially deleted MYLK luciferase reporter promoter activities were measured in human lung endothelial cells (ECs). SNP-containing non-muscle MYLK (nmMYLK) DNA fragments were generated and nmMYLK promoter binding by transcription factors (TFs) detected by protein-DNA electrophoretic mobility shift assay (EMSA). Promoter demethylation was evaluated by 5-aza-2'-deoxycytidine (5-Aza). A preclinical mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) was utilized for nmMLCK validation. RESULTS: Lung EC levels of nmMLCK were significantly increased in LPS-challenged mice and LPS, tumor necrosis factor-α (TNF-α), 18% cyclic stretch (CS) and 5-Aza each significantly up-regulated EC nmMYLK promoter activities. EC exposure to FG-4592, a prolyl hydroxylase inhibitor that increases hypoxia-inducible factor (HIF) expression, increased nmMYLK promoter activity, confirmed by HIF1α/HIF2α silencing. nmMYLK promoter deletion studies identified distal inhibitory and proximal enhancing promoter regions as well as mechanical stretch-, LPS- and TNFα-inducible regions. Insertion of ARDS-associated SNPs (rs2700408, rs11714297) significantly increased nmMYLK promoter activity via increased transcription binding (glial cells missing homolog 1 (GCM1) and intestine-specific homeobox (ISX), respectively). Finally, the MYLK rs78755744 SNP (-261G/A), residing within a nmMYLK CpG island, significantly attenuated 5-Aza-induced promoter activity. CONCLUSION: These findings indicate nmMYLK transcriptional regulation by clinically relevant inflammatory factors and ARDS-associated nmMYLK promoter variants are consistent with nmMLCK as a therapeutic target in severe inflammatory disorders.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Epigénesis Genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Animales , Células Cultivadas , Decitabina , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Humanos , Lipopolisacáridos/toxicidad , Lesión Pulmonar/inducido químicamente , Masculino , Ratones Endogámicos C57BL , Quinasa de Cadena Ligera de Miosina/genética , Neumonía , Polimorfismo de Nucleótido Simple , Síndrome de Dificultad Respiratoria/genética , Estrés Mecánico , Factor de Necrosis Tumoral alfa
16.
FASEB J ; 34(9): 12805-12819, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32772419

RESUMEN

Increased endothelial permeability leads to excessive exudation of plasma proteins and leukocytes in the interstitium, which characterizes several vascular diseases including acute lung injury. The myosin light chain kinase long (MYLK-L) isoform is canonically known to regulate the endothelial permeability by phosphorylating myosin light chain (MLC-P). Compared to the short MYLK isoform, MYLK-L contains an additional stretch of ~919 amino acid at the N-terminus of unknown function. We show that thapsigargin and thrombin-induced SOCE was markedly reduced in Mylk-L-/- endothelial cells (EC) or MYLK-L-depleted human EC. These agonists also failed to increase endothelial permeability in MYLK-L-depleted EC and Mylk-L-/- lungs, thus demonstrating the novel role of MYLK-L-induced SOCE in increasing vascular permeability. MYLK-L augmented SOCE by increasing endoplasmic reticulum (ER)-plasma membrane (PM) junctions and STIM1 translocation to these junctions. Transduction of N-MYLK domain (amino acids 1-919 devoid of catalytic activity) into Mylk-L-/- EC rescued SOCE to the level seen in control EC in a STIM1-dependent manner. N-MYLK-induced SOCE augmented endothelial permeability without MLC-P via an actin-binding motif, DVRGLL. Liposomal-mediated delivery of N-MYLK mutant but not ∆DVRGLL-N-MYLK mutant in Mylk-L-/- mice rescued vascular permeability increase in response to endotoxin, indicating that targeting of DVRGLL motif within MYLK-L may limit SOCE-induced vascular hyperpermeability.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Permeabilidad Capilar , Membrana Celular/enzimología , Retículo Endoplásmico/enzimología , Quinasa de Cadena Ligera de Miosina/metabolismo , Lesión Pulmonar Aguda/metabolismo , Animales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Isoenzimas/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1/metabolismo
17.
Ecotoxicol Environ Saf ; 222: 112476, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214772

RESUMEN

The neonicotinoid pesticide, imidacloprid (IMI), is frequently detected in the environment and in foods. It is absorbed and metabolized by the intestine; however, its effects on intestinal barrier integrity are not well studied. We investigated whether IMI disrupts the permeability of the intestinal epithelial barrier via in vivo tests on male Wistar rats, in vitro assays using the human intestinal epithelial cell line, Caco-2, and in silico analyses. A repeated oral dose 90-day toxicity study was performed (0.06 mg/kg body weight/day). IMI exposure significantly increased intestinal permeability, which led to significantly elevated serum levels of endotoxin and inflammatory biomarkers (tumor necrosis factor-alpha and interleukin-1 beta) without any variation in body weight. Decreased transepithelial electrical resistance with increased permeability was also observed in 100 nM and 100 µM IMI-treated Caco-2 cell monolayers. Amounts of tight junction proteins in IMI-treated colon tissues and between IMI-treated Caco-2 cells were significantly lower than those of controls. Increased levels of myosin light chain phosphorylation, myosin light chain kinase (MLCK), and p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB p65) phosphorylation were found in IMI-exposed cells compared with control cells. Furthermore, the barrier loss caused by IMI was rescued by the MLCK inhibitor, ML-7, and cycloheximide. Pregnane X receptor (PXR, NR1I2) was inhibited by low-dose IMI treatment. In silico analysis indicated potent binding sites between PXR and IMI. Together, these data illustrate that IMI induces intestinal epithelial barrier disruption and produces an inflammatory response, involving the down-regulation of tight junctions and disturbance of the PXR-NF-κB p65-MLCK signaling pathway. The intestinal barrier disruption caused by IMI deserves attention in assessing the safety of this neonicotinoid pesticide.


Asunto(s)
Mucosa Intestinal , Uniones Estrechas , Animales , Células CACO-2 , Humanos , Intestinos , Masculino , Neonicotinoides/toxicidad , Nitrocompuestos , Permeabilidad , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa
18.
Pharm Biol ; 59(1): 1452-1463, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34711130

RESUMEN

CONTEXT: Wei Chang An (WCA) is a commercial prescription developed for the coordination of gastrointestinal movement. OBJECTIVE: To investigate the role of WCA in the regulation of diarrhoea and constipation in rats. MATERIAL AND METHODS: The diarrhoea and constipation models were prepared by gavage of Folium senna and diphenoxylate hydrochloride. Rats were randomized equally (n = 6) into the normal group given saline daily, the positive group given Pinaverium Bromide (13.5 mg/kg) or Sennoside A (0.1 mg/kg) and three WCA-treated groups (22, 44, and 88 mg/kg) by gavage daily for 7 consecutive days. The effects of WCA were assessed by a series of faecal symptoms and histopathology. Gastrointestinal parameters were determined by ELISA. The effect of WCA on gastrointestinal tissues was evaluated by strip assay. Expression of ROCK-1 and MLCK was measured by RT-PCR and Western blotting. RESULTS: Data from Bristol stool form scale, diarrhoea index, visceral sensitivity, defaecation time, and intestinal propulsive rate showed that WCA protected rats against diarrhoea and constipation (p < 0.01). The up-regulation of Substance P and 5-hydroxytryptamine in diarrhoea rats and down-regulation of Substance P and vasoactive intestinal polypeptide in constipation rats were inhibited by WCA (p < 0.05). WCA stimulated the gastrointestinal strip contractions but inhibited ACh-induced contractions (p < 0.01). The decreased ROCK-1 and MLCK expression in diarrhoea rats and increased in constipation rats were suppressed by WCA (p < 0.01). CONCLUSIONS: WCA has both antidiarrhea and anti-constipation effects, suggesting its bidirectional role in gastrointestinal modulation, and providing evidence of WCA for irritable bowel syndrome treatment.


Asunto(s)
Estreñimiento/tratamiento farmacológico , Diarrea/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Animales , Estreñimiento/fisiopatología , Diarrea/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/fisiopatología , Masculino , Quinasa de Cadena Ligera de Miosina/genética , Ratas , Ratas Wistar , Quinasas Asociadas a rho/genética
19.
Biochem Biophys Res Commun ; 524(4): 853-860, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32046856

RESUMEN

Telmisartan, an angiotensin II type 1 receptor blocker (ARB), is widely used to treat hypertension. Dysfunction of vascular smooth muscle cells (VSMCs) is well-established to contribute to the pathogenesis of various vascular diseases. A growing body of evidence indicates that increased VSMC contractility plays a primary role in the development of pathological artery spasms. Nevertheless, effect of telmisartan on VSMC contractility, and its mechanism of action remain unknown. Here, we investigated the mechanism by which telmisartan inhibits VSMC contractility and vessel contraction in rat VSMCs and endothelium-deprived aortas. Telmisartan inhibited phenylephrine-induced vessel contraction in endothelium-deprived aortas, and decreased myosin light chain kinase (MLCK) levels (without altering corresponding mRNA levels) and myosin light chain (MLC) phosphorylation at Ser19 (p-MLC-Ser19) in VSMCs. MG-132 but not doxycycline significantly restored telmisartan-inhibited MLCK expression and p-MLC-Ser19. Telmisartan induced AMP-activated protein kinase (AMPK) phosphorylation at Thr172 (p-AMPK-Thr172), and compound C or ectopic expression of the dominant negative (dn)-AMPKα1 gene significantly reversed telmisartan-inhibited MLCK expression and p-MLC-Ser19. Of the ARBs tested (including losartan and fimasartan), only telmisartan increased p-AMPK-Thr172, and inhibited MLCK expression and p-MLC-Ser19. GW9662 had no effects on telmisartan-induced changes. Similar to the in vitro results, telmisartan enhanced p-AMPK-Thr172, and inhibited MLCK expression and p-MLC-Ser19 in endothelium-deprived aortas. Furthermore, the telmisartan-inhibited vessel contraction in the aortas was significantly reversed by MG-132 or compound C. In conclusion, we demonstrated that telmisartan inhibits VSMC contractility and vessel contraction by activating AMPK/proteasome/MLCK degradation signaling axis. These results suggest that telmisartan can be used to treat pathological vasospasms.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Antihipertensivos/farmacología , Contracción Muscular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Quinasa de Cadena Ligera de Miosina/genética , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Telmisartán/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Aorta/citología , Aorta/efectos de los fármacos , Aorta/metabolismo , Doxiciclina/farmacología , Regulación de la Expresión Génica , Leupeptinas/farmacología , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Fenilefrina/antagonistas & inhibidores , Fenilefrina/farmacología , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Vasoconstrictores/antagonistas & inhibidores , Vasoconstrictores/farmacología
20.
Mol Hum Reprod ; 26(4): 228-239, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32119740

RESUMEN

Zinc dynamics are essential for oocyte meiotic maturation, egg activation, and preimplantation embryo development. During fertilisation and egg activation, the egg releases billions of zinc atoms (Zn2+) in an exocytotic event termed the 'zinc spark'. We hypothesised that this zinc transport and exocytosis is dependent upon the intracellular trafficking of cortical granules (CG) which requires myosin-actin-dependent motors. Treatment of mature mouse and human eggs with ML-7, a myosin light chain kinase inhibitor (MLCK), resulted in an 80% reduction in zinc spark intensity compared to untreated controls when activated with ionomycin. Moreover, CG migration towards the plasma membrane was significantly decreased in ML-7-treated eggs compared with controls when activated parthenogenetically with ionomycin. In sperm-induced fertilisation via intracytoplasmic sperm injection (ICSI), ML-7-treated mouse eggs exhibited decreased labile zinc intensity and cortical CG staining. Collectively, these data demonstrate that ML-7 treatment impairs zinc release from both murine and human eggs after activation, demonstrating that zinc exocytosis requires myosin light chain kinase activity. Further, these results provide additional support that zinc is likely stored and released from CGs. These data underscore the importance of intracellular zinc trafficking as a crucial component of egg maturation necessary for egg activation and early embryo development.


Asunto(s)
Exocitosis , Quinasa de Cadena Ligera de Miosina/metabolismo , Óvulo/metabolismo , Adulto , Animales , Azepinas , Femenino , Humanos , Técnicas In Vitro , Masculino , Ratones , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Naftalenos , Oogénesis , Óvulo/citología , Inyecciones de Esperma Intracitoplasmáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA