Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Physiol Mol Biol Plants ; 30(7): 1129-1144, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39100881

RESUMEN

The plant R genes encode the NLR proteins comprising nucleotide-binding sites (NBS) and variable-length C-terminal leucine-rich repeat domains. The proteins act as intracellular immune receptors and recognize effector proteins of phytopathogens, which convene virulence. Among stresses, diseases contribute majorly to yield loss in crop plants, and R genes confer disease resistance against phytopathogens. We investigated the NLRome of Chenopodium quinoa for intraspecific diversity, characterization, and contribution to immune response regulation against phytopathogens. One eighty-three NBS proteins were identified and grouped into four distinct classes. Exon-intron organization displayed discrimination in gene structure patterns among NLR proteins. Thirty-eight NBS proteins revealed ontology with defense response, ADP binding, and inter alia cellular components. These proteins had shown functional homology with disease-resistance proteins involved in the plant-pathogen interaction pathway. Likewise, expression analysis demonstrated that NLRs encoding genes showed differential expression patterns. However, most genes displayed high expression levels in plant defense response with varying magnitude compared to ADP binding and cellular components. Twenty-four NBS genes were selected based on Heatmap analysis for quantitative polymerase chain reaction under Cercospora disease stress, and their progressive expression pattern provides insights into their functional role under stress conditions. The protein-protein interaction analysis revealed functional enrichment of NLR proteins in regulating hypersensitive, immune, and stress responses. This study, the first to identify and characterize NBS genes in C. quinoa, reveals their contribution to disease response and divulges their dynamic involvement in inducing plant immunity against phytopathogens. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01475-0.

2.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768136

RESUMEN

Pinus massoniana Lamb. is a crucial timber and resin conifer in China, but its plantation industry is threatened by outbreaks of pine wilt disease (PWD) caused by Bursaphelenchus xylophilus (pinewood nematode; PWN). However, as of yet, there is no comprehensive analysis of NBS-LRR genes in P. massoniana involved in its defense against PWN. In this study, 507 NBS genes were identified in the transcriptome of resistant and susceptible P. masoniana inoculated with the PWN. The phylogenetic analysis and expression profiles of resistant and susceptible P. massoniana revealed that the up-regulated PmNBS-LRR97 gene was involved in conferring resistance to PWN. The results of real-time quantitative PCR (qRT-PCR) showed that PmNBS-LRR97 was significantly up-regulated after PWN infection, especially in the stems. Subcellular localization indicated that PmNBS-LRR97 located to the cell membrane. PmNBS-LRR97 significantly activated the expression of reactive oxygen species (ROS)-related genes in P. massoniana. In addition, the overexpression of PmNBS-LRR97 was capable of promoting the production of ROS, aiding in plant growth and development. In summary, PmNBS-LRR97 participates in the defense response to PWN and plays an active role in conferring resistance in P. massoniana. This finding provides new insight into the regulatory mechanism of the R gene in P. massoniana.


Asunto(s)
Pinus , Tylenchida , Animales , Especies Reactivas de Oxígeno , Xylophilus , Pinus/genética , Filogenia , Transcriptoma , Enfermedades de las Plantas/genética , Tylenchida/genética
3.
Proc Natl Acad Sci U S A ; 116(37): 18479-18487, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451649

RESUMEN

Tetep is a rice cultivar known for broad-spectrum resistance to blast, a devastating fungal disease. The molecular basis for its broad-spectrum resistance is still poorly understood. Is it because Tetep has many more NLR genes than other cultivars? Or does Tetep possess multiple major NLR genes that can individually confer broad-spectrum resistance to blast? Moreover, are there many interacting NLR pairs in the Tetep genome? We sequenced its genome, obtained a high-quality assembly, and annotated 455 nucleotide-binding site leucine-rich repeat (NLR) genes. We cloned and tested 219 NLR genes as transgenes in 2 susceptible cultivars using 5 to 12 diversified pathogen strains; in many cases, fewer than 12 strains were successfully cultured for testing. Ninety cloned NLRs showed resistance to 1 or more pathogen strains and each strain was recognized by multiple NLRs. However, few NLRs showed resistance to >6 strains, so multiple NLRs are apparently required for Tetep's broad-spectrum resistance to blast. This was further supported by the pedigree analyses, which suggested a correlation between resistance and the number of Tetep-derived NLRs. In developing a method to identify NLR pairs each of which functions as a unit, we found that >20% of the NLRs in the Tetep and 3 other rice genomes are paired. Finally, we designed an extensive set of molecular markers for rapidly introducing clustered and paired NLRs in the Tetep genome for breeding new resistant cultivars. This study increased our understanding of the genetic basis of broad-spectrum blast resistance in rice.


Asunto(s)
Resistencia a la Enfermedad/genética , Magnaporthe/inmunología , Proteínas NLR/genética , Oryza/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Sistemas CRISPR-Cas/genética , Mapeo Cromosómico , Clonación Molecular , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes/inmunología , Genoma de Planta/genética , Proteínas NLR/inmunología , Oryza/inmunología , Oryza/microbiología , Filogenia , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/inmunología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/microbiología , Análisis de Secuencia de ADN
4.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35955640

RESUMEN

The mimosoid legumes are a clade of ~40 genera in the Caesalpinioideae subfamily of the Fabaceae that grow in tropical and subtropical regions. Unlike the better studied Papilionoideae, there are few genomic resources within this legume group. The tree Prosopis cineraria is native to the Near East and Indian subcontinent, where it thrives in very hot desert environments. To develop a tool to better understand desert plant adaptation mechanisms, we sequenced the P. cineraria genome to near-chromosomal assembly, with a total sequence length of ~691 Mb. We predicted 77,579 gene models (76,554 CDS, 361 rRNAs and 664 tRNAs) from the assembled genome, among them 55,325 (~72%) protein-coding genes that were functionally annotated. This genome was found to consist of over 58% repeat sequences, primarily long terminal repeats (LTR-)-retrotransposons. We find an expansion of terpenoid metabolism genes in P. cineraria and its relative Prosopis alba, but not in other legumes. We also observed an amplification of NBS-LRR disease-resistance genes correlated with LTR-associated retrotransposition, and identified 410 retrogenes with an active burst of chimeric retrogene creation that approximately occurred at the same time of divergence of P. cineraria from a common lineage with P. alba~23 Mya. These retrogenes include many biotic defense responses and abiotic stress stimulus responses, as well as the early Nodulin 93 gene. Nodulin 93 gene amplification is consistent with an adaptive response of the species to the low nitrogen in arid desert soil. Consistent with these results, our differentially expressed genes show a tissue specific expression of isoprenoid pathways in shoots, but not in roots, as well as important genes involved in abiotic salt stress in both tissues. Overall, the genome sequence of P. cineraria enriches our understanding of the genomic mechanisms of its disease resistance and abiotic stress tolerance. Thus, it is a very important step in crop and legume improvement.


Asunto(s)
Fabaceae , Prosopis , Resistencia a la Enfermedad/genética , Fabaceae/genética , Genes de Plantas , Genoma de Planta , Prosopis/genética , Árboles/genética
5.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35683002

RESUMEN

Glomerella leaf spot (GLS), caused by the fungus Colletotrichum fructicola, is one of the most devastating apple diseases. Our previous study reported that the GLS resistance locus was defined on the chromosome 15 region. Here, we further found a single-nucleotide polymorphism (SNP) site (SNP7309212) in the GLS resistance that was able to distinguish resistant cultivars (lines) from susceptible ones. On the basis of the SNP site, we cloned a TNL gene from the GLS resistant locus and named it MdTNL1 (NCBI Accession Number: ON402514). This gene contains a toll/interleukin-1 receptor transmembrane domain (TIR), nucleotide-binding sites (NBS), and leucine-rich repeat (LRR) domain. Subcellular location indicated that MdTNL1 was expressed in the nucleus and cell membrane. Ectopic overexpression of MdTNL1 in Nicotiana benthamiana caused cell death. We further demonstrated allelic polymorphisms in MdTNL1. It is noteworthy that NBS and LRR domains of the MdTNL1 protein serve as the repository for generating allelic diversity. Quantitative real-time PCR (qRT-PCR) assay revealed that MdTNL1 was highly expressed in resistant apple cultivar 'Fuji' after inoculation with C. fructicola, whereas susceptible cultivar 'Golden Delicious' exhibited low expression after inoculation. Over-expression of MdTNL1-1 in susceptible apple fruits and leaves improved disease resistance, while in 'Orin' calli, silencing the MdTNL1-1 gene conversely decreased GLS resistance. In conclusion, we identified a GLS associated with SNP7309212 and demonstrated that a TIR-NBS-LRR gene MdTNL1-1 positively regulates GLS resistance in apple.


Asunto(s)
Malus , Sitios de Unión , Resistencia a la Enfermedad/genética , Malus/metabolismo , Phyllachorales/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple
6.
Biochem Biophys Res Commun ; 478(4): 1569-74, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27586278

RESUMEN

Plant NB-LRR genes mediate plant innate immunity and cause the programmed cell death of plant cells. Very little, however, is known about these processes. Taken advantage of easy manipulation of bacteria, genetic analysis was made to understand the mechanism of lethality of NB-LRR proteins to bacteria and correlate the information back to how NB-LRR proteins cause cell death in plants. It was found that only L3 encoded by NB-LRR gene L3 (At1g15890) specifically caused significant death of BL21(DE3), while other NBS-LRR proteins did not, and 760-851, the truncated form of L3, was essential to the lethality of L3. Gene yedZ (EG14048) and nupG (EG10664) were identified by genome re-sequencing from E. coli, both of which mediate the toxicity of L3 in E. coli. Furthermore, NupG can affect the activity of peroxidase and significantly suppress plant cell death, which is induced by NB-LRR protein RPM1(D505V) encoded by RPM1 (At3g07040) in N. benthamiana. These findings provide evidence that functional analysis of plant NB-LRR genes in microorganisms might be a potential and rapid method.


Asunto(s)
Proteínas de Arabidopsis/genética , Escherichia coli/metabolismo , Genes de Plantas , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Proteínas de Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Repetidas Ricas en Leucina , Proteínas de Transporte de Membrana/metabolismo , Viabilidad Microbiana , Mutación , Proteínas/metabolismo , Nicotiana/genética
7.
Gene ; 854: 147117, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36526123

RESUMEN

BACKGROUND: The NBS-LRR (nucleotide-binding site-leucine-rich repeat gene) gene family, known as the plant R (resistance) gene family with the most members, plays a significant role in plant resistance to various external adversity stresses. The NBS-LRR gene family has been researched in many plant species. Citrus is one of the most vital global cash crops, the number one fruit group, and the third most traded agricultural product world wild. However, as one of the largest citrus species, a comprehensive study of the NBS-LRR gene family has not been reported on sweet oranges. METHODS: In this study, NBS-LRR genes were identified from the Citrus sinensis genome (v3.0), with a comprehensive analysis of this gene family performed, including phylogenetic analysis, gene structure, cis-acting element of a promoter, and chromosomal localization, among others. The expression pattern of NBS-LRR genes was analyzed when sweet orange fruits were infected by Penicillium digitatum, employing experimental data from our research group. It first reported the expression patterns of NBS-LRR genes under abiotic stresses, using three transcript data from NCBI (National Center for Biotechnology Information). RESULTS: In this study, 111 NBS-LRR genes were identified in the C. sinensis genome (v3.0) and classified into seven subfamilies according to their N-terminal and C-terminal domains. The phylogenetic tree results indicate that genes containing only the NBS structural domain are more ancient in the sweet orange NBS-LRR gene family. The chromosome localization results showed that 111 NBS-LRR genes were distributed unevenly on nine chromosomes, with the most genes distributed on chromosome 1. In addition, we identified a total of 18 tandem duplication gene pairs in the sweet orange NBS-LRR gene family, and based on the Ka/Ks ratio, all of the tandem duplication genes underwent purifying selection. Transcriptome data analysis showed a significant number of NBS-LRR genes expressed under biotic and abiotic stresses, and some reached significantly different levels of expression. It indicates that the NBS-LRR gene family is vital in resistance to biotic and abiotic stresses in sweet oranges. CONCLUSION: Our study provides the first comprehensive framework on the NBS-LRR family of genes, which provides a basis for further in-depth studies on the biological functions of NBS-LRR in growth, development, and response to abiotic stresses in sweet orange.


Asunto(s)
Citrus sinensis , Citrus , Proteínas de Plantas/metabolismo , Citrus sinensis/genética , Filogenia , Familia de Multigenes , Genes de Plantas , Citrus/genética , Genoma de Planta
8.
DNA Res ; 29(4)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35751614

RESUMEN

Nymphoides indica, an aquatic plant, is an invasive species that causes both ecological and economic damage in North America and elsewhere. However, the lack of genomic data of N. indica limits the in-depth analysis of this invasive species. Here, we report a chromosome-level genome assembly of nine pseudochromosomes of N. indica with a total size of ∼ 520 Mb. More than half of the N. indica genome consists of transposable elements (TEs), and a higher density of TEs around genes may play a significant role in response to an ever-changing environment by regulating the nearby gene. Additionally, our analysis revealed that N. indica only experienced a gamma (γ) whole-genome triplication event. Functional enrichment of the N. indica-specific and expanded gene families highlighted genes involved in the responses to hypoxia and plant-pathogen interactions, which may strengthen the ability to adapt to external challenges and improve ecological fitness. Furthermore, we identified 160 members of the nucleotide-binding site and leucine-rich repeat gene family, which may be linked to the defence response. Collectively, the high-quality N. indica genome reported here opens a novel avenue to understand the evolution and rapid invasion of Nymphoides spp.


Asunto(s)
Cromosomas , Elementos Transponibles de ADN , Sitios de Unión , Genoma de Planta , Filogenia , Dominios Proteicos
9.
Front Genet ; 12: 771814, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858486

RESUMEN

Secale cereale is an important crop in the Triticeae tribe of the Poaceae family, and it has unique agronomic characteristics and genome properties. It possesses resistance to many diseases and serves as an important resource for the breeding of other Triticeae crops. We performed a genome-wide study on S. cereale to identify the largest group of plant disease resistance genes (R genes), the nucleotide-binding site-leucine-rich repeat receptor (NBS-LRR) genes. In its genome, 582 NBS-LRR genes were identified, including one from the RNL subclass and 581 from the CNL subclass. The NBS-LRR gene number in the S. cereale genome is greater than that in barley and the diploid wheat genomes. S. cereale chromosome 4 contains the largest number of NBS-LRR genes among the seven chromosomes, which is different from the pattern in barley and the genomes B and D of wheat but similar to that in the genome A of wheat. Further synteny analysis suggests that more NBS-LRR genes on chromosome 4 have been inherited from a common ancestor by S. cereale and the wheat genome A than the wheat genomes B and D. Phylogenetic analysis revealed that at least 740 NBS-LRR lineages are present in the common ancestor of S. cereale, Hordeum vulgare and Triticum urartu. However, most of them have only been inherited by one or two species, with only 65 of them preserved in all three species. The S. cereale genome inherited 382 of these ancestral NBS-LRR lineages, but 120 of them have been lost in both H. vulgare and T. urartu. This study provides the full NBS-LRR profile of the S. cereale genome, which is a resource for S. cereale breeding and indicates that S. cereale can be an important material for the molecular breeding of other Triticeae crops.

10.
Mol Plant Pathol ; 20(6): 857-876, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30957942

RESUMEN

Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.


Asunto(s)
Gossypium/metabolismo , Gossypium/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Verticillium/patogenicidad , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Resistencia a la Enfermedad/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Estudio de Asociación del Genoma Completo , Gossypium/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética
11.
Plant Biol (Stuttg) ; 20(4): 737-750, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29603544

RESUMEN

Aflatoxin contamination in peanut is a serious food safety issue to human health around the world. Finding disease resistance genes is a key strategy for genetic improvement in breeding to deal with this issue. We identified an Aspergillus flavus-induced NBS-LRR gene, AhRAF4, using a microarray-based approach. By comparison of 23 sequences from three species using phytogenetics, protein secondary structure and three-dimensional structural analyses, AhRAF4 was revealed to be derived from Arachis duranensis by recombination, and has newly evolved into a family of several members, characterised by duplications and point mutations. However, the members of the family descended from A. ipaensis were lost following tetraploidisation. AhRAF4 was slightly up-regulated by low temperature, drought, salicylic acid and ethylene, but down-regulated by methyl jasmonate. The distinct responses upon As. flavus inoculation and the differential reactions between resistant and susceptible varieties indicate that AhRAF4 might play a role in defence responses. Temporal and spatial expression and the phenotype of transformed protoplasts suggest that AhRAF4 may also be associated with pericarp development. Because tetraploid cultivated peanuts are vulnerable to many pathogens, an exploration of R-genes may provide an effective method for genetic improvement of peanut cultivars.


Asunto(s)
Arachis/genética , Arachis/microbiología , Aspergillus flavus/patogenicidad , Proteínas de Plantas/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Estrés Fisiológico/genética
12.
J Plant Physiol ; 195: 80-94, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27016883

RESUMEN

Polyploidy has been widely described in many Agave L. species, but its influence on environmental response to stress is still unknown. With the objective of knowing the morphological adaptations and regulation responses of genes related to biotic (LEA) and abiotic (NBS-LRR) stress in species of Agave with different levels of ploidy, and how these factors contribute to major response of Agave against environmental stresses, we analyzed 16 morphological trials on five accessions of three species (Agave tequilana Weber, Agave angustifolia Haw. and Agave fourcroydes Lem.) with different ploidy levels (2n=2x=60 2n=3x=90, 2n=5x=150, 2n=6x=180) and evaluated the expression of NBS-LRR and LEA genes regulated by biotic and abiotic stress. It was possible to associate some morphological traits (spines, nuclei, and stomata) to ploidy level. The genetic characterization of stress-related genes NBS-LRR induced by pathogenic infection and LEA by heat or saline stresses indicated that amino acid sequence analysis in these genes showed more substitutions in higher ploidy level accessions of A. fourcroydes Lem. 'Sac Ki' (2n=5x=150) and A. angustifolia Haw. 'Chelem Ki' (2n=6x=180), and a higher LEA and NBS-LRR representativeness when compared to their diploid and triploid counterparts. In all studied Agave accessions expression of LEA and NBS-LRR genes was induced by saline or heat stresses or by infection with Erwinia carotovora, respectively. The transcriptional activation was also higher in A. angustifolia Haw. 'Chelem Ki' (2n=6x=180) and A. fourcroydes 'Sac Ki' (2n=5x=150) than in their diploid and triploid counterparts, which suggests higher adaptation to stress. Finally, the diploid accession A. tequilana Weber 'Azul' showed a differentiated genetic profile relative to other Agave accessions. The differences include similar or higher genetic representativeness and transcript accumulation of LEA and NBS-LRR genes than in polyploid (2n=5x=150 and 2n=6x=180) Agave accessions, thus suggesting a differentiated selection pressure for overcoming the lower ploidy level of the diploid A. tequilana Weber 'Azul'.


Asunto(s)
Aclimatación , Agave/fisiología , Dosificación de Gen/genética , Genoma de Planta/genética , Agave/genética , Agave/ultraestructura , Diploidia , Ambiente , Fenotipo , Filogenia , Proteínas de Plantas/genética , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Estomas de Plantas/ultraestructura , Ploidias , Poliploidía , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA