Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34100064

RESUMEN

The most distal portion of the ventricular conduction system (VCS) contains cardiac Purkinje cells (PCs), which are essential for synchronous activation of the ventricular myocardium. Contactin-2 (CNTN2), a member of the immunoglobulin superfamily of cell adhesion molecules (IgSF-CAMs), was previously identified as a marker of the VCS. Through differential transcriptional profiling, we discovered two additional highly enriched IgSF-CAMs in the VCS: NCAM-1 and ALCAM. Immunofluorescence staining showed dynamic expression patterns for each IgSF-CAM during embryonic and early postnatal stages, but ultimately all three proteins became highly enriched in mature PCs. Mice deficient in NCAM-1, but not CNTN2 or ALCAM, exhibited defects in PC gene expression and VCS patterning, as well as cardiac conduction disease. Moreover, using ST8sia2 and ST8sia4 knockout mice, we show that inhibition of post-translational modification of NCAM-1 by polysialic acid leads to disrupted trafficking of sarcolemmal intercalated disc proteins to junctional membranes and abnormal expansion of the extracellular space between apposing PCs. Taken together, our data provide insights into the complex developmental biology of the ventricular conduction system.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/fisiología , Molécula de Adhesión Celular del Leucocito Activado , Animales , Moléculas de Adhesión Celular/metabolismo , Contactina 2/metabolismo , Expresión Génica , Corazón , Sistema de Conducción Cardíaco/metabolismo , Ratones , Ratones Noqueados , Ácidos Siálicos , Sialiltransferasas
2.
Pediatr Dev Pathol ; 27(5): 387-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576387

RESUMEN

Recent progress in glomerular immune complex and complement-mediated diseases have refined diagnostic categories and informed mechanistic understanding of disease development in pediatric patients. Herein, we discuss selected advances in 3 categories. First, membranous nephropathy antigens are increasingly utilized to characterize disease in pediatric patients and include phospholipase A2 receptor (PLA2R), Semaphorin 3B (Sema3B), neural epidermal growth factor-like 1 (NELL1), and protocadherin FAT1, as well as the lupus membranous-associated antigens exostosin 1/2 (EXT1/2), neural cell adhesion molecule 1 (NCAM1), and transforming growth factor beta receptor 3 (TGFBR3). Second, we examine advances in techniques for paraffin and light chain immunofluorescence (IF), including the former's function as a salvage technique and their necessity for diagnosis in adolescent cases of membranous-like glomerulopathy with masked IgG kappa deposits (MGMID) and proliferative glomerulonephritis with monotypic Ig deposits (PGNMID), respectively. Finally, progress in understanding the roles of complement in pediatric glomerular disease is reviewed, with specific attention to overlapping clinical, histologic, and genetic or functional alternative complement pathway (AP) abnormalities among C3 glomerulopathy (C3G), infection-related and post-infectious GN, "atypical" post-infectious GN, immune complex mediated membranoproliferative glomerulonephritis (IC-MPGN), and atypical hemolytic uremic syndrome (aHUS).


Asunto(s)
Glomerulonefritis , Humanos , Niño , Glomerulonefritis/diagnóstico , Glomerulonefritis/patología , Glomerulonefritis/inmunología , Glomerulonefritis/metabolismo , Glomerulonefritis Membranosa/diagnóstico , Glomerulonefritis Membranosa/inmunología , Glomerulonefritis Membranosa/patología , Glomérulos Renales/patología , Glomérulos Renales/metabolismo
3.
Environ Toxicol ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581187

RESUMEN

INTRODUCTION: Bladder cancer (BLCA) is a prevalent and deadly form of urinary cancer, and there is a need for effective therapies, particularly for muscle-invasive bladder cancer (MIBC). Cell cycle inhibitors show promise in restoring control of the cell cycle in BLCA cells, but their clinical prognosis evaluation is limited. METHODS: Transcriptome and scRNA-seq data were collected from the Cancer Genome Atlas Program (TCGA)-BLCA and GSE190888 cohort, respectively. R software and the Seurat package were used for data analysis, including cell quality control, dimensionality reduction, and identification of differentially expressed genes. Genes related to the cell cycle were obtained from the genecards website, and a protein-protein interaction network analysis was performed using cytoscape software. Functional enrichment analysis, immune infiltration analysis, drug sensitivity analysis, and molecular docking were conducted using various tools and packages. BLCA cell lines were cultured and transfected for in vitro experimental assays, including RT-qPCR analysis, and CCK-8 cell viability assays. RESULTS: We identified 32 genes as independent risk or protective factors for BLCA prediction. Functional enrichment analysis revealed their involvement in cell cycle regulation, apoptosis, and various signaling pathways. Using these genes, we developed a nomogram for predicting BLCA survival, which displayed high prognosis stratification efficacy in BLCA patients. Four cell cycle associated key genes identified, including NCAM1, HBB, CKD6, and CTLA4. We also identified the main cell types in BLCA patients and investigated the functional differences between epithelial cells based on their expression levels of key genes. Furthermore, we observed a high positive correlative relationship between the infiltration of cancer-associated fibroblasts and the risk score value. Finally, we conducted in vitro experiments to demonstrate the suppressive role of NCAM1 in BLCA cell proliferation. CONCLUSION: These findings suggest that cell cycle associated genes could serve as potential biomarkers for predicting BLCA prognosis and may represent therapeutic targets for the development of more effective therapies. Hopefully, these findings provide valuable insights into the molecular mechanisms and potential therapeutic targets in BLCA from the perspective of cell cycle. Moreover, NCAM1 was a novel cell proliferation suppressor in the BLCA carcinogenesis.

4.
Cancer Sci ; 114(6): 2650-2663, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36846943

RESUMEN

Resistance to chemotherapeutic drugs limits the efficacy of chemotherapy in non-small cell lung cancer (NSCLC). Autophagy is an essential mechanism which involves in drug resistance. Our previous research has revealed that miR-152-3p represses NSCLC progression. However, the mechanism of miR-152-3p in autophagy-mediated chemoresistance in NSCLC remains unclear. Cisplatin-resistant cell lines (A549/DDP and H446/DDP) were transfected with related vectors and subjected to cisplatin, autophagy inhibitor, activator, or extracellular signal-regulated kinase (ERK) activator. Flow cytometry, CCK8 and colony formation assays were performed for testing apoptosis and cell viability. The related RNAs or proteins were detected by qRT-PCR or Western blot. Chromatin immunoprecipitation, luciferase reporter assay or RNA immunoprecipitation were used for validating the interaction between miR-152-3p and ELF1 or NCAM1. Co-IP verified the binding between NCAM1 and ERK. The role of miR-152-3p in cisplatin resistance of NSCLC was also validated in vivo. The results showed that miR-152-3p and ELF1 were decreased in NSCLC tissues. miR-152-3p reversed cisplatin resistance by inhibiting autophagy through NCAM1. NCAM1 promoted autophagy through the ERK pathway and facilitated cisplatin resistance. ELF1 positively regulated miR-152-3p level by directly interacting with miR-152-3p promoter. miR-152-3p targeted NCAM1 to regulate NCAM1 level and then affected the binding of NCAM1 to ERK1/2. ELF1 inhibited autophagy and reversed cisplatin resistance through miR-152-3p/NCAM1. miR-152-3p inhibited autophagy and cisplatin resistance of xenograft tumor in mice. In conclusion, our study revealed that ELF1 inhibited autophagy to attenuate cisplatin resistance through the miR-152-3p/NCAM1/ERK pathway in H446/DDP and A549/DDP cells, suggesting a potential novel treatment strategy for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Animales , Humanos , Ratones , Autofagia/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Antígeno CD56 , Línea Celular Tumoral , Proliferación Celular/genética , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Quinasas MAP Reguladas por Señal Extracelular , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Nucleares , Factores de Transcripción/genética
5.
Am J Obstet Gynecol ; 229(2): 166.e1-166.e16, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36649818

RESUMEN

BACKGROUND: Perinatal mood and anxiety disorders encompass a range of mental health disorders that occur during pregnancy and up to 1 year postpartum, affecting approximately 20% of women. Traditional risk factors, such as a history of depression and pregnancy complications including preeclampsia, are known. Their predictive utility, however, is not specific or sensitive enough to inform clinical decision-making or prevention strategies for perinatal mood and anxiety disorders. Better diagnostic and prognostic models are needed for early identification and referral to treatment. OBJECTIVE: This study aimed to determine if a panel of novel third-trimester plasma protein biomarkers in pregnant women can be used to identify those who have a high predisposed risk for perinatal mood and anxiety disorders within 3 months postpartum. STUDY DESIGN: We studied 52 women (n=34 with a risk for perinatal mood and anxiety disorders and n=18 controls) among whom mental health screening was conducted at 2 time points, namely in the third trimester and again at 3 months postdelivery. An elevated perinatal mood and anxiety disorder risk was identified by screening individuals with above-validated cutoffs for depression (Edinburgh Postnatal Depression Scale ≥12), anxiety (Overall Anxiety Severity and Impairment Scale ≥7), and/or posttraumatic stress disorder (Impact of Events Scale >26) at both time points. Plasma samples collected in the third trimester were screened using the aptamer-based SomaLogic SomaScan proteomic assay technology to evaluate perinatal mood and anxiety disorder-associated changes in the expression of 1305 protein analytes. Ingenuity Pathway Analysis was conducted to highlight pathophysiological relationships between perinatal mood and anxiety disorder-specific proteins found to be significantly up- or down-regulated in all subjects with perinatal mood and anxiety disorder and in those with perinatal mood and anxiety disorders and no preeclampsia. RESULTS: From a panel of 53 significant perinatal mood and anxiety disorder-associated proteins, a unique 20-protein signature differentiated perinatal mood and anxiety disorder cases from controls in a principal component analysis (P<.05). This protein signature included NCAM1, NRCAM, and NTRK3 that converge around neuronal signaling pathways regulating axonal guidance, astrocyte differentiation, and maintenance of GABAergic neurons. Interestingly, when we restricted the analysis to subjects without preeclampsia, a 30-protein signature differentiated perinatal mood and anxiety disorder cases from all controls without overlap on the principal component analysis (P<.001). In the nonpreeclamptic perinatal mood and anxiety disorder group, we observed increased expression of proteins, such as CXCL11, CXCL6, MIC-B, and B2MG, which regulate leucocyte migration, inflammation, and immune function. CONCLUSION: Participants with perinatal mood and anxiety disorders had a unique and distinct plasma protein signature that regulated a variety of neuronal signaling and proinflammatory pathways. Additional validation studies with larger sample sizes are needed to determine whether some of these molecules can be used in conjunction with traditional risk factors for the early detection of perinatal mood and anxiety disorders.


Asunto(s)
Depresión Posparto , Complicaciones del Embarazo , Femenino , Embarazo , Humanos , Trastornos de Ansiedad/diagnóstico , Trastornos de Ansiedad/psicología , Depresión/diagnóstico , Proteómica , Ansiedad/complicaciones , Complicaciones del Embarazo/psicología , Biomarcadores , Depresión Posparto/diagnóstico
6.
J Biol Chem ; 296: 100372, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33548223

RESUMEN

Neural cell adhesion molecules 1 (NCAM1) and 2 (NCAM2) belong to the cell adhesion molecules of the immunoglobulin superfamily and have been shown to regulate formation, maturation, and maintenance of synapses. NCAM1 and NCAM2 undergo proteolysis, but the identity of all the proteases involved and how proteolysis is used to regulate their functions are not known. We report here that NCAM1 and NCAM2 are BACE1 substrates in vivo. NCAM1 and NCAM2 overexpressed in HEK cells were both cleaved by metalloproteinases or BACE1, and NCAM2 was also processed by γ-secretase. We identified the BACE1 cleavage site of NCAM1 (at Glu 671) and NCAM2 (at Glu 663) using mass spectrometry and site-directed mutagenesis. Next, we assessed BACE1-mediated processing of NCAM1 and NCAM2 in the mouse brain during aging. NCAM1 and NCAM2 were cleaved in the olfactory bulb of BACE1+/+ but not BACE1-/- mice at postnatal day 10 (P10), 4 and 12 months of age. In the hippocampus, a BACE1-specific soluble fragment of NCAM1 (sNCAM1ß) was only detected at P10. However, we observed an accumulation of full-length NCAM1 in hippocampal synaptosomes in 4-month-old BACE1-/- mice. We also found that polysialylated NCAM1 (PSA-NCAM1) levels were increased in BACE1-/- mice at P10 and demonstrated that BACE1 cleaves both NCAM1 and PSA-NCAM1 in vitro. In contrast, we did not find evidence for BACE1-dependent NCAM2 processing in the hippocampus at any age analyzed. In summary, our data demonstrate that BACE1 differentially processes NCAM1 and NCAM2 depending on the region of brain, subcellular localization, and age in vivo.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Antígeno CD56/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Secretasas de la Proteína Precursora del Amiloide/fisiología , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/fisiología , Encéfalo/metabolismo , Antígeno CD56/fisiología , Moléculas de Adhesión Celular/metabolismo , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Moléculas de Adhesión de Célula Nerviosa/fisiología , Neuronas/metabolismo , Ácidos Siálicos/metabolismo , Análisis Espacio-Temporal , Sinapsis/metabolismo
7.
Eur J Neurol ; 29(4): 1155-1164, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34913222

RESUMEN

BACKGROUND AND PURPOSE: Guillain-Barré syndrome (GBS) is an acute inflammatory autoimmune and demyelinating disease of the peripheral nervous system. Currently, valid biomarkers are unavailable for the diagnosis of GBS. METHODS: A comparative proteomics analysis was performed on the cerebrospinal fluid (CSF) from 10 patients with GBS and 10 patients with noninflammatory neurological disease (NND) using the tandem mass tags technique. The differentially expressed proteins were analyzed by bioinformatics, and then the candidate proteins were validated by the enzyme-linked immunosorbent assay method in another cohort containing 160 samples (paired CSF and plasma of 40 patients with GBS, CSF of 40 NND patients and plasma of 40 healthy individuals). RESULTS: In all, 298 proteins were successfully identified in the CSF samples, of which 97 differentially expressed proteins were identified in the GBS and NND groups. Three key molecules were identified as candidate molecules for further validation. The CSF levels of TGOLN2 and NCAM1 decreased in GBS patients compared with NND patients, whereas the CSF levels of APOC3 increased. The enzyme-linked immunosorbent assay results were consistent with our proteomics analysis. Interestingly, in the validation cohort, serum APOC3 levels in the GBS group were consistent with those in the CSF samples and significantly higher than those in the healthy control group. CONCLUSIONS: Our preliminary data suggest that the CSF protein expression profile of patients with GBS is different from that of patients with NND. Moreover, alterations of TGOLN2, NCAM1and APOC3 may be used as novel biomarkers for identifying patients with GBS.


Asunto(s)
Síndrome de Guillain-Barré , Proteómica , Biomarcadores/líquido cefalorraquídeo , Ensayo de Inmunoadsorción Enzimática , Humanos , Proteómica/métodos
8.
J Mol Cell Cardiol ; 112: 49-57, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28870505

RESUMEN

The contractile property of the myocardium is maintained by cell-cell junctions enabling cardiomyocytes to work as a syncytium. Alterations in cell-cell junctions are observed in heart failure, a disease characterized by the activation of Transforming Growth Factor beta 1 (TGFß1). While TGFß1 has been implicated in diverse biologic responses, its molecular function in controlling cell-cell adhesion in the heart has never been investigated. Cardiac-specific transgenic mice expressing active TGFß1 were generated to model the observed increase in activity in the failing heart. Activation of TGFß1 in the heart was sufficient to drive ventricular dysfunction. To begin to understand the function of this important molecule we undertook an extensive structural analysis of the myocardium by electron microscopy and immunostaining. This approach revealed that TGFß1 alters intercalated disc structures and cell-cell adhesion in ventricular myocytes. Mechanistically, we found that TGFß1 induces the expression of neural adhesion molecule 1 (NCAM1) in cardiomyocytes in a p38-dependent pathway, and that selective targeting of NCAM1 was sufficient to rescue the cell adhesion defect observed when cardiomyocytes were treated with TGFß1. Importantly, NCAM1 was upregulated in human heart samples from ischemic and non-ischemic cardiomyopathy patients and NCAM1 protein levels correlated with the degree of TGFß1 activity in the human cardiac ventricle. Overall, we found that TGFß1 is deleterious to the heart by regulating the adhesion properties of cardiomyocytes in an NCAM1-dependent mechanism. Our results suggest that inhibiting NCAM1 would be cardioprotective, counteract the pathological action of TGFß1 and reduce heart failure severity.


Asunto(s)
Antígeno CD56/metabolismo , Miocardio/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Adhesión Celular , Electrocardiografía , Femenino , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones Transgénicos , Miocardio/patología , Miocardio/ultraestructura , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Ratas , Disfunción Ventricular
9.
Fetal Pediatr Pathol ; 36(1): 62-75, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27935326

RESUMEN

The cell-surface glycoprotein CD56 has three major isoforms that play important roles in cell adhesion and signaling, which may promote cell proliferation, differentiation, survival, or migration. It is an important molecule in normal kidney development and acts as a key marker in Wilms tumor stem and progenitor cells. Here, we review the structural and genetic features of the CD56 glycoprotein, and summarize its roles in the normal versus diseased metanephric blastema. We discuss areas of CD56-related research that may complement or improve existing Wilms tumor treatment strategies, including the antibody-drug conjugate lorvotuzumab mertansine that binds to CD56.


Asunto(s)
Antígeno CD56/fisiología , Riñón/embriología , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Anticuerpos Monoclonales/química , Antígeno CD56/metabolismo , Adhesión Celular , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Glicoproteínas/metabolismo , Humanos , Riñón/fisiología , Maitansina/análogos & derivados , Maitansina/química , Unión Proteica , Dominios Proteicos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal
10.
Semin Cell Dev Biol ; 36: 57-65, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25128731

RESUMEN

The generation of nephrons during development depends on differentiation via a mesenchymal to epithelial transition (MET) of self-renewing, tissue-specific stem cells confined to a specific anatomic niche of the nephrogenic cortex. These cells may transform to generate oncogenic stem cells and drive pediatric renal cancer. Once nephron epithelia are formed the view of post-MET tissue renal growth and maintenance by adult tissue-specific epithelial stem cells becomes controversial. Recently, genetic lineage tracing that followed clonal evolution of single kidney cells showed that the need for new cells is constantly driven by fate-restricted unipotent clonal expansions in varying kidney segments arguing against a multipotent adult stem cell model. Lineage-restriction was similarly maintained in kidney organoids grown in culture. Importantly, kidney cells in which Wnt was activated were traced to give significant clonal progeny indicating a clonogenic hierarchy. In vivo nephron epithelia may be endowed with the capacity akin to that of unipotent epithelial stem/progenitor such that under specific stimuli can clonally expand/self renew by local proliferation of mature differentiated cells. Finding ways to ex vivo preserve and expand the observed in vivo kidney-forming capacity inherent to both the fetal and adult kidneys is crucial for taking renal regenerative medicine forward. Some of the strategies used to achieve this are sorting human fetal nephron stem/progenitor cells, growing adult nephrospheres or reprogramming differentiated kidney cells toward expandable renal progenitors.


Asunto(s)
Riñón/citología , Riñón/embriología , Células Madre Multipotentes/citología , Organogénesis/fisiología , Células Madre/citología , Células Madre Adultas/citología , Diferenciación Celular , Células Epiteliales/citología , Humanos , Mesodermo/citología , Tumor de Wilms/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
11.
Am J Med Genet A ; 170A(2): 492-497, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26463893

RESUMEN

Constitutional 11q interstitial deletion syndrome presents with congenital anomalies including microcephaly with craniostenosis, minor dysmorphic features, vitreoretinopathy, and renal anomalies. This syndrome is occasionally associated with neuroblastoma (NB) as a life-threatening complication, which is important for clinical care. Although the corresponding locus to NB has been predicted to exist in 11q22-23 by previous deletion studies related to NB, the causative haploinsufficient genes have not yet been identified. We herein reported for the first time the simultaneous coexistence of adrenal NB and abdominal prevertebral ganglioneuroma in a 6-year-old girl with a constitutional hemizygous 11q14.1-23.3 deletion. Of the 11 haploinsufficient genes predicted with an in silico database, we focused on NCAM1 and CADM1 as the genes accountable for NB and ganglioneuroma. The deletion range, especially the 11q22.3 involvement, needs to be determined in 11q deletion cases in order to predict susceptibility to peripheral nerve tumors involving NB and ganglioneuroma.


Asunto(s)
Antígeno CD56/genética , Moléculas de Adhesión Celular/genética , Deleción Cromosómica , Cromosomas Humanos Par 11/genética , Ganglioneuroma/genética , Inmunoglobulinas/genética , Neoplasias Primarias Múltiples/genética , Neuroblastoma/genética , Molécula 1 de Adhesión Celular , Niño , Femenino , Ganglioneuroma/patología , Humanos , Cariotipificación , Neoplasias Primarias Múltiples/patología , Neuroblastoma/patología , Fenotipo
12.
Med Pr ; 75(2): 133-141, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38717134

RESUMEN

BACKGROUND: The study aimed to investigate the influence of extremely low-frequency electromagnetic fields (ELF-EMF) on clear cell renal cell carcinoma (ccRCC) by assessing alterations in gene expression and the secretion of cytokines and chemokines. MATERIAL AND METHODS: Three ccRCC cell lines (786-O, 769-P, and CAKI-1) and a healthy HEK293 cell line were subjected to ELF-EMF exposure (frequency 50 Hz, magnetic field strength 4.5 mT) for 30 min daily for 5 days. The study examined the expression of ADAM28, NCAM1, and VEGFC genes, along with the secretion of 30 cytokines and chemokines. RESULTS: Notably, primary tumor-derived cell lines, but not those from metastatic sites, exhibited ADAM28 gene expression, which increased following ELF-EMF exposure. A statistically significant reduction in VEGFC gene expression was observed in 769-P cells after ELF-EMF exposure. Additionally, NCAM1 gene expression was upregulated in HEK293, 769-P, and 786-O cells, representing normal embryonic kidney cells and primary tumor cells, but not in CAKI-1 cells, which model metastatic sites. After EMF exposure, there was a statistically significant decrease in transforming growth factor ß1 (TGF-ß1) concentration in the cell culture supernatants of HEK293 and CAKI-1 cell lines, with no other significant changes in the secretion of tested cytokines. CONCLUSIONS: Given the study's findings and available research, caution is warranted when drawing conclusions about the potential inhibitory effect of ELF-EMF on ccRCC progression. Standardization of experimental models is imperative when assessing the effects of EMF in a human context. Med Pr Work Health Saf. 2024;75(2):133-141.


Asunto(s)
Carcinoma de Células Renales , Citocinas , Campos Electromagnéticos , Neoplasias Renales , Humanos , Citocinas/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Expresión Génica/efectos de la radiación
13.
J Thorac Oncol ; 19(9): 1284-1296, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38723776

RESUMEN

INTRODUCTION: Pulmonary pleomorphic carcinoma (PPC) is an aggressive and highly heterogeneous NSCLC whose underlying biology is still poorly understood. METHODS: A total of 42 tumor areas from 20 patients with PPC were microdissected, including 39 primary tumors and three metastases, and the histologically distinct components were subjected to whole exome sequencing separately. We further performed in silico analysis of microdissected bulk RNA sequencing and methylation data of 28 samples from 14 patients with PPC. We validated our findings using immunohistochemistry. RESULTS: The epithelial and the sarcomatoid components of PPCs shared a large number of genomic alterations. Most mutations in cancer driver genes were clonal and truncal between the two components of PPCs suggesting a common ancestor. The high number of alterations in the RTK-RAS pathway suggests that it plays an important role in the evolution of PPC. The metastases morphologically and genetically resembled the epithelial or the sarcomatoid components of the tumor. The transcriptomic and epigenetic profiles of the sarcomatoid components of PPCs with matched squamous-like or adenocarcinoma-like components differed from each other, and they shared more similarities to their matched epithelial components. NCAM1/CD56 was preferentially expressed in the sarcomatoid component of squamous-like PPCs, whereas CDH1/E-Cadherin expression was down-regulated in the sarcomatoid component of most PPCs. CONCLUSION: Lung adenocarcinoma-like PPCs are mainly driven by RTK-RAS signaling, whereas epithelial-mesenchymal transition programs as highlighted by increased NCAM1 and decreased CDH1 expression govern the epithelial-sarcomatoid transition between the clonally related tumor components. Several alterations in PPCs pinpoint therapeutic opportunities.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Heterogeneidad Genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo
14.
Cell Rep Med ; 5(5): 101574, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38776873

RESUMEN

The existing suite of therapies for bone diseases largely act to prevent further bone loss but fail to stimulate healthy bone formation and repair. We describe an endogenous osteopeptide (PEPITEM) with anabolic osteogenic activity, regulating bone remodeling in health and disease. PEPITEM acts directly on osteoblasts through NCAM-1 signaling to promote their maturation and formation of new bone, leading to enhanced trabecular bone growth and strength. Simultaneously, PEPITEM stimulates an inhibitory paracrine loop: promoting osteoblast release of the decoy receptor osteoprotegerin, which sequesters RANKL, thereby limiting osteoclast activity and bone resorption. In disease models, PEPITEM therapy halts osteoporosis-induced bone loss and arthritis-induced bone damage in mice and stimulates new bone formation in osteoblasts derived from patient samples. Thus, PEPITEM offers an alternative therapeutic option in the management of diseases with excessive bone loss, promoting an endogenous anabolic pathway to induce bone remodeling and redress the imbalance in bone turnover.


Asunto(s)
Resorción Ósea , Osteoblastos , Osteogénesis , Animales , Humanos , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ratones , Resorción Ósea/patología , Resorción Ósea/metabolismo , Anabolizantes/farmacología , Anabolizantes/uso terapéutico , Remodelación Ósea/efectos de los fármacos , Osteoporosis/patología , Osteoporosis/metabolismo , Osteoporosis/tratamiento farmacológico , Ligando RANK/metabolismo , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Desarrollo Óseo/efectos de los fármacos , Osteoprotegerina/metabolismo , Femenino , Transducción de Señal/efectos de los fármacos , Péptidos/farmacología , Masculino , Ratones Endogámicos C57BL , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología
15.
Cell Biosci ; 13(1): 181, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773139

RESUMEN

BACKGROUNDS: The expression of major histocompatibility complex I (MHC-I) in neurons has recently been shown to regulate neurite outgrowth and synaptic plasticity. However, its contribution to neurodegenerative diseases such as Alzheimer's disease (AD) remains largely unknown. METHODS: In this study, we investigated the relationship between impaired MHC-I-ß2M complex and AD in vitro and human AD samples. Interaction between protein was identified by liquid chromatography-tandem mass spectrometry and confirmed by immunoprecipitation. Single-chain trimer of MHC-I-ß2M was generated to study the effect of stabilization of MHC-I-ß2M complex on NCAM1 signaling. RESULTS: MHC-I is destabilized in the brains of AD patients and neuronal cells treated with oligomeric ß-amyloid (Aß). Specifically, Aß oligomers disassemble the MHC-I-ß2-microglobulin (ß2M) complex, leading to reduced interactions with neural cell adhesion molecule 1 (NCAM1), a novel interactor of neuronal MHC-I, and decreased signaling. Inhibition of MHC-I-ß2M complex destabilization by non-dissociable MHC-I-ß2M-peptide complex restored MHC-I-NCAM1 signaling in neuronal cells. CONCLUSIONS: The current study demonstrated that disruption of MHC-1-NCAM1 signaling by Aß induced disassembly of MHC-I-ß2M complex is involved in the pathophysiology of AD. Moreover, our findings suggest modulation of MHC-I stability may be a potential therapeutic target for restoring synaptic function in AD.

16.
Cell Rep Med ; 3(4): 100597, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35492247

RESUMEN

From genetic and etiological studies, autoimmune mechanisms underlying schizophrenia are suspected; however, the details remain unclear. In this study, we describe autoantibodies against neural cell adhesion molecule (NCAM1) in patients with schizophrenia (5.4%, cell-based assay; 6.7%, ELISA) in a Japanese cohort (n = 223). Anti-NCAM1 autoantibody disrupts both NCAM1-NCAM1 and NCAM1-glial cell line-derived neurotrophic factor (GDNF) interactions. Furthermore, the anti-NCAM1 antibody purified from patients with schizophrenia interrupts NCAM1-Fyn interaction and inhibits phosphorylation of FAK, MEK1, and ERK1 when introduced into the cerebrospinal fluid of mice and also reduces the number of spines and synapses in frontal cortex. In addition, it induces schizophrenia-related behavior in mice, including deficient pre-pulse inhibition and cognitive impairment. In conclusion, anti-NCAM1 autoantibodies in patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. These antibodies may be a potential therapeutic target and serve as a biomarker to distinguish a small but treatable subgroup in heterogeneous patients with schizophrenia.


Asunto(s)
Moléculas de Adhesión de Célula Nerviosa , Esquizofrenia , Autoanticuerpos , Antígeno CD56/genética , Humanos , Moléculas de Adhesión de Célula Nerviosa/genética , Esquizofrenia/genética , Sinapsis/metabolismo
17.
Psychiatry Res ; 310: 114453, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235886

RESUMEN

OBJECTIVES: Confirming the existence and composition of the shared genetic basis of Schizophrenia and cannabis and cigarette smoking has critical values for the clinical prevention and intervention of psychosis. METHODS: To achieve this goal, we leveraged Genome-Wide summary statistics of Schizophrenia (n = 99,934), cigarette smoking (n = 518,633) and cannabis usage (n = 162,082). We applied Causal Analysis Using Summary Effect Estimates (CAUSE) and genomic structural equation modeling (GenomicSEM) to quantify the contribution of a common genetic factor of cannabis and cigarette smoking and schizophrenia (referred to as SCZ_SMO), then identified genome-wide loci that made up SCZ_SMO. RESULTS: We estimated that SCZ_SMO explained 8.6% of Schizophrenia heritability (Z score <-2.5 in CAUSE, p<10-20 in Genomic SEM). There were 20 independent loci showing association with SCZ_SMO at the genome-wide threshold of p<5 × 10-8. At the top locus on chromosome 11, fine-mapping identified rs7945073 (posterior inclusion probability =0.12, p = 2.24 × 10-32) as the top risk variants. Gene-level association and fine-mapping highlighted NCAM1, PHC2, and SEMA6D as risk genes of SCZ_SMO. Other risk genes were enriched in cortex, neuron, and dendritic spines (adjusted p<0.05). SCZ_SMO showed significant positive correlation (p<10-6) with the genetic risk of attention deficit hyperactivity disorder (r = 0.50), lifestyle problems (r = 0.83), social deprivation (r = 0.58) and all-cause pregnant loss (r = 0.60). CONCLUSION: Our result provided new evidence on the shared genetic basis model for the association between Schizophrenia and smoking and provided genetic and biological insights into their shared mechanism.


Asunto(s)
Antígeno CD56 , Cannabis , Fumar Cigarrillos , Abuso de Marihuana , Neuronas , Esquizofrenia , Antígeno CD56/genética , Fumar Cigarrillos/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Abuso de Marihuana/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética
18.
Biomedicines ; 10(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36289630

RESUMEN

We hypothesized that the persistent depletion of neuroprotective markers accompanies neuroinflammation and neurodegeneration in patients after cardiac surgery. A total of 158 patients underwent elective heart surgery with their blood collected before surgery (tbaseline) and 24 h (t24hr), seven days (t7d), and three months (t3m) post-surgery. The patients' serum was measured for markers of neurodegeneration (τau, τaup181-183, amyloid ß1-40/ß2-42, and S100), atypical neurodegeneration (KLK6 and NRGN), neuro-injury (neurofilament light/heavy, UC-HL, and GFAP), neuroinflammation (YKL-40 and TDP-43), peripheral nerve damage (NCAM-1), neuroprotection (apoE4, BDNF, fetuin, and clusterin), and vascular smoldering inflammation (C-reactive protein, CCL-28 IL-6, and IL-8). The mortality at 28 days, incidence of cerebrovascular accidents (CVA), and functional status were followed for three months. The levels of amyloid ß1-40/ß1-42 and NF-L were significantly elevated at all time points. The levels of τau, S100, KLK6, NRGN, and NCAM-1 were significantly elevated at 24 h. A cluster analysis demonstrated groupings around amyloids, KLK6, and NCAM-1. YKL-40, but not TDP-43, was significantly elevated across all time points. BDNF, apoE4, fetuin, and clusterin levels were significantly diminished long-term. IL-6 and IL-8 levles returned to baseline at t3m. The levels of CRP, CCL-28, and Hsp-70 remained elevated. At 3 months, 8.2% of the patients experienced a stroke, with transfusion volume being a significant variable. Cardiac-surgery patients exhibited persistent peripheral and neuronal inflammation, blood vessel remodeling, and the depletion of neuroprotective factors 3 months post-procedure.

19.
Probl Radiac Med Radiobiol ; 27: 474-494, 2022 Dec.
Artículo en Inglés, Ucraniano | MEDLINE | ID: mdl-36582110

RESUMEN

OBJECTIVE: to investigate the morphological and immunohistochemical features of placental damage due to theincorporation of 137Cs depending on the scenario of pregnancy completion. MATERIALS AND METHODS: The study material consisted of placentas from 60 women with reproductive losses inanamnesis and signs of termination of the current pregnancy (first group) and placental samples from 30 women with an uncomplicated gestation and an unencumbered anamnesis (control group). The detailed study required the distribution of placental samples from the first group into subgroups. Subgroup 1a included 38 placentas from women who gave birth at 37-40 weeks, despite signs of termination of the current pregnancy. Subgroup 1b - placentas of 13 women who gave birth at a gestation period of 28-36 weeks + 6 days. Subgroup 1c - 9 placental samples from women who gave birth at a gestation period of 22-27 weeks + 6 days. The volumetric activity of the 137Cs in the placentas was measured using ß-spectrometer. The histology of the placenta was studied using a standard technique. The following expressions were studied in placenta: CD31 / PECAM-1, CD45 / T200 / LCA, CD56 / NCAM-1, CEA / CD66e Ab-2, Vimentin, using indirect streptavidin peroxidase detection method. RESULTS: Placentas accumulate 137Cs. The different volumetric activity of the isotope correlates with scenarios of pregnancy. Due to the action of incorporated 137Cs with a specific mass of more than 1.1 Bq/kg, placental dysfunction develops. The consequences of placental dysfunction depend on the volumetric activity of the 137Cs and the preservation of adaptive and compensatory reactions in the placenta. Morphological and immunohistochemical features of placental damage to incorporated 137Cs were established, depending on the scenario of completion of pregnancy. A marker of unfavorable completion of pregnancy is the expression of a carcinoembryonic antigen (CEA) in the placenta. CONCLUSIONS: Premature termination of pregnancy (PTP) is a multifactorial pathology associated with pathological changes in immune and neuroendocrine regulation and hereditary, infectious, and environmental factors that disrupt the adaptation mechanisms in the mother-placenta-fetus system. Intraplacental irradiation of 137Cs is one of the factors in the multifactorial nature of reproductive losses. As a result of intraplacental irradiation of 137Cs, the architecture of the placenta is disturbed, the activity of pro-inflammatory cytokines CD45 and CD56 increases, and the coagulation cascade is activated. Extreme effects depend on the volumetric activity of the isotope incorporated in the placenta and the organ's compensatory capacity. Accumulation of up to 1.0 Bq/kg 137Cs does not affect the course of gestation. Internal irradiation with an activity of 4.5-10.4 Bq/kg 137Cs triggers late preterm labor. The nature of the damages corresponds to the category of «lesion of the maternal stroma¼ of the placenta. The volumetric activity of 137Cs over 10.4 Bq/kg is a probable cause of early preterm labor and antenatal fetal death. At the same time, the maternal and fetal structures of the placenta suffer damage. Expression of vimentin is a marker of placental destruction due to internal irradiation of 137Cs with a specific gravity of more than 4.5 Bq/kg. Expression of CEA in the structures of the placenta of women with PTP is a unique find and marker of premature birth and antenatal fetal death with intraplacental irradiation of 137Cs with an activity of more than 4.5 Bq/kg.


Asunto(s)
Trabajo de Parto Prematuro , Nacimiento Prematuro , Recién Nacido , Embarazo , Femenino , Humanos , Placenta/metabolismo , Placenta/patología , Antígeno Carcinoembrionario/metabolismo , Radioisótopos de Cesio , Vimentina/metabolismo , Nacimiento Prematuro/metabolismo , Nacimiento Prematuro/patología , Trabajo de Parto Prematuro/metabolismo , Trabajo de Parto Prematuro/patología , Muerte Fetal , Parto
20.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685361

RESUMEN

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA