Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511343

RESUMEN

NCOA7 is a nuclear receptor coactivator that is downregulated in a variety of cancers. However, the expression and prognostic significance of NCOA7 in clear cell renal cell carcinoma (ccRCC) remain unknown. The expression of NCOA7 in ccRCC tissues was analyzed using bioinformatics analysis, Western blotting, and immunohistochemistry. Kaplan-Meier analysis, the receiver operating characteristic (ROC) curve, and clinicopathological correlation analysis were used to assess the predictive power of NCOA7. Overexpression function tests were conducted in cells and mouse models to clarify the function and mechanism of NCOA7 in inhibiting the progression of ccRCC. NCOA7 expression was downregulated in all three subtypes of renal cell carcinoma, and only had significant prognostic value for patients with ccRCC. NCOA7 overexpression inhibited the proliferation, invasion, and metastasis of ccRCC cells in vivo and in vitro. Mechanistically, NCOA7 inhibited the MAPK/ERK pathway to regulate epithelial-mesenchymal transformation (EMT) and apoptosis, thereby inhibiting the progression of ccRCC. NCOA7 inhibits tumor growth and metastasis of ccRCC through the MAPK/ERK pathway, thus indicating its potential as a prognostic marker and therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Ratones , Carcinoma , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Sistema de Señalización de MAP Quinasas , Transducción de Señal , Humanos
2.
Am J Hum Genet ; 105(6): 1237-1253, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31785787

RESUMEN

We report an early-onset autosomal-recessive neurological disease with cerebellar atrophy and lysosomal dysfunction. We identified bi-allelic loss-of-function (LoF) variants in Oxidative Resistance 1 (OXR1) in five individuals from three families; these individuals presented with a history of severe global developmental delay, current intellectual disability, language delay, cerebellar atrophy, and seizures. While OXR1 is known to play a role in oxidative stress resistance, its molecular functions are not well established. OXR1 contains three conserved domains: LysM, GRAM, and TLDc. The gene encodes at least six transcripts, including some that only consist of the C-terminal TLDc domain. We utilized Drosophila to assess the phenotypes associated with loss of mustard (mtd), the fly homolog of OXR1. Strong LoF mutants exhibit late pupal lethality or pupal eclosion defects. Interestingly, although mtd encodes 26 transcripts, severe LoF and null mutations can be rescued by a single short human OXR1 cDNA that only contains the TLDc domain. Similar rescue is observed with the TLDc domain of NCOA7, another human homolog of mtd. Loss of mtd in neurons leads to massive cell loss, early death, and an accumulation of aberrant lysosomal structures, similar to what we observe in fibroblasts of affected individuals. Our data indicate that mtd and OXR1 are required for proper lysosomal function; this is consistent with observations that NCOA7 is required for lysosomal acidification.


Asunto(s)
Atrofia/patología , Enfermedades Cerebelosas/patología , Lisosomas/patología , Proteínas Mitocondriales/metabolismo , Enfermedades del Sistema Nervioso/patología , Estrés Oxidativo , Adolescente , Adulto , Animales , Atrofia/genética , Atrofia/metabolismo , Enfermedades Cerebelosas/genética , Enfermedades Cerebelosas/metabolismo , Niño , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lisosomas/metabolismo , Masculino , Proteínas Mitocondriales/genética , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Linaje , Fenotipo , Adulto Joven
3.
J Biomed Sci ; 29(1): 81, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36229806

RESUMEN

BACKGROUND: Patients with colon adenocarcinoma (COAD) exhibit significant heterogeneity in overall survival. The current tumor-node-metastasis staging system is insufficient to provide a precise prediction for prognosis. Identification and evaluation of new risk models by using big cancer data may provide a good way to identify prognosis-related signature. METHODS: We integrated different datasets and applied bioinformatic and statistical methods to construct a robust immune-associated risk model for COAD prognosis. Furthermore, a nomogram was constructed based on the gene signature and clinicopathological features to improve risk stratification and quantify risk assessment for individual patients. RESULTS: The immune-associated risk model discriminated high-risk patients in our investigated and validated cohorts. Survival analyses demonstrated that our gene signature served as an independent risk factor for overall survival and the nomogram exhibited high accuracy. Functional analysis interpreted the correlation between our risk model and its role in prognosis by classifying groups with different immune activities. Remarkably, patients in the low-risk group showed higher immune activity, while those in the high-risk group displayed a lower immune activity. CONCLUSIONS: Our study provides a novel tool that may contribute to the optimization of risk stratification for survival and personalized management of COAD.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Adenocarcinoma/patología , Neoplasias del Colon/genética , Humanos , Nomogramas , Pronóstico , Factores de Riesgo
4.
Am J Physiol Renal Physiol ; 315(1): F173-F185, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29384414

RESUMEN

We recently reported that nuclear receptor coactivator 7 (Ncoa7) is a vacuolar proton pumping ATPase (V-ATPase) interacting protein whose function has not been defined. Ncoa7 is highly expressed in the kidney and partially colocalizes with the V-ATPase in collecting duct intercalated cells (ICs). Here, we hypothesized that targeted deletion of the Ncoa7 gene could affect V-ATPase activity in ICs in vivo. We tested this by analyzing the acid-base status, major electrolytes, and kidney morphology of Ncoa7 knockout (KO) mice. We found that Ncoa7 KO mice, similar to Atp6v1b1 KOs, did not develop severe distal renal tubular acidosis (dRTA), but they exhibited a persistently high urine pH and developed hypobicarbonatemia after acid loading with ammonium chloride. Conversely, they did not develop significant hyperbicarbonatemia and alkalemia after alkali loading with sodium bicarbonate. We also found that ICs were larger and with more developed apical microvilli in Ncoa7 KO compared with wild-type mice, a phenotype previously associated with metabolic acidosis. At the molecular level, the abundance of several V-ATPase subunits, carbonic anhydrase 2, and the anion exchanger 1 was significantly reduced in medullary ICs of Ncoa7 KO mice, suggesting that Ncoa7 is important for maintaining high levels of these proteins in the kidney. We conclude that Ncoa7 is involved in IC function and urine acidification in mice in vivo, likely through modulating the abundance of V-ATPase and other key acid-base regulators in the renal medulla. Consequently, mutations in the NCOA7 gene may also be involved in dRTA pathogenesis in humans.


Asunto(s)
Equilibrio Ácido-Base , Acidosis Tubular Renal/genética , Eliminación de Gen , Túbulos Renales/metabolismo , Coactivadores de Receptor Nuclear/genética , Acidosis Tubular Renal/patología , Acidosis Tubular Renal/fisiopatología , Acidosis Tubular Renal/orina , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Anhidrasa Carbónica II/genética , Anhidrasa Carbónica II/metabolismo , Predisposición Genética a la Enfermedad , Concentración de Iones de Hidrógeno , Túbulos Renales/patología , Túbulos Renales/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivadores de Receptor Nuclear/deficiencia , Fenotipo , Orina/química , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
5.
Oncol Lett ; 27(6): 278, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38699661

RESUMEN

Nuclear receptor coactivator 7 (NCOA7) is an estrogen receptor binding protein. Its role in breast cancer progression has so far remained elusive. The present study aimed to determine the expression levels of NCOA7 in breast tumor samples and confirmed its potential utility as a breast cancer prognostic biomarker. The expression of NCOA7 was detected by immunohistochemical staining in 241 breast cancer tumor samples and 163 adjacent normal tissue samples. The association of NCOA7 expression with the clinicopathological characteristics and overall survival were statistically analyzed. Cell proliferation was determined by Cell Counting Kit-8 and colony-formation assays. Cell migration was detected using wound-healing and Transwell assays. NCOA7 was positively expressed in 44% of breast tumor tissues. The expression of NCOA7 was positively associated with tumor size (T-stage; P=0.005) and lymph node metastasis (N-stage; P=0.008). Additional statistical analysis indicated that the expression of NCOA7 was associated with patient age, tumor size and lymph node metastasis in patients with triple-negative breast cancer (TNBC) compared with that in patients with non-TNBC. The overall survival of patients with NCOA7-positive breast cancer was significantly lower than that of patients with NCOA7-negative breast cancer (P=0.006). Among the patients with lymph node metastasis, the overall survival was reversely associated with the expression of NCOA7 (P=0.042). Furthermore, knockdown of NCOA7 expression in breast cancer T47D and MCF7 cells significantly inhibited both cell proliferation and migration, suggesting that this protein may exert a role in driving breast cancer progression. Taken together, these results indicate that the expression of NCOA7 is associated with poor prognosis of breast cancer and suggest that this protein may be a driver for metastasis and a potential therapeutic target for advanced breast cancer.

6.
Structure ; 32(7): 989-1000.e6, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38593795

RESUMEN

Proteins that contain a highly conserved TLDc domain (Tre2/Bub2/Cdc16 LysM domain catalytic) offer protection against oxidative stress and are widely implicated in neurological health and disease. How this family of proteins exerts their function, however, is poorly understood. We have recently found that the yeast TLDc protein, Oxr1p, inhibits the proton pumping vacuolar ATPase (V-ATPase) by inducing disassembly of the pump. While loss of TLDc protein function in mammals shares disease phenotypes with V-ATPase defects, whether TLDc proteins impact human V-ATPase activity directly is unclear. Here we examine the effects of five human TLDc proteins, TLDC2, NCOA7, OXR1, TBC1D24, and mEAK7 on the activity of the human V-ATPase. We find that while TLDC2, TBC1D24, and the TLDc domains of OXR1 and NCOA7 inhibit V-ATPase by inducing enzyme disassembly, mEAK7 activates the pump. The data thus shed new light both on mammalian TLDc protein function and V-ATPase regulation.


Asunto(s)
Proteínas Activadoras de GTPasa , ATPasas de Translocación de Protón Vacuolares , Humanos , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/química , Coactivadores de Receptor Nuclear/metabolismo , Coactivadores de Receptor Nuclear/química , Unión Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Modelos Moleculares , Proteínas Mitocondriales
7.
Exp Ther Med ; 24(5): 688, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36277156

RESUMEN

Concomitant exotropia is a condition where there is a misalignment between both eyes, which is more prevalent in Asians than in Caucasians. It is an eye disease related to the neural development of binocular vision and eye movement control. Studies have indicated that genetic factors contribute to the development of concomitant exotropia; however, the underlying mutations have not been thoroughly investigated to date. In the present study, whole-exome sequencing was performed in a three-generation family with concomitant exotropia. In the proband and the proband's father, bioinformatics analyses identified a duplication of the genomic region spanning genes PCDHA1-7 and a heterozygous mutation c.3775G>A (p.A1259T) of the COL3A1 gene, which is located in the conserved COLFI domain and leads to decreased stability of the encoded protein product. Furthermore, a deletion of amino acid S165 in the gene NCOA7 was discovered in the family members, including the proband, the proband's mother and maternal grandfather. S165 was predicted to be a conserved phosphokinase site of CK1/VRK and CK1/CK1. The genes in which these variants reside are all involved in cortical neuronal development. The present study reveals novel variants of concomitant exotropia and suggests that aberrant cortical neuronal development may contribute to the origin of concomitant strabismus.

8.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 8): 230-237, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34341188

RESUMEN

The TLDc [Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic] domain is associated with oxidation-resistance related functions and is well conserved among eukaryotes. Seven proteins possess a TLDc domain in humans, notably proteins belonging to the oxidation resistance protein (OXR), nuclear receptor coactivator 7 (NCOA7) and TBC1 domain family member 24 (TBC1D24) families. Although the mechanism is unknown, a protective role of TLDc proteins against oxidative stress, notably in the brain, has been demonstrated. Neurobiological disorders caused by mutations in the TLDc domain have also been reported. The human NCOA7 gene encodes several mRNA isoforms; among these, isoform 4, named NCOA7-AS, is up-regulated by type 1 interferon in response to viral infection. NCOA7 and NCOA7-AS both interact with several subunits of the vacuolar proton pump V-ATPase, which leads to increased acidification of the endolysosomal system and consequently impairs infection by viruses that enter their host cells through the endosomal pathway, such as influenza A virus and hepatitis C virus. Similarly to full-length NCOA7, NCOA7-AS possesses a TLDc domain in its C-terminus. Structures of TLDc domains have been reported from zebrafish and fly but not from humans. Here, the expression, purification and crystallization of the TLDc domain from NCOA7 and NCOA7-AS is reported. The crystal structure solved at 1.8 Šresolution is compared with previously solved three-dimensional structures of TLDc domains.


Asunto(s)
Cristalografía por Rayos X/métodos , Mutación/genética , Coactivadores de Receptor Nuclear/química , Coactivadores de Receptor Nuclear/genética , Secuencia de Aminoácidos , Animales , Cristalización , Drosophila melanogaster , Humanos , Estructura Secundaria de Proteína
9.
Viruses ; 11(2)2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30700004

RESUMEN

The HIV-1 entry-route is a matter of ongoing controversy, and there is evidence for fusion either at the cell surface or from within endosomes. A recent report demonstrated that isoform 4 of nuclear receptor coactivator 7 (NCOA7iso4) interacts with endolysosomal vacuolar-type H⁺-ATPase (V-ATPase), increasing lytic activity and thereby severely affecting the entry of vesicular stomatitis virus glycoprotein (VSV-G)-mediated, but not HIV-Env-mediated, entry and infection. As basal expression of NCOA7iso4 is low in the absence of type-1 interferons, its overexpression is a novel tool to study viral entry.


Asunto(s)
Endocitosis , VIH-1/fisiología , Coactivadores de Receptor Nuclear/genética , Internalización del Virus , Membrana Celular/virología , Humanos , Isoformas de Proteínas , Proteínas del Envoltorio Viral/fisiología
10.
Front Immunol ; 10: 1973, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31481962

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first step in the kynurenine pathway of tryptophan (Trp) degradation that produces several biologically active Trp metabolites. L-kynurenine (Kyn), the first byproduct by IDO1, promotes immunoregulatory effects via activation of the Aryl hydrocarbon Receptor (AhR) in dendritic cells (DCs) and T lymphocytes. We here identified the nuclear coactivator 7 (NCOA7) as a molecular target of 3-hydroxyanthranilic acid (3-HAA), a Trp metabolite produced downstream of Kyn along the kynurenine pathway. In cells overexpressing NCOA7 and AhR, the presence of 3-HAA increased the association of the two molecules and enhanced Kyn-driven, AhR-dependent gene transcription. Physiologically, conventional (cDCs) but not plasmacytoid DCs or other immune cells expressed high levels of NCOA7. In cocultures of CD4+ T cells with cDCs, the co-addition of Kyn and 3-HAA significantly increased the induction of Foxp3+ regulatory T cells and the production of immunosuppressive transforming growth factor ß in an NCOA7-dependent fashion. Thus, the co-presence of NCOA7 and the Trp metabolite 3-HAA can selectively enhance the activation of ubiquitary AhR in cDCs and consequent immunoregulatory effects. Because NCOA7 is often overexpressed and/or mutated in tumor microenvironments, our current data may provide evidence for a new immune check-point mechanism based on Trp metabolism and AhR.


Asunto(s)
Ácido 3-Hidroxiantranílico/metabolismo , Células Dendríticas/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Células Dendríticas/inmunología , Femenino , Humanos , Quinurenina/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Coactivadores de Receptor Nuclear/inmunología , Receptores de Hidrocarburo de Aril/inmunología , Linfocitos T Reguladores/inmunología
11.
Oncotarget ; 7(37): 59987-60004, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27509054

RESUMEN

Oral squamous cell carcinoma (OSCC) ranks among the most common cancer worldwide, and is associated with severe morbidity and high mortality. Oral submucous fibrosis (OSF), characterized by fibrosis of the mucosa of the upper digestive tract, is a pre-malignant lesion, but the molecular mechanisms underlying this malignant transformation remains to be elucidated. In this study, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS)-based proteomic strategy was employed to profile the differentially expressed peptides/proteins between OSCC tissues and the corresponding adjacent non-cancerous OSF tissues. Sixty-five unique peptide peaks and nine proteins were identified with altered expression levels. Of them, expression of NCOA7 was found to be up-regulated in OSCC tissues by immunohistochemistry staining and western blotting, and correlated with a pan of clinicopathologic parameters, including lesion site, tumor differentiation status and lymph node metastasis. Further, we show that overexpression of NCOA7 promotes OSCC cell proliferation in either in vitro or in vivo models. Mechanistic study demonstrates that NCOA7 induces OSCC cell proliferation probably by activating aryl hydrocarbon receptor (AHR). The present study suggests that NCOA7 is a potential biomarker for early diagnosis of OSF malignant transformation, and leads to a better understanding of the molecular mechanisms responsible for OSCC development.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Fibrosis de la Submucosa Bucal/metabolismo , Adulto , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática/genética , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/patología , Coactivadores de Receptor Nuclear/genética , Fibrosis de la Submucosa Bucal/diagnóstico , Fibrosis de la Submucosa Bucal/patología , Embarazo , ARN Interferente Pequeño/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Regulación hacia Arriba
12.
Tuberc Respir Dis (Seoul) ; 78(2): 99-105, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25861343

RESUMEN

BACKGROUND: Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, binds to a wide variety of synthetic and naturally occurring compounds. AhR is involved in the regulation of inflammatory response during acute and chronic respiratory diseases. We investigated whether nuclear receptor coactivator 7 (NCOA7) could regulate transcriptional levels of AhR target genes and inflammatory cytokines in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated human bronchial epithelial cells. This study was based on our previous study that NCOA7 was differentially expressed between normal and chronic obstructive pulmonary disease lung tissues. METHODS: BEAS-2B and A549 cells grown under serum-free conditions were treated with or without TCDD (0.15 nM and 6.5 nM) for 24 hours after transfection of pCMV-NCOA7 isoform 4. Expression levels of cytochrome P4501A1 (CYP1A1), IL-6, and IL-8 were measured by quantitative real-time polymerase chain reaction. RESULTS: The transcriptional activities of CYP1A1 and inflammatory cytokines were strongly induced by TCDD treatment in both BEAS-2B and A549 cell lines. The NCOA7 isoform 4 oppositely regulated the transcriptional activities of CYP1A1 and inflammatory cytokines between BEAS-2B and A549 cell lines. CONCLUSION: Our results suggest that NCOA7 could act as a regulator in the TCDD-AhR signaling pathway with dual roles in normal and abnormal physiological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA