Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 177(3): 737-750.e15, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31002798

RESUMEN

The proteasome mediates selective protein degradation and is dynamically regulated in response to proteotoxic challenges. SKN-1A/Nrf1, an endoplasmic reticulum (ER)-associated transcription factor that undergoes N-linked glycosylation, serves as a sensor of proteasome dysfunction and triggers compensatory upregulation of proteasome subunit genes. Here, we show that the PNG-1/NGLY1 peptide:N-glycanase edits the sequence of SKN-1A protein by converting particular N-glycosylated asparagine residues to aspartic acid. Genetically introducing aspartates at these N-glycosylation sites bypasses the requirement for PNG-1/NGLY1, showing that protein sequence editing rather than deglycosylation is key to SKN-1A function. This pathway is required to maintain sufficient proteasome expression and activity, and SKN-1A hyperactivation confers resistance to the proteotoxicity of human amyloid beta peptide. Deglycosylation-dependent protein sequence editing explains how ER-associated and cytosolic isoforms of SKN-1 perform distinct cytoprotective functions corresponding to those of mammalian Nrf1 and Nrf2. Thus, we uncover an unexpected mechanism by which N-linked glycosylation regulates protein function and proteostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Asparagina/metabolismo , Bortezomib/farmacología , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/metabolismo , Edición Génica , Regulación de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética
2.
EMBO J ; 42(14): e113349, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37306101

RESUMEN

NRF2 is a transcription factor responsible for antioxidant stress responses that is usually regulated in a redox-dependent manner. p62 bodies formed by liquid-liquid phase separation contain Ser349-phosphorylated p62, which participates in the redox-independent activation of NRF2. However, the regulatory mechanism and physiological significance of p62 phosphorylation remain unclear. Here, we identify ULK1 as a kinase responsible for the phosphorylation of p62. ULK1 colocalizes with p62 bodies, directly interacting with p62. ULK1-dependent phosphorylation of p62 allows KEAP1 to be retained within p62 bodies, thus activating NRF2. p62S351E/+ mice are phosphomimetic knock-in mice in which Ser351, corresponding to human Ser349, is replaced by Glu. These mice, but not their phosphodefective p62S351A/S351A counterparts, exhibit NRF2 hyperactivation and growth retardation. This retardation is caused by malnutrition and dehydration due to obstruction of the esophagus and forestomach secondary to hyperkeratosis, a phenotype also observed in systemic Keap1-knockout mice. Our results expand our understanding of the physiological importance of the redox-independent NRF2 activation pathway and provide new insights into the role of phase separation in this process.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Humanos , Animales , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Fosforilación , Proteína Sequestosoma-1/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
J Biol Chem ; 300(8): 107583, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025451

RESUMEN

Ferroptosis is an iron-dependent cell death mechanism that may be important to prevent tumor formation and useful as a target for new cancer therapies. Transcriptional networks play a crucial role in shaping ferroptosis sensitivity by regulating the expression of transporters, metabolic enzymes, and other proteins. The Cap'n'collar (CNC) protein NFE2 like bZIP transcription factor 2 (NFE2L2, also known as NRF2) is a key regulator of ferroptosis in many cells and contexts. Emerging evidence indicates that the related CNC family members, BTB domain and CNC homolog 1 (BACH1) and NFE2 like bZIP transcription factor 1 (NFE2L1), also have roles in ferroptosis regulation. Here, we comprehensively review the role of CNC transcription factors in governing cellular sensitivity to ferroptosis. We describe how CNC family members regulate ferroptosis sensitivity through modulation of iron, lipid, and redox metabolism. We also use examples of ferroptosis regulation by CNC proteins to illustrate the flexible and highly context-dependent nature of the ferroptosis mechanism in different cells and conditions.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Hierro/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Oxidación-Reducción
4.
J Biol Chem ; 299(6): 104810, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37172729

RESUMEN

RNA sequencing (RNA-seq) is a powerful technique for understanding cellular state and dynamics. However, comprehensive transcriptomic characterization of multiple RNA-seq datasets is laborious without bioinformatics training and skills. To remove the barriers to sequence data analysis in the research community, we have developed "RNAseqChef" (RNA-seq data controller highlighting expression features), a web-based platform of systematic transcriptome analysis that can automatically detect, integrate, and visualize differentially expressed genes and their biological functions. To validate its versatile performance, we examined the pharmacological action of sulforaphane (SFN), a natural isothiocyanate, on various types of cells and mouse tissues using multiple datasets in vitro and in vivo. Notably, SFN treatment upregulated the ATF6-mediated unfolded protein response in the liver and the NRF2-mediated antioxidant response in the skeletal muscle of diet-induced obese mice. In contrast, the commonly downregulated pathways included collagen synthesis and circadian rhythms in the tissues tested. On the server of RNAseqChef, we simply evaluated and visualized all analyzing data and discovered the NRF2-independent action of SFN. Collectively, RNAseqChef provides an easy-to-use open resource that identifies context-dependent transcriptomic features and standardizes data assessment.


Asunto(s)
Perfilación de la Expresión Génica , Internet , Isotiocianatos , RNA-Seq , Programas Informáticos , Sulfóxidos , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Isotiocianatos/farmacología , Sulfóxidos/farmacología , RNA-Seq/métodos , RNA-Seq/normas , Especificidad de Órganos/efectos de los fármacos , Reproducibilidad de los Resultados , Ratones Obesos , Respuesta de Proteína Desplegada/efectos de los fármacos , Hígado/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Antioxidantes/metabolismo , Visualización de Datos
5.
J Biol Chem ; 299(3): 102955, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36720308

RESUMEN

Inorganic arsenic (iAs) is an environmental toxicant that can lead to severe health consequences, which can be exacerbated if exposure occurs early in development. Here, we evaluated the impact of oral iAs treatment on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) mice. We found that oral administration of iAs to neonatal hUGT1 mice that display severe neonatal hyperbilirubinemia leads to induction of intestinal UGT1A1 and a reduction in total serum bilirubin values. Oral iAs administration accelerates neonatal intestinal maturation, an event that is directly associated with UGT1A1 induction. As a reactive oxygen species producer, oral iAs treatment activated the Keap-Nrf2 pathway in the intestinal tract and liver. When Nrf2-deficient hUGT1 mice (hUGT1/Nrf2-/-) were treated with iAs, it was shown that activated Nrf2 contributed significantly toward intestinal maturation and UGT1A1 induction. However, hepatic UGT1A1 was not induced upon iAs exposure. We previously demonstrated that the nuclear receptor PXR represses liver UGT1A1 in neonatal hUGT1 mice. When PXR was deleted in hUGT1 mice (hUGT1/Pxr-/-), derepression of UGT1A1 was evident in both liver and intestinal tissue in neonates. Furthermore, when neonatal hUGT1/Pxr-/- mice were treated with iAs, UGT1A1 was superinduced in both tissues, confirming PXR release derepressed key regulatory elements on the gene that could be activated by iAs exposure. With iAs capable of generating reactive oxygen species in both liver and intestinal tissue, we conclude that PXR deficiency in neonatal hUGT1/Pxr-/- mice allows greater access of activated transcriptional modifiers such as Nrf2 leading to superinduction of UGT1A1.


Asunto(s)
Arsénico , Glucuronosiltransferasa , Factor 2 Relacionado con NF-E2 , Receptor X de Pregnano , Animales , Ratones , Animales Recién Nacidos , Arsénico/toxicidad , Bilirrubina/sangre , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Hígado/enzimología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo
6.
Curr Issues Mol Biol ; 46(8): 9215-9233, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39194761

RESUMEN

The thymus, a central lymphoid organ in animals, serves as the site for T cell development, differentiation and maturation, vital to adaptive immunity. The thymus is critical for maintaining tissue homeostasis to protect against tumors and tissue damage. An overactive or prolonged immune response can lead to oxidative stress from increased production of reactive oxygen species. Heat stress induces oxidative stress and overwhelms the natural antioxidant defense mechanisms. This study's objectives were to investigate the protective properties of astaxanthin against heat-induced oxidative stress and apoptosis in the chicken thymus, by comparing the growth performance and gene signaling pathways among three groups: thermal neutral, heat stress, and heat stress with astaxanthin. The thermal neutral temperature was 21-22 °C, and the heat stress temperature was 32-35 °C. Both heat stress groups experienced reduced growth performance, while the astaxanthin-treated group showed a slightly lesser decline. The inflammatory response and antioxidant defense system were activated by the upregulation of the NF-kB, NFE2L2, PPARα, cytoprotective capacity, and apoptotic gene pathways during heat stress compared to the thermal neutral group. However, expression levels showed no significant differences between the thermal neutral and heat stress with antioxidant groups, suggesting that astaxanthin may mitigate inflammation and oxidative stress damage.

7.
Diabetologia ; 66(7): 1340-1352, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37015997

RESUMEN

AIMS/HYPOTHESIS: Chronic hyperglycaemia and recurrent hypoglycaemia are independently associated with accelerated cognitive decline in type 1 diabetes. Recurrent hypoglycaemia in rodent models of chemically induced (streptozotocin [STZ]) diabetes leads to cognitive impairment in memory-related tasks associated with hippocampal oxidative damage. This study examined the hypothesis that post-hypoglycaemic hyperglycaemia in STZ-diabetes exacerbates hippocampal oxidative stress and explored potential contributory mechanisms. METHODS: The hyperinsulinaemic glucose clamp technique was used to induce equivalent hypoglycaemia and to control post-hypoglycaemic glucose levels in mice with and without STZ-diabetes and Nrf2-/- mice (lacking Nrf2 [also known as Nfe2l2]). Subsequently, quantitative proteomics based on stable isotope labelling by amino acids in cell culture and biochemical approaches were used to assess oxidative damage and explore contributory pathways. RESULTS: Evidence of hippocampal oxidative damage was most marked in mice with STZ-diabetes exposed to post-hypoglycaemic hyperglycaemia; these mice also showed induction of Nrf2 and the Nrf2 transcriptional targets Sod2 and Hmox-1. In this group, hypoglycaemia induced a significant upregulation of proteins involved in alternative fuel provision, reductive biosynthesis and degradation of damaged proteins, and a significant downregulation of proteins mediating the stress response. Key differences emerged between mice with and without STZ-diabetes following recovery from hypoglycaemia in proteins mediating the stress response and reductive biosynthesis. CONCLUSIONS/INTERPRETATION: There is a disruption of the cellular response to a hypoglycaemic challenge in mice with STZ-induced diabetes that is not seen in wild-type non-diabetic animals. The chronic hyperglycaemia of diabetes and post-hypoglycaemic hyperglycaemia act synergistically to induce oxidative stress and damage in the hippocampus, possibly leading to irreversible damage/modification to proteins or synapses between cells. In conclusion, recurrent hypoglycaemia in sub-optimally controlled diabetes may contribute, at least in part, to accelerated cognitive decline through amplifying oxidative damage in key brain regions, such as the hippocampus. DATA AVAILABILITY: The datasets generated during and/or analysed during the current study are available in ProteomeXchange, accession no. 1-20220824-173727 ( www.proteomexchange.org ). Additional datasets generated during and/or analysed during the present study are available from the corresponding author upon reasonable request.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglucemia , Hipoglucemia , Ratones , Animales , Hiperglucemia/metabolismo , Hipoglucemiantes , Diabetes Mellitus Tipo 1/metabolismo , Factor 2 Relacionado con NF-E2/genética , Hipoglucemia/metabolismo , Hipocampo , Estrés Oxidativo , Diabetes Mellitus Experimental/metabolismo , Glucemia/metabolismo
8.
Curr Issues Mol Biol ; 45(6): 4850-4874, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37367058

RESUMEN

The high morbidity and mortality rate of pulmonary arterial hypertension (PAH) is partially explained by metabolic deregulation. The present study complements our previous publication in "Genes" by identifying significant increases of the glucose transporter solute carrier family 2 (Slc2a1), beta nerve growth factor (Ngf), and nuclear factor erythroid-derived 2-like 2 (Nfe2l2) in three standard PAH rat models. PAH was induced by subjecting the animals to hypoxia (HO), or by injecting with monocrotaline in either normal (CM) or hypoxic (HM) atmospheric conditions. The Western blot and double immunofluorescent experiments were complemented with novel analyses of previously published transcriptomic datasets of the animal lungs from the perspective of the Genomic Fabric Paradigm. We found substantial remodeling of the citrate cycle, pyruvate metabolism, glycolysis/gluconeogenesis, and fructose and mannose pathways. According to the transcriptomic distance, glycolysis/gluconeogenesis was the most affected functional pathway in all three PAH models. PAH decoupled the coordinated expression of many metabolic genes, and replaced phosphomannomutase 2 (Pmm2) with phosphomannomutase 1 (Pmm1) in the center of the fructose and mannose metabolism. We also found significant regulation of key genes involved in PAH channelopathies. In conclusion, our data show that metabolic dysregulation is a major PAH pathogenic factor.

9.
J Transl Med ; 21(1): 433, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403143

RESUMEN

BACKGROUND: Cervical cancer (CC) has poor prognosis and high mortality rate for its metastasis during the disease progression. Epithelial-mesenchymal transition (EMT) and anoikis are initial and pivotal steps during the metastatic process. Although higher levels of Nrf2 are associated with aggressive tumor behaviors in cervical cancer, the detailed mechanism of Nrf2 in cervical cancer metastasis, especially EMT and anoikis, remains unclear. METHODS: Immunohistochemistry (IHC) was used to examine Nrf2 expression in CC. Wound healing assay and transwell analysis were used to evaluate the migration ability of CC cells. Western blot, qTR-PCR and immunofluorescent staining were used to verify the expression level of Nrf2, the EMT associated markers and anoikis associated proteins. Flow cytometry assays and cell counting were used to detect the apoptosis of cervical cancer cells. The lung and lymph node metastatic mouse model were established for studies in vivo. The interaction between Nrf2 and Snail1 was confirmed by rescue-of-function assay. RESULTS: When compared with cervical cancer patients without lymph node metastasis, Nrf2 was highly expressed in patients with lymph node metastasis. And Nrf2 was proved to enhance the migration ability of HeLa and SiHa cells. In addition, Nrf2 was positively correlated with EMT processes and negatively associated with anoikis in cervical cancer. In vivo, a xenograft assay also showed that Nrf2 facilitated both pulmonary and lymphatic distant metastasis of cervical cancer. Rescue-of-function assay further revealed the mechanism that Nrf2 impacted the metastasis of CC through Snail1. CONCLUSION: Our fundings established Nrf2 plays a crucial role in the metastasis of cervical cancer by enhancing EMT and resistance to anoikis by promoting the expression of Snail1, with potential value as a therapeutic candidate.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neoplasias del Cuello Uterino , Femenino , Animales , Ratones , Humanos , Línea Celular Tumoral , Metástasis Linfática/patología , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias del Cuello Uterino/patología , Células HeLa , Transición Epitelial-Mesenquimal , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia
10.
Cancer Cell Int ; 23(1): 229, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794491

RESUMEN

BACKGROUND: Mutations in the KEAP1-NFE2L2 signaling pathway were linked to increased tumorigenesis and aggressiveness. Interestingly, not all hotspot mutations on NFE2L2 were damaging; some even were activating. However, there was conflicting evidence about the association between NFE2L2 mutation and Nrf2-activating mutation and responsiveness to immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) and other multiple cancers. METHODS: The study with the largest sample size (n = 49,533) explored the landscape of NFE2L2 mutations and their impact response/resistance to ICIs using public cohorts. In addition, the in-house WXPH cohort was used to validate the efficacy of immunotherapy in the NFE2L2 mutated patients with NSCLC. RESULTS: In two pan-cancer cohorts, Nrf2-activating mutation was associated with higher TMB value compared to wild-type. We identified a significant association between Nrf2-activating mutation and shorter overall survival in pan-cancer patients and NSCLC patients but not in those undergoing ICIs treatment. Similar findings were obtained in cancer patients carrying the NFE2L2 mutation. Furthermore, in NSCLC and other cancer cohorts, patients with NFE2L2 mutation demonstrated more objective responses to ICIs than patients with wild type. Our in-house WXPH cohort further confirmed the efficacy of immunotherapy in the NFE2L2 mutated patients with NSCLC. Lastly, decreased inflammatory signaling pathways and immune-depleted immunological microenvironments were enriched in Nrf2-activating mutation patients with NSCLC. CONCLUSIONS: Our study found that patients with Nrf2-activating mutation had improved immunotherapy outcomes than patients with wild type in NSCLC and other tumor cohorts, implying that Nrf2-activating mutation defined a distinct subset of pan-cancers and might have implications as a biomarker for guiding ICI treatment, especially NSCLC.

11.
J Biochem Mol Toxicol ; 37(1): e23228, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36193742

RESUMEN

Acute compartment syndrome (ACS) is a life-threatening orthopedic emergency, which can even result in amputation. Ferroptosis is an iron-dependent form of nonapoptotic cell death. This study investigated the mechanism of ferroptosis in ACS, explored candidate markers, and determined effective treatments. This study identified pathways involved in the development of ACS through gene set enrichment analysis (GSEA), Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA of heme oxygenase 1 (Hmox1). Bioinformatics methods, combined with real-time quantitative polymerase chain reaction, western blot analysis, and iron staining, were applied to determine whether ferroptosis was involved in the progression of ACS and to explore the mechanism of nuclear factor erythroid-2-related factor 2 (Nfe2l2)/Hmox1 in ferroptosis regulation. Optimal drugs for the treatment of ACS were also investigated using Connectivity Map. The ferroptosis pathway was enriched in GSEA, KEGG of DEGs, and GSEA of Hmox1. After ACS, the reactive oxygen species content, tissue iron content, and oxidative stress level increased, whereas glutathione peroxidase 4 protein expression decreased. The skeletal muscle was swollen and necrotized; the number of mitochondrial cristae became fewer or even disappeared, and Nfe2l2/Hmox1 expression increased at the transcriptional and protein levels. Hmox1 was highly expressed in ACS, indicating that Hmox1 is a possible marker for ACS. we could predict 12 potential target drugs for the treatment of ACS. In conclusion, Hmox1 was a potential candidate marker for ACS diagnosis. Ferroptosis was involved in the progression of ACS. It was speculated that ferroptosis is inhibited by the Nfe2l2/Hmox1 signaling pathway.


Asunto(s)
Síndromes Compartimentales , Ferroptosis , Humanos , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Transducción de Señal , Hierro , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
12.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674585

RESUMEN

Oxidative stress in high-yielding dairy goats adversely affects lactation length, milk quality, and the economics of dairy products. During the lactation period, goat mammary epithelial cells (GMECs) are often in a state of disordered metabolic homeostasis primarily caused by the overproduction of reactive oxygen species (ROS). Sulforaphane (SFN), an electrophilic compound that is enriched in broccoli, is a promising antioxidant agent for future potential clinical applications. The objective of the present study was to investigate the function of SFN on hydrogen peroxide (H2O2)-induced oxidative damage in primary GMECs and the underlying molecular mechanisms. Isolated GMECs in triplicate were pretreated with SFN (1.25, 2.5, and 5 µM) for 24 h in the absence or presence of H2O2 (400 µM) for 24 h. The results showed that SFN effectively enhanced superoxide dismutase (SOD) activity, elevated the ratio of glutathione (GSH)/glutathione oxidized (GSSG), and reduced H2O2-induced ROS and malondialdehyde (MDA) production and cell apoptosis. Mechanically, SFN-induced nuclear factor erythroid 2-related factor 2 (NRF2/NFE2L2) translocation to the nucleus through the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway coupled with inhibition of the caspase apoptotic pathway. In addition, GMECs were transfected with NFE2L2 small interfering RNA (NFE2L2 siRNA) for 48 h and/or treated with SFN (5 µM) for 24 h before being exposed to H2O2 (400 µM) for 24 h. We found that knockdown of NFE2L2 by siRNA abrogated the preventive effect of SFN on H2O2-induced ROS overproduction and apoptosis. Taken together, sulforaphane suppressed H2O2-induced oxidative stress and apoptosis via the activation of the AMPK/NFE2L2 signaling pathway in primary GMECs.


Asunto(s)
Peróxido de Hidrógeno , Factor 2 Relacionado con NF-E2 , Femenino , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Cabras/genética , Estrés Oxidativo , Antioxidantes/farmacología , Isotiocianatos/farmacología , Transducción de Señal , Células Epiteliales/metabolismo , Glutatión/metabolismo , ARN Interferente Pequeño/metabolismo , Apoptosis
13.
Biochem Biophys Res Commun ; 600: 44-50, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35182974

RESUMEN

The heat shock transcription factor HSF1 regulates the inducible Hsp gene transcription, whereas HSF2 is involved in the constitutive transcription. HSFs can work for the non-heat shock genes transcription in a case-specific manner to facilitate normal cellular functions. Here, we demonstrate that HSF2 acts as an upstream regulator of heat shock-induced autophagy response in a rat histiocytoma. The heat-induced HSF2 transactivates the B-cell translocation gene-2 (BTG2) transcription, and the latter acts as a transcriptional coactivator for superoxide dismutase (SOD2). The altered HSF2 promoter occupancy on the BTG2 promoter enhances BTG2 transcription. Since SOD2 regulation is linked to mitochondrial redox sensing, HSF2 appears to act as a redox sensor in deciding the cell fate. The HSF2 shRNA or NFE2L2/BTG2 siRNA treatments have interfered with the autophagy response. We demonstrate that HSF2 is an upstream activator of autophagy response, and the HSF2-BTG2-SOD2 axis acts as a switch between the non-selective (micro/macro) and selective (chaperone-mediated) autophagy.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Inmediatas-Precoces , Animales , Autofagia , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , ARN Interferente Pequeño , Ratas , Superóxido Dismutasa/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor
14.
IUBMB Life ; 74(12): 1209-1231, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36200139

RESUMEN

The KEAP1-NRF2 pathway regulates the main inducible cellular response to oxidative and electrophilic stresses. Activating mutations in the KEAP1-NRF2 pathway occur commonly in human cancer, where they contribute to the formation of aggressive tumours that are associated with a poor prognosis for patients. An important clinical feature of these tumours is their defiance to all current anti-cancer treatment regimens, highlighting the need for the development of new therapeutic strategies to target NRF2-activated cancers. In this review, we discuss the mechanisms through which acquired NRF2 hyperactivation can result in resistance of tumours to immune checkpoint inhibitor therapies in addition to classical chemotherapeutics, and propose with examples that using a synthetic lethal strategy mediated by NRF2-target gene-dependent bioactivation of prodrugs represents a promising strategy to specifically enhance toxicity to heretofore untreatable NRF2-hyperactivated human tumours.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neoplasias , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Mutaciones Letales Sintéticas , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oxidación-Reducción , Estrés Oxidativo
15.
J Clin Lab Anal ; 36(7): e24514, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35689537

RESUMEN

BACKGROUND: Having emerged as the most abundant posttranscriptional internal mRNA modification in eukaryotes, N6-methyladenosine (m6 A) has attracted tremendous scientific interest in recent years. However, the functional importance of the m6 A methylation machinery in ferroptosis regulation in hypopharyngeal squamous cell carcinoma (HPSCC) remains unclear. METHODS: We herein performed bioinformatic analysis, cell biological analyses, transcriptome-wide m6 A sequencing (m6 A-seq, MeRIP-seq), RNA sequencing (RNA-seq), and RNA immunoprecipitation sequencing (RIP-seq), followed by m6 A dot blot, MeRIP-qPCR, RIP-qPCR, and dual-luciferase reporter assays. RESULTS: The results revealed that ALKBH5-mediated m6 A demethylation led to the posttranscriptional inhibition of NFE2L2/NRF2, which is crucial for the regulation of antioxidant molecules in cells, at two m6 A residues in the 3'-UTR. Knocking down ALKBH5 subsequently increased the expression of NFE2L2/NRF2 and increased the resistance of HPSCC cells to ferroptosis. In addition, m6 A-mediated NFE2L2/NRF2 stabilization was dependent on the m6 A reader IGF2BP2. We suggest that ALKBH5 dysregulates NFE2L2/NRF2 expression in HPSCC through an m6 A-IGF2BP2-dependent mechanism. CONCLUSION: Together, these results have revealed an association between the ALKBH5-NFE2L2/NRF2 axis and ferroptosis, providing insight into the functional importance of reversible mRNA m6 A methylation and its modulators in HPSCC.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Ferroptosis , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Regiones no Traducidas 3' , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Ferroptosis/genética , Neoplasias de Cabeza y Cuello/genética , Humanos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
16.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613859

RESUMEN

In patients with severe pneumonia due to COVID-19, the deregulation of oxidative stress is present. Nuclear erythroid factor 2 (NRF2) is regulated by KEAP1, and NRF2 regulates the expression of genes such as NFE2L2-KEAP1, which are involved in cellular defense against oxidative stress. In this study, we analyzed the participation of the polymorphisms of NFE2L2 and KEAP1 genes in the mechanisms of damage in lung disease patients with SARS-CoV-2 infection. Patients with COVID-19 and a control group were included. Organ dysfunction was evaluated using SOFA. SARS-CoV-2 infection was confirmed and classified as moderate or severe by ventilatory status and by the Berlin criteria for acute respiratory distress syndrome. SNPs in the gene locus for NFE2L2, rs2364723C>G, and KEAP1, rs9676881A>G, and rs34197572C>T were determined by qPCR. We analyzed 110 individuals with SARS-CoV-2 infection: 51 with severe evolution and 59 with moderate evolution. We also analyzed 111 controls. Significant differences were found for rs2364723 allele G in severe cases vs. controls (p = 0.02); for the rs9676881 allele G in moderate cases vs. controls (p = 0.04); for the rs34197572 allele T in severe cases vs. controls (p = 0.001); and in severe vs. moderate cases (p = 0.004). Our results showed that NFE2L2 rs2364723C>G allele G had a protective effect against severe COVID-19, while KEAP1 rs9676881A>G allele G and rs34197572C>T minor allele T were associated with more aggressive stages of COVID-19.


Asunto(s)
COVID-19 , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Humanos , COVID-19/genética , Predisposición Genética a la Enfermedad , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , SARS-CoV-2
17.
Molecules ; 27(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35268568

RESUMEN

Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis. However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer, its progression, and response to therapy includes numerous, highly complex events. They occur through interactions between cancer and stromal cells. These events are dependent on many cell-type specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and extend to the permissiveness of chromatin for transcription of Antioxidant Response Element (ARE)-containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and stromal cells, which is also an important factor involved in the response to therapy.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch
18.
J Biol Chem ; 295(10): 3055-3063, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32001619

RESUMEN

In human cancer cells that harbor mutant KRAS and WT p53 (p53), KRAS contributes to the maintenance of low p53 levels. Moreover, KRAS depletion stabilizes and reactivates p53 and thereby inhibits malignant transformation. However, the mechanism by which KRAS regulates p53 is largely unknown. Recently, we showed that KRAS depletion leads to p53 Ser-15 phosphorylation (P-p53) and increases the levels of p53 and its target p21/WT p53-activated fragment 1 (WAF1)/CIP1. Here, using several human lung cancer cell lines, siRNA-mediated gene silencing, immunoblotting, quantitative RT-PCR, promoter-reporter assays, and reactive oxygen species (ROS) assays, we demonstrate that KRAS maintains low p53 levels by activating the NRF2 (NFE2-related factor 2)-regulated antioxidant defense system. We found that KRAS depletion led to down-regulation of NRF2 and its targets NQO1 (NAD(P)H quinone dehydrogenase 1) and SLC7A11 (solute carrier family 7 member 11), decreased the GSH/GSSG ratio, and increased ROS levels. We noted that the increase in ROS is required for increased P-p53, p53, and p21Waf1/cip1 levels following KRAS depletion. Downstream of KRAS, depletion of RalB (RAS-like proto-oncogene B) and IκB kinase-related TANK-binding kinase 1 (TBK1) activated p53 in a ROS- and NRF2-dependent manner. Consistent with this, the IκB kinase inhibitor BAY11-7085 and dominant-negative mutant IκBαM inhibited NF-κB activity and increased P-p53, p53, and p21Waf1/cip1 levels in a ROS-dependent manner. In conclusion, our findings uncover an important role for the NRF2-regulated antioxidant system in KRAS-mediated p53 suppression.


Asunto(s)
Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Humanos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteínas de Unión al GTP ral/antagonistas & inhibidores , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo
19.
J Biol Chem ; 295(21): 7350-7361, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32295843

RESUMEN

The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) plays a critical role in reducing oxidative stress by promoting the expression of antioxidant genes. Both individuals with diabetes and preclinical diabetes models exhibit evidence of a defect in retinal Nrf2 activation. We recently demonstrated that increased expression of the stress response protein regulated in development and DNA damage 1 (REDD1) is necessary for the development of oxidative stress in the retina of streptozotocin-induced diabetic mice. In the present study, we tested the hypothesis that REDD1 suppresses the retinal antioxidant response to diabetes by repressing Nrf2 function. We found that REDD1 ablation enhances Nrf2 DNA-binding activity in the retina and that the suppressive effect of diabetes on Nrf2 activity is absent in the retina of REDD1-deficient mice compared with WT. In human MIO-M1 Müller cell cultures, REDD1 deletion prevented oxidative stress in response to hyperglycemic conditions, and this protective effect required Nrf2. REDD1 suppressed Nrf2 stability by promoting its proteasomal degradation independently of Nrf2's interaction with Kelch-like ECH-associated protein 1 (Keap1), but REDD1-mediated Nrf2 degradation required glycogen synthase kinase 3 (GSK3) activity and Ser-351/Ser-356 of Nrf2. Diabetes diminished inhibitory phosphorylation of glycogen synthase kinase 3ß (GSK3ß) at Ser-9 in the retina of WT mice but not in REDD1-deficient mice. Pharmacological inhibition of GSK3 enhanced Nrf2 activity and prevented oxidative stress in the retina of diabetic mice. The findings support a model wherein hyperglycemia-induced REDD1 blunts the Nrf2 antioxidant response to diabetes by activating GSK3, which, in turn, phosphorylates Nrf2 to promote its degradation.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Proteolisis , Retina/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Retina/patología , Factores de Transcripción/genética
20.
J Neuroinflammation ; 18(1): 220, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34551802

RESUMEN

BACKGROUND: Homozygotic mutations in the GBA gene cause Gaucher's disease; moreover, both patients and heterozygotic carriers have been associated with 20- to 30-fold increased risk of developing Parkinson's disease. In homozygosis, these mutations impair the activity of ß-glucocerebrosidase, the enzyme encoded by GBA, and generate a lysosomal disorder in macrophages, which changes morphology towards an engorged phenotype, considered the hallmark of Gaucher's disease. Notwithstanding the key role of macrophages in this disease, most of the effects in the brain have been attributed to the ß-glucocerebrosidase deficit in neurons, while a microglial phenotype for these mutations has never been reported. METHODS: We applied the bioluminescence imaging technology, immunohistochemistry and gene expression analysis to investigate the consequences of microglial ß-glucocerebrosidase inhibition in the brain of reporter mice, in primary neuron/microglia cocultures and in cell lines. The use of primary cells from reporter mice allowed for the first time, to discriminate in cocultures neuronal from microglial responses consequent to the ß-glucocerebrosidase inhibition; results were finally confirmed by pharmacological depletion of microglia from the brain of mice. RESULTS: Our data demonstrate the existence of a novel neuroprotective mechanism mediated by a direct microglia-to-neuron contact supported by functional actin structures. This cellular contact stimulates the nuclear factor erythroid 2-related factor 2 activity in neurons, a key signal involved in drug detoxification, redox balance, metabolism, autophagy, lysosomal biogenesis, mitochondrial dysfunctions, and neuroinflammation. The central role played by microglia in this neuronal response in vivo was proven by depletion of the lineage in the brain of reporter mice. Pharmacological inhibition of microglial ß-glucocerebrosidase was proven to induce morphological changes, to turn on an anti-inflammatory/repairing pathway, and to hinder the microglia ability to activate the nuclear factor erythroid 2-related factor 2 response, thus increasing the neuronal susceptibility to neurotoxins. CONCLUSION: This mechanism provides a possible explanation for the increased risk of neurodegeneration observed in carriers of GBA mutations and suggest novel therapeutic strategies designed to revert the microglial phenotype associated with ß-glucocerebrosidase inhibition, aimed at resetting the protective microglia-to-neuron communication.


Asunto(s)
Encéfalo/enzimología , Glucosilceramidasa/antagonistas & inhibidores , Microglía/enzimología , Neuronas/metabolismo , Neuroprotección/fisiología , Animales , Encéfalo/patología , Comunicación Celular/fisiología , Ratones , Microglía/patología , Neuronas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA