Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Nanobiotechnology ; 20(1): 230, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568865

RESUMEN

BACKGROUND: Chemodynamic therapy (CDT) relying on intracellular iron ions and H2O2 is a promising therapeutic strategy due to its tumor selectivity, which is limited by the not enough metal ions or H2O2 supply of tumor microenvironment. Herein, we presented an efficient CDT strategy based on Chinese herbal monomer-dihydroartemisinin (DHA) as a substitute for the H2O2 and recruiter of iron ions to amplify greatly the reactive oxygen species (ROS) generation for synergetic CDT-ferroptosis therapy. RESULTS: The DHA@MIL-101 nanoreactor was prepared and characterized firstly. This nanoreactor degraded under the acid tumor microenvironment, thereby releasing DHA and iron ions. Subsequent experiments demonstrated DHA@MIL-101 significantly increased intracellular iron ions through collapsed nanoreactor and recruitment effect of DHA, further generating ROS thereupon. Meanwhile, ROS production introduced ferroptosis by depleting glutathione (GSH), inactivating glutathione peroxidase 4 (GPX4), leading to lipid peroxide (LPO) accumulation. Furthermore, DHA also acted as an efficient ferroptosis molecular amplifier by direct inhibiting GPX4. The resulting ROS and LPO caused DNA and mitochondria damage to induce apoptosis of malignant cells. Finally, in vivo outcomes evidenced that DHA@MIL-101 nanoreactor exhibited prominent anti-cancer efficacy with minimal systemic toxicity. CONCLUSION: In summary, DHA@MIL-101 nanoreactor boosts CDT and ferroptosis for synergistic cancer therapy by molecular amplifier DHA. This work provides a novel and effective approach for synergistic CDT-ferroptosis with Chinese herbal monomer-DHA and Nanomedicine.


Asunto(s)
Ferroptosis , Neoplasias , Artemisininas , Línea Celular Tumoral , Glutatión , Humanos , Peróxido de Hidrógeno , Hierro , Nanomedicina , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral
2.
Chemistry ; 23(24): 5631-5651, 2017 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27862482

RESUMEN

Nano- (or micro-scale) metal-organic frameworks (NMOFs), also known as coordination polymer particles (CPPs), have received much attention because of their structural diversities and tunable properties. Besides the direct use, NMOFs can be alternatively used as sacrificial templates/precursors for the preparation of a wide range of hybrid inorganic nanomaterials in straightforward and controllable manners. Distinct advantages of using NMOF templates are correlated to their structural and functional tailorability at molecular levels that is rarely acquired in any other conventional template/precursor. In addition, NMOF-derived inorganic nanomaterials with distinct chemical and physical properties are inferred to dramatically expand the scope of their utilization in many fields. In this review, we aim to provide readers with a comprehensive summary of recent progress in terms of synthetic approaches for the production of diverse inorganic hybrid nanostructures from as-synthesized NMOFs and their promising applications.

3.
Appl Biochem Biotechnol ; 196(2): 616-631, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37166650

RESUMEN

Bacterial diseases have been considered the most crucial issue and are threatening human health all around the world. Also, resistance to antimicrobial drugs has become a big hurdle against efficient therapy. As a result, recombinant chimeric endolysin was produced in E. coli host to use as a potential antibacterial agent against bacteria resistance and replacement to conventional antibiotics in this study. Then, chitosan (C)-coated nanoscale metal-organic frameworks (CS-NMOFs) nanocomposite was synthesized as a novel nano delivery system to further improve the antibacterial activity of endolysin. After characterization of nanocomposite with analytical devices such as FT-IR, DLS, and TEM and determining the nanometric size of samples (30 nm to 90 nm), endolysin was covalently (endolysin-CS-NMOFs (C)) and non-covalently (endolysin-CS-NMOFs (NC)) conjugated to nanocomposite. Thereafter, the lytic ability, synergistic interaction, and biofilm reduction manner of endolysin-containing CS-NMOF nanocomposites were evaluated on E. coli, S. aureus, and P. aeruginosa strains. The results depicted an excellent lytic ability of nanocomposites after 24 h and 48 h of treatment, especially endolysin-CS-NMOFs (NC) on E. coli and P. aeruginosa strains. The synergistic interaction between nanocomposite and vancomycin did not attain for P. aeruginosa strain whereas the reverse was true for E. coli and S. aureus strains at 8 ng/mL concentration. Next, nanocomposites demonstrated potential biofilm reduction activities in various strains, especially in S. aureus and P. aeruginosa. Ultimately, our outputs demonstrate an efficient performance of the synthesized nanocomposite as an appropriate substitution for conventional antibiotics against bacteria.


Asunto(s)
Quitosano , Endopeptidasas , Estructuras Metalorgánicas , Nanocompuestos , Humanos , Estructuras Metalorgánicas/farmacología , Staphylococcus aureus , Escherichia coli , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Zinc , Pruebas de Sensibilidad Microbiana
4.
Heliyon ; 10(8): e29876, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681609

RESUMEN

Without a doubt, cancer and its negative impact on human health have created many hurdles for people across the world since conventional approaches have not offered a reliable ability in the eradication of cancer. As a result, finding novel approaches, like using bimodal nanoparticles as a potential nanocarrier in molecular imaging and cancer therapy, is remarkably required these days. In the present study, ex-situ (Ge) and in-situ (Gi) green synthesized silver (Ag) nanoparticles entrapped in metal-organic framework nanocomposites (NMOF) coated with folic acid (FA) targeted chitosan (CS) was successfully developed as a novel bifunctional nanocarrier for detection and treatment of colon cancer cells. Then nanocarriers, such as NMOF-CS-FA, Ge-Ag@NMOF-CS-FA, Gi-Ag@NMOF-CS-FA, and C-Ag@NMOF-CS-FA, were characterized via FT-IR, DLS, SERS, TEM, and SEM and results have potentially confirmed the quality and quantity of synthesized nanocomposites. The hydrodynamic diameters of NMOF-CS, Ge-Ag@NMOF-CS, Gi-Ag@NMOF-CS, and C-Ag@NMOF-CS specimens were measured at around 99.7 ± 10 nm, 110 ± 10 nm, 118 ± 10 nm, 115 ± 10 nm, respectively. Also, the PDI values less than 0.2 confirm the reliable distribution of these nanocomposites. Afterward, the cell viability assay was conducted on HCT116 and HGF cell lines for evaluating biocompatibility and targeting efficiency of nanocomposites; FA functionalized nanocomposites have intensively indicated better performance in cancer cells targeting and their inhibition, and IC50 was attained for 10 ng/mL of Ge-Ag@NMOF-CS-FA while non-targeted nanocarriers did not have toxicity more than 20 % on HCT116 colon cancer cells. Moreover, according to the results, the cell viability of HGF normal cells was at least 85 % after being exposed to different concentrations of nanocomposites for 24 h. This indicates that the synthesized nanocomposites do not have significant toxic effects on normal cells. The results indicate that this novel nanocomposite has the potential to effectively deliver drugs to cancer cells.

5.
Adv Mater ; 33(35): e2008297, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34309916

RESUMEN

Mass cytometry, also called cytometry by time-of-flight (CyTOF), is an emerging powerful proteomic analysis technique that utilizes metal chelated polymer (MCP) as mass tags for interrogating high-dimensional biomarkers simultaneously on millions of individual cells. However, under the typical polymer-based mass tag system, the sensitivity and multiplexing detection ability has been highly restricted. Herein, a new structure mass tag based on a nanometal organic framework (NMOF) is reported for multiparameter and sensitive single-cell biomarker interrogating in CyTOF. A uniform-sized Zr-NMOF (33 nm) carrying 105 metal ions is synthesized under modulator/reaction time coregulation, which is monodispersed and colloidally stable in water for over one-year storage. On functionalization with an antibody, the Zr mass tag exhibits specific molecular recognition properties and minimal cross-reaction toward nontargeted cells. In addition, the Zr-mass tag is compatible with MCP mass tags in a multiparameter assay for mouse spleen cells staining, which exploits four additional channels, m/z = 90, 91, 92, 94, for single-cell immunoassays in CyTOF. Compared to the MCP mass tag, the Zr-mass tag provides an additional fivefold signal amplification. This work provides the fundamental technical capability for exploiting NMOF-based mass tags for CyTOF application, which opens up possibility of high-dimensional single-cell immune profiling, low abundant antigen detection, and development of new barcoding systems.


Asunto(s)
Citometría de Flujo , Proteómica , Animales , Anticuerpos , Inmunoensayo , Espectrometría de Masas , Ratones , Análisis de la Célula Individual
6.
Curr Drug Deliv ; 18(3): 297-311, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32940178

RESUMEN

BACKGROUND: Development of controlled drug delivery systems can improve the pharmacokinetic characteristics of drug molecules in the human body, thereby significantly improving the utilization rate of drugs and reducing toxicity and side effects caused by their high concentrations, which can occur when delivery is not controlled. Metal organic frameworks are a new class of very promising crystalline microporous materials, especially when the size is reduced to the nanometer range. Metal-organic frameworks exhibit large specific surface areas, tunable compositions, and easy functionalization. In recent years, an increasing number of studies have reported the remarkable advances in multifunctional nanoscale metal-organic frameworks in drug delivery. OBJECTIVE: To review the latest research involving advances in stimuli-responsive nanoscale metal organic frameworks as drug delivery systems in controlled-release drugs. DISCUSSION: We first introduce the two main strategies associated with nanoscale metal organic frameworks used in drug loading: direct assembly and post-encapsulation. We next focus on the latest discoveries of nanoscale metal-organic framework-based stimulus response systems for drug delivery, including pH, magnetics, light, ion, temperature, and other stimuli, as well as multiple stimulus- responsive drug delivery systems. Finally, we discuss the challenges and future developmental directions of nanoscale metal-organic framework-based controlled drug release.


Asunto(s)
Estructuras Metalorgánicas , Preparaciones Farmacéuticas , Cristalinas , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos
7.
Anal Chim Acta ; 1133: 128-136, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-32993865

RESUMEN

Sensitive and rapid detection of pathogenic bacteria remains important and challenging for food safety and preventing outbreaks of foodborne disease. The major limitations of standard analytical methods for detecting vibrio parahaemolyticus (V.P) lie in their bulky equipment and tedious and long-time operation. This study presents an electrochemical aptasensor for the rapid on-site quantification of V.P in seafood. Magnetic nanoscale metal-organic frameworks (Fe3O4@NMOF) labeled with an aptamer against V.P served as capture probes, while gold nanoparticles combined with phenylboronic acid and ferrocene acted as the nanolabels. When detecting V.P, the sandwich-type complex of capture probe-V.P-nanolabel was formed and magnetically attached to a screen-printed electrode (SPE) for signal measurement. Under optimal conditions, the increase in the ferrocene electrochemical signals could assess the V.P amount; the quantified concentration range was 10-109 cfu/mL. Then, the developed signal-on sensor successfully detected V.P in real seafood samples, exhibiting many advantages. It could not only specifically enrich and rapidly separate the V.P in complex samples but also largely amplify the signal. Moreover, using compact SPE with a detection time of maximum 20 min as the measurement platform allows rapid on-site assays. Thus, the proposed method is a feasible strategy for screening V.P in seafood.


Asunto(s)
Aptámeros de Nucleótidos , Nanopartículas del Metal , Estructuras Metalorgánicas , Vibrio parahaemolyticus , Ácidos Borónicos , Oro , Límite de Detección , Fenómenos Magnéticos , Metalocenos
8.
R Soc Open Sci ; 7(12): 200959, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33489263

RESUMEN

The drug resistance of bacteria is a significant threat to human civilization while the action of antibiotics against drug-resistant bacteria is severely limited owing to the hydrophobic nature of drug molecules, which unquestionably inhibit its permanency for clinical applications. The antibacterial action of nanomaterials offers major modalities to combat drug resistance of bacteria. The current work reports the use of nano-metal-organic frameworks encapsulating drug molecules to enhance its antibacterial activity against model drug-resistant bacteria and biofilm of the bacteria. We have attached rifampicin (RF), a well-documented antituberculosis drug with tremendous pharmacological significance, into the pore surface of zeolitic imidazolate framework 8 (ZIF8) by a simple synthetic procedure. The synthesized ZIF8 has been characterized using the X-ray diffraction (XRD) method before and after drug encapsulation. The electron microscopic strategies such as scanning electron microscope and transmission electron microscope methods were performed to characterize the binding between ZIF8 and RF. We have also performed picosecond-resolved fluorescence spectroscopy to validate the formation of the ZIF8-RF nanohybrids (NHs). The drug release profile experiment demonstrates that ZIF8-RF depicts pH-responsive drug delivery and is ideal for targeting bacterial disease corresponding to its inherent acidic nature. Most remarkably, ZIF8-RF gives enhanced antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria and also prompts entire damage of structurally robust bacterial biofilms. Overall, the present study depicts a detailed physical insight for manufactured antibiotic-encapsulated NHs presenting tremendous antimicrobial activity that can be beneficial for manifold practical applications.

9.
Biosens Bioelectron ; 146: 111744, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31605986

RESUMEN

MicroRNAs, essential for gene expression and physiological regulation, are considered to be reliable biomarkers for the early diagnosis and treatment of cancers. Herein, a sensitive biosensor that uses a synergistically catalytic nanoprobe and improved toehold strand displacement reaction (TSDR) has been fabricated, and successfully applied to microRNA-155 (miR-155) detection. A nanoscale copper-based metal organic framework assembled by Pt nanoparticles and horseradish peroxidase (Cu-NMOF@PtNPs/HRP) served as a co-catalytic nanoprobe and was coupled with improved TSDR to achieve multiple amplifications. In the absence of miR-155, the tetrahedral DNA nanostructures (TDNs) immobilized on the gold electrode were independent of the TSDR system because of the binding of the shielding region of the locked probe (LP) with the template probe (TP). Instead, the target would initiate the TSDR system, leading to the conformational change of TDNs and hybridization of the nanoprobe. Cu-NMOF@PtNPs/HRP exhibited extraordinary catalytic property towards the hydroquinone-hydrogen peroxide system, demonstrating that the nanoprobe exerted a concerted effect on the electrochemical performance of the biosensor. Under optimal conditions, the cathodic current exhibited a logarithmic relation over 0.50-1.0 × 105fM miR-155, with a detection limit of 0.13 fM, indicating that the constructed biosensor has considerable potential in the field of clinical disease diagnostics for miR-155.


Asunto(s)
Técnicas Biosensibles/métodos , Estructuras Metalorgánicas/química , MicroARNs/análisis , Nanoestructuras/química , Platino (Metal)/química , Línea Celular Tumoral , Cobre/química , Peroxidasa de Rábano Silvestre/química , Humanos , Ácidos Nucleicos Inmovilizados/química , Límite de Detección , Nanopartículas del Metal/química , MicroARNs/sangre
10.
ACS Appl Bio Mater ; 2(4): 1772-1780, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35026912

RESUMEN

Multidrug resistance (MDR) of bacteria is a major threat to public health globally and its unprecedented increase calls for immediate alternative medical strategies. Antimicrobial photodynamic therapy (aPDT) offers alternative modalities to combat the growing MDR typically by means of targeted cellular internalization of a photosensitizer (PS) capable of producing photoinduced reactive oxygen species (ROS). However, aPDT is severely limited by the self-aggregation behavior and hydrophobicity of PS molecules, which significantly curbs its viability for clinical application. The present study reports the use of modified nanoscale metal-organic frameworks (NMOFs) encapsulating a hydrophobic PS drug squaraine (SQ) to enhance aPDT efficacy against drug-resistant planktonic bacteria and its biofilm for the first time. Zeolitic imidazolate framework (ZIF-8) NMOF nanocrystals are attached postsynthetically with SQ (designated as ZIF8-SQ) and the resultant drug-doped NMOF is characterized by TEM, FESEM, PXRD, Raman spectroscopy, UV-vis spectroscopy, and steady-state and time-resolved fluorescence techniques. The microporous structures of ZIF-8 behave as molecular cages ceasing the self-aggregation of hydrophobic SQ. In addition, the formulated ZIF8-SQ produces cytotoxic ROS under red-light irradiation (650 nm) in a pH sensitive way primarily due to molecular level interaction and charge separation between ZIF-8 and SQ depicting a dual-stimuli-responsive nature. Most notably, ZIF8-SQ provides unparalleled aPDT action against methicillin-resistant Staphylococcus aureus (MRSA) and leads to complete loss of adherence of structurally robust bacterial biofilms. Finally, the nontoxic nature of the nanoconjugate toward human cells holds great promise for effective treatment of MRSA and other detrimental antibiotic-resistant microbes in clinical models.

11.
ACS Appl Bio Mater ; 2(5): 2092-2101, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35030648

RESUMEN

In this paper, we report the synthesis of bioactive copper-gallic acid nanoscale metal-organic framework for the codelivery of anticancer agent (gallic acid) and photosensitizer (methylene blue) to cancer cells. A supramolecular coordination complex of copper-bioactive frameworks (bio MOFs) were employed as the carrier of two anticancer agents. The first one is the natural phenolic acid (gallic acid), which forms a part of the framework structure (building block). The other one is the photosensitizer methylene blue, loaded as a guest molecule within the amphiphilic pores of the framework. In vitro cytotoxicity and in vivo tumor regression assays revealed enhanced cytotoxicity of dual drug nanoframework when compared with the equivalent dosages of free drugs in the presence of light.

12.
J Agric Food Chem ; 65(28): 5731-5740, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28654744

RESUMEN

A mimicking-enzyme-based colorimetric aptasensor was developed for the detection of kanamycin (KANA) in milk using magnetic loop-DNA-NMOF-Pt (m-L-DNA) probes and catalytic hairpin assembly (CHA)-assisted target recycling for signal amplification. The m-L-DNA probes were constructed via hybridization of hairpin DNA H1 (containing aptamer sequence) immobilized magnetic beads (m-H1) and signal DNA (sDNA, partial hybridization with H1) labeled nano Fe-MIL-88NH2-Pt (NMOF-Pt-sDNA). In the presence of KANA and complementary hairpin DNA H2, the m-L-DNA probes decomposed and formed an m-H1/KANA intermediate, which triggered the CHA reaction to form a stable duplex strand (m-H1-H2) while releasing KANA again for recycling. Consequently, numerous NMOF-Pt-sDNA as mimicking enzymes can synergistically catalyze 3,3',5,5'-tetramethylbenzidine (TMB) for color development. The aptasensor exhibited high selectivity and sensitivity for KANA in milk with a detection limit of 0.2 pg mL-1 within 30 min. The assay can be conveniently extended for on-site screening of other antibiotics in foods by simply changing the base sequence of the probes.


Asunto(s)
Antibacterianos/análisis , Técnicas Biosensibles/métodos , Residuos de Medicamentos/análisis , Leche/química , Animales , Aptámeros de Nucleótidos/química , Bencidinas/química , Técnicas Biosensibles/instrumentación , Bovinos , Colorimetría , ADN/química , Contaminación de Alimentos/análisis , Oro/química , Kanamicina/análisis , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA