Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angiogenesis ; 26(2): 217-232, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36745292

RESUMEN

Precise and specific spatiotemporal domains of gene expression regulation are critical for embryonic development. Recent studies have identified GLTSCR1 as a gene transcriptional elongation regulator in cancer research. However, the function of GLTSCR1, especially in embryonic development, remains poorly understood. Here, we found that GLTSCR1 was essential for cardiac development because Gltscr1 knockout (Gltscr1-/-) led to embryonic lethality in mice with severe congenital heart defects (CHDs). Ventricular septal defect and double outflow right ventricular were also observed in neural crest cells with conditional deletion of Gltscr1, which were associated with neonatal lethality in mice. Mechanistically, GLTSCR1 deletion promoted NPPA expression by coordinating the CHD risk G allele of rs56153133 in the NPPA enhancer and releasing the transcription factor ZNF740-binding site on the NPPA promoter. These findings demonstrated that GLTSCR1 acts as a candidate CHD-related gene.


Asunto(s)
Factor Natriurético Atrial , Proteínas Cromosómicas no Histona , Cardiopatías Congénitas , Proteínas Supresoras de Tumor , Animales , Femenino , Ratones , Embarazo , Proteínas Cromosómicas no Histona/metabolismo , Desarrollo Embrionario , Regulación de la Expresión Génica , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Factor Natriurético Atrial/genética
2.
Basic Res Cardiol ; 117(1): 10, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247074

RESUMEN

The role of long non-coding RNA (lncRNA) in endogenous cardiac regeneration remains largely elusive. The mammalian cardiomyocyte is capable of regeneration for a brief period after birth. This fact allows the exploration of the roles of critical lncRNAs in the regulation of cardiac regeneration. Through a cardiac regeneration model by apical resection (AR) of the left ventricle in neonatal mice, we identified an lncRNA named natriuretic peptide A antisense RNA 1 (NPPA-AS1), which negatively regulated cardiomyocyte proliferation. In neonates, NPPA-AS1 deletion did not affect heart development, but was sufficient to prolong the postnatal window of regeneration after AR. In adult mice, NPPA-AS1 deletion improved cardiac function and reduced infarct size after myocardial infarction (MI), associated with a significant improvement in cardiomyocyte proliferation. Further analysis showed that NPPA-AS1 interacted with DNA repair-related molecule splicing factor, proline- and glutamine-rich (SFPQ). A heteromer of SFPQ and non-POU domain-containing octamer-binding protein (NONO) was required for double-strand DNA break repair, but NPPA-AS1 was competitively bound with SFPQ due to the overlapped binding sites of SFPQ and NONO. NPPA-AS1 deletion promoted the binding of SFPQ-NONO heteromer, decreased DNA damage, and activated cardiomyocyte cell cycle re-entry. Together, loss of NPPA-AS1 promoted cardiomyocyte proliferation by stabilizing SFPQ-NONO heteromer-induced DNA repair and exerted a therapeutic effect against MI in adult mice. Consequently, NPPA-AS1 may be a novel target for stimulating cardiac regeneration to treat MI.


Asunto(s)
Infarto del Miocardio , ARN Largo no Codificante , Animales , Factor Natriurético Atrial , Proliferación Celular , Reparación del ADN , Proteínas de Unión al ADN , Mamíferos , Ratones , Infarto del Miocardio/genética , Miocitos Cardíacos , Procainamida/análogos & derivados , ARN Largo no Codificante/genética , Proteínas de Unión al ARN , Regeneración
3.
Cell Biol Int ; 46(12): 2173-2184, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36069519

RESUMEN

The objective of the current study is to analyze the effects of gestational diabetes on structural and functional changes in correlation with these two essential regulators of developing hearts in vivo using zebrafish embryos. We employed fertilized zebrafish embryos exposed to a hyperglycemic condition of 25 mM glucose for 96 h postfertilization. The embryos were subjected to various structural and functional analyses in a time-course manner. The data showed that exposure to high glucose significantly affected the embryo's size, heart length, heart rate, and looping of the heart compared to the control. Further, we observed an increased incidence of ventricular standstill and valvular regurgitation with a marked reduction of peripheral blood flow in the high glucose-exposed group compared to the control. In addition, the histological data showed that the high-glucose exposure markedly reduced the thickness of the wall and the number of cardiomyocytes in both atrium and ventricles. We also observed striking alterations in the pericardium like edema, increase in diameter with thinning of the wall compared to the control group. Interestingly, the expression of tbx5a and nppa was increased in the early development and found to be repressed in the later stage of development in the hyperglycemic group compared to the control. In conclusion, the developing heart is more susceptible to hyperglycemia in the womb, thereby showing various developmental defects possibly by altering the expression of crucial gene regulators such as tbx5a and nppa.


Asunto(s)
Hiperglucemia , Pez Cebra , Animales , Pez Cebra/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/farmacología , Corazón , Miocitos Cardíacos/metabolismo , Hiperglucemia/metabolismo , Glucosa/metabolismo , Expresión Génica , Embrión no Mamífero/metabolismo
4.
J Cell Biochem ; 122(1): 16-28, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32965043

RESUMEN

Long noncoding RNAs (lncRNAs), a group of transcripts, have been revealed to be critical participants in regulating multiple biological processes of malignant tumors. The knowledge of NPPA-AS1 (a new lncRNA) in cancer research is hardly known. Thus, it is of urgent need to study the underlying role of NPPA antisense RNA 1 (NPPA-AS1) in cervical cancer (CC). In this study, NPPA-AS1 was discovered to be lowly expressed and upregulation of it impaired cell proliferation and migration in CC. Besides, downregulation of it led to opposite results. Molecular mechanism assays uncovered that increased expression of NPPA-AS1 could inactivate Wnt/ß-catenin signaling pathway in CC. In addition, NPPA-AS1 was found to negatively interact with miR-302e whereas positively correlate with dickkopf-1 (DKK1, an inhibitor of Wnt pathway) in CC. Besides, loss of function assay illuminated that miR-302e inhibition restrained cell proliferation and migration in CC. Subsequent rescue assays confirmed that NPPA-AS1 acted as a competing endogenous RNA in CC by sponging miR-302e to upregulate DKK1 expression. Finally, the RE-1 silencing transcription factor (REST) was testified to function as a transcription suppressor of NPPA-AS1 in CC. In brief, REST-repressed NPPA-AS1 regulates CC progression by modulating miR-302e/DKK1/Wnt/ß-catenin signaling pathway.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , ARN Largo no Codificante/genética , Proteínas Represoras/metabolismo , Neoplasias del Cuello Uterino/patología , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis , Factor Natriurético Atrial/antagonistas & inhibidores , Factor Natriurético Atrial/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Pronóstico , ARN sin Sentido/genética , Proteínas Represoras/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Proteína Wnt1/genética , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/genética
5.
Development ; 145(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29752386

RESUMEN

Atrial natriuretic peptide (nppa/anf) and brain natriuretic peptide (nppb/bnp) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy; however, their genomic location in cis has impeded formal analysis. Using genome editing, we have generated mutants for nppa and nppb, and found that single mutants were indistinguishable from wild type, whereas nppa/nppb double mutants displayed heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4, tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirmed cardiac jelly expansion in nppa/nppb double mutants. Finally, bmp4 knockdown rescued the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber.


Asunto(s)
Factor Natriurético Atrial/genética , Corazón/embriología , Péptido Natriurético Encefálico/genética , Receptores del Factor Natriurético Atrial/genética , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Edición Génica , Cardiopatías Congénitas/genética , Hialuronano Sintasas/metabolismo , Proteínas de Dominio T Box/metabolismo , Versicanos/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
J Cell Mol Med ; 24(22): 13151-13162, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32989924

RESUMEN

Cardiac hypertrophy is a common pathological change in patients with progressive cardiac function failure, which can be caused by hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) or arterial hypertension. Despite years of study, there is still limited knowledge about the underlying molecular mechanisms for cardiac hypertrophy. NDUFA7, a subunit of NADH:ubiquinone oxidoreductase (complex I), has been reported to be a novel HCM associated gene. However, the biological role of NDUFA7 in heart remains unknown. In this study, we found that NDUFA7 exhibited high expression in the heart, and its level was significantly decreased in mice model of cardiac hypertrophy. Moreover, we demonstrated that ndufa7 knockdown in developing zebrafish embryos resulted in cardiac development and functional defects, associated with increased expression of pathological hypertrophy biomarkers nppa (ANP) and nppb (BNP). Mechanistic study demonstrated that ndufa7 depletion promoted ROS production and calcineurin signalling activation. Moreover, NDUFA7 depletion contributed to cardiac cell hypertrophy. Together, these results report for the first time that ndufa7 is implicated in pathological cardiac hypertrophy.


Asunto(s)
Cardiomegalia/patología , Cardiomiopatía Hipertrófica/patología , Complejo I de Transporte de Electrón/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Arterias/metabolismo , Biomarcadores/metabolismo , Calcineurina/metabolismo , Cardiomegalia/enzimología , Cardiomiopatía Hipertrófica/enzimología , Línea Celular , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/genética , Técnicas de Silenciamiento del Gen , Genotipo , Corazón/crecimiento & desarrollo , Corazón/fisiopatología , Insuficiencia Cardíaca/metabolismo , Hipertensión/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Distribución Tisular , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
7.
J Cell Biochem ; 121(8-9): 3752-3763, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31680326

RESUMEN

Long noncoding RNAs (lncRNAs) are an emerging class of RNA species that could participate in some critical pathways and disease pathogenesis. However, the underlying molecular mechanism of lncRNAs in atrial fibrillation (AF) is still not fully understood. In the present study, we analyzed RNA-seq data of paired left and right atrial appendages from five patients with AF and other five patients without AF. Based on the gene expression profiles of 20 samples, we found that a majority of genes were aberrantly expressed in both left and right atrial appendages of patients with AF. Similarly, the dysregulated pathways in the left and right atrial appendages of patients with AF also bore a close resemblance. Moreover, we predicted regulatory lncRNAs that regulated the expression of adjacent protein-coding genes (PCGs) or interacted with proteins. We identified that NPPA and its antisense RNA NPPA-AS1 may participate in the pathogenesis of AF by regulating the muscle contraction. We also identified that RP11 - 99E15.2 and RP3 - 523K23.2 could interact with proteins ITGB3 and HSF2, respectively. RP11 - 99E15.2 and RP3 - 523K23.2 may participate in the pathogenesis of AF via regulating the extracellular matrix binding and the transcription of HSF2 target genes, respectively. The close association of the lncRNA-interacting proteins with AF further demonstrated that these two lncRNAs were also associated with AF. In conclusion, we have identified key regulatory lncRNAs implicated in AF, which not only improves our understanding of the lncRNA-related molecular mechanism underlying AF but also provides computationally predicted regulatory lncRNAs for AF researchers.

8.
Development ; 144(2): 334-344, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27993976

RESUMEN

The heart is an endocrine organ, as cardiomyocytes (CMs) secrete natriuretic peptide (NP) hormones. Since the discovery of NPs, no other peptide hormones that affect remote organs have been identified from the heart. We identified osteocrin (Ostn) as an osteogenesis/chondrogenesis regulatory hormone secreted from CMs in zebrafish. ostn mutant larvae exhibit impaired membranous and chondral bone formation. The impaired bones were recovered by CM-specific overexpression of OSTN. We analyzed the parasphenoid (ps) as a representative of membranous bones. In the shortened ps of ostn morphants, nuclear Yap1/Wwtr1-dependent transcription was increased, suggesting that Ostn might induce the nuclear export of Yap1/Wwtr1 in osteoblasts. Although OSTN is proposed to bind to NPR3 (clearance receptor for NPs) to enhance the binding of NPs to NPR1 or NPR2, OSTN enhanced C-type NP (CNP)-dependent nuclear export of YAP1/WWTR1 of cultured mouse osteoblasts stimulated with saturable CNP. OSTN might therefore activate unidentified receptors that augment protein kinase G signaling mediated by a CNP-NPR2 signaling axis. These data demonstrate that Ostn secreted from the heart contributes to bone formation as an endocrine hormone.


Asunto(s)
Condrogénesis/genética , Miocitos Cardíacos/metabolismo , Osteogénesis/genética , Cráneo/embriología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Estructuras Animales/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Condrogénesis/efectos de los fármacos , Embrión no Mamífero , Células HEK293 , Corazón/metabolismo , Humanos , Ratones , Organogénesis/efectos de los fármacos , Organogénesis/genética , Osteogénesis/efectos de los fármacos , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/farmacología , Hormonas Peptídicas/fisiología , Cráneo/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/farmacología
9.
Genesis ; 57(6): e23294, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30920727

RESUMEN

Nppa is a cardiac hormone which plays critical roles in regulating salt-water balance. Its expression is restricted to the atria of the healthy post-natal heart. During heart development, spatio-temporal expression of Nppa is dynamically changed within the heart and becomes restricted to the atria upon birth. In contrast to its atrial specific expression after birth, Nppa is re-expressed in the adult ventricles in response to cardiac hypertrophy. To study cardiac chamber specification during development and pathological cardiac remodeling during heart disease, we generated a novel Nppa reporter mouse line by knocking-in a tagBFP reporter cassette into 3'-UTR of the Nppa gene without disrupting the endogenous gene. Our results demonstrated dynamic tagBFP expression in the developing heart, recapitulating the spatiotemporal expression pattern of endogenous Nppa. We also found that Nppa-tagBFP is induced in the ventricle during pathological remodeling. Taken together, Nppa-tagBFP reporter knock-in mouse model described in this article will serve as a valuable tool to study cardiac chamber specification during development as well as pathological cardiac remodeling.


Asunto(s)
Factor Natriurético Atrial/metabolismo , Cardiomegalia/fisiopatología , Técnicas de Sustitución del Gen/métodos , Animales , Factor Natriurético Atrial/genética , Modelos Animales de Enfermedad , Genes Reporteros/genética , Corazón/fisiología , Ventrículos Cardíacos/patología , Ratones , Ratones Endogámicos C57BL
10.
J Mol Cell Cardiol ; 132: 24-35, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31077706

RESUMEN

A frameshift (fs) mutation in the natriuretic peptide precursor A (NPPA) gene, encoding a mutant atrial natriuretic peptide (Mut-ANP), has been linked with familial atrial fibrillation (AF) but the underlying mechanisms by which the mutation causes AF remain unclear. We engineered 2 transgenic (TG) mouse lines expressing the wild-type (WT)-NPPA gene (H-WT-NPPA) and the human fs-Mut-NPPA gene (H-fsMut-NPPA) to test the hypothesis that mice overexpressing the human NPPA mutation are more susceptible to AF and elucidate the underlying electrophysiologic and molecular mechanisms. Transthoracic echocardiography and surface electrocardiography (ECG) were performed in H-fsMut-NPPA, H-WT-NPPA, and Non-TG mice. Invasive electrophysiology, immunohistochemistry, Western blotting and patch clamping of membrane potentials were performed. To examine the role of the Mut-ANP in ion channel remodeling, we measured plasma cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) activity in the 3 groups of mice. In H-fsMut-NPPA mice mean arterial pressure (MAP) was reduced when compared to H-WT-NPPA and Non-TG mice. Furthermore, injection of synthetic fs-Mut-ANP lowered the MAP in H-WT-NPPA and Non-TG mice while synthetic WT-ANP had no effect on MAP in the 3 groups of mice. ECG characterization revealed significantly prolonged QRS duration in H-fsMut-NPPA mice when compared to the other two groups. Trans-Esophageal (TE) atrial pacing of H-fsMut-NPPA mice showed increased AF burden and AF episodes when compared with H-WT-NPPA or Non-TG mice. The cardiac Na+ (NaV1.5) and Ca2+ (CaV1.2/CaV1.3) channel expression and currents (INa, ICaL) and action potential durations (APD90/APD50/APD20) were significantly reduced in H-fsMut-NPPA mice while the rectifier K+ channel current (IKs) was markedly increased when compared to the other 2 groups of mice. In addition, plasma cGMP levels were only increased in H-fsMut-NPPA mice with a corresponding reduction in plasma cAMP levels and PKA activity. In summary, we showed that mice overexpressing an AF-linked NPPA mutation are more prone to develop AF and this risk is mediated in part by remodeling of the cardiac Na+, Ca2+ and K+ channels creating an electrophysiologic substrate for reentrant AF.


Asunto(s)
Potenciales de Acción , Fibrilación Atrial/etiología , Factor Natriurético Atrial/genética , Mutación del Sistema de Lectura , Atrios Cardíacos/fisiopatología , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Factor Natriurético Atrial/metabolismo , Fenómenos Electrofisiológicos , Humanos , Potenciales de la Membrana , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo
11.
Physiol Genomics ; 49(7): 355-367, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28500252

RESUMEN

How obesity or sex may affect the gene expression profiles of human cardiac hypertrophy is unknown. We hypothesized that body-mass index (BMI) and sex can affect gene expression profiles of cardiac hypertrophy. Human heart tissues were grouped according to sex (male, female), BMI (lean<25 kg/m2, obese>30 kg/m2), or left ventricular hypertrophy (LVH) and non-LVH nonfailed controls (NF). We identified 24 differentially expressed (DE) genes comparing female with male samples. In obese subgroup, there were 236 DE genes comparing LVH with NF; in lean subgroup, there were seven DE genes comparing LVH with NF. In female subgroup, we identified 1,320 significant genes comparing LVH with NF; in male subgroup, there were 1,383 significant genes comparing LVH with NF. There were seven significant genes comparing obese LVH with lean NF; comparing male obese LVH with male lean NF samples we found 106 significant genes; comparing female obese LVH with male lean NF, we found no significant genes. Using absolute value of log2 fold-change > 2 or extremely small P value (10-20) as a criterion, we identified nine significant genes (HBA1, HBB, HIST1H2AC, GSTT1, MYL7, NPPA, NPPB, PDK4, PLA2G2A) in LVH, also found in published data set for ischemic and dilated cardiomyopathy in heart failure. We identified a potential gene expression signature that distinguishes between patients with high BMI or between men and women with cardiac hypertrophy. Expression of established biomarkers atrial natriuretic peptide A (NPPA) and B (NPPB) were already significantly increased in hypertrophy compared with controls.


Asunto(s)
Índice de Masa Corporal , Cardiomegalia/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Caracteres Sexuales , Adulto , Anciano , Cardiomiopatía Dilatada/genética , Femenino , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Hipertrofia Ventricular Izquierda/genética , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/genética , Adulto Joven
12.
Clin Exp Nephrol ; 21(3): 457-464, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27480094

RESUMEN

BACKGROUND: Blood pressure is influenced by hereditary factors and dietary habits. The objective of this study was to examine the effect of dietary salt consumption and single-nucleotide polymorphisms (SNPs) on blood pressure (BP). METHODS: This was a cross-sectional analysis of 2728 male participants who participated in a health examination in 2009. Average dietary salt consumption was estimated using electronically collected meal purchase data from cafeteria. A multivariate analysis, adjusting for clinically relevant factors, was conducted to examine whether the effect on BP of salt consumption, SNPs, and interaction between salt consumption and each SNP. This study examined the SNPs AGT rs699 (Met235Thr), ADD1 rs4961 (Gly460Trp), NPPA rs5063 (Val32Met), GPX1 rs1050450 (Pro198Leu), and AGTR1 rs5186 (A1166C) in relation to hypertension and salt sensitivity. RESULTS: BP was not significantly associated with SNPs or salt consumption. The interaction between salt consumption and SNPs with systolic BP showed a significant association in NPPA rs5063 (Val32Met) (P = 0.023) and a marginal trend toward significance in rs4961 and rs1050450 (P = 0.060 and 0.067, respectively). CONCLUSION: The effect of salt consumption on BP differed by genotype. Dietary salt consumption and genetic variation can predict a high risk of hypertension.


Asunto(s)
Pueblo Asiatico/genética , Presión Sanguínea/genética , Conducta Alimentaria , Interacción Gen-Ambiente , Hipertensión/genética , Polimorfismo de Nucleótido Simple , Sodio en la Dieta/efectos adversos , Adulto , Factor Natriurético Atrial/genética , Distribución de Chi-Cuadrado , Estudios Transversales , Empleo , Predisposición Genética a la Enfermedad , Humanos , Hipertensión/diagnóstico , Hipertensión/etnología , Hipertensión/fisiopatología , Japón/epidemiología , Modelos Lineales , Masculino , Persona de Mediana Edad , Análisis Multivariante , Salud Laboral , Fenotipo , Factores de Riesgo , Factores Sexuales
14.
J Cardiovasc Electrophysiol ; 25(9): 964-970, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24758425

RESUMEN

INTRODUCTION: Although atrial arrhythmias may have genetic causes, very few data are available on evaluation of the arrhythmic substrate in genetic atrial diseases in humans. In this study, we evaluate the nature and evolution of the atrial arrhythmic substrate in a genetic atrial cardiomyopathy. METHODS AND RESULTS: Repeated electroanatomic mapping and tomographic evaluations were used to investigate the evolving arrhythmic substrate in 5 patients with isolated arrhythmogenic atrial cardiomyopathy, caused by Natriuretic Peptide Precursor A (NPPA) gene mutation. Atrial fibrosis was assessed using late gadolinium enhancement magnetic resonance imaging (LGE-MRI). The substrate of atrial tachycardia (AT) and atrial fibrillation (AF) was biatrial dilatation with patchy areas of low voltage and atrial wall scarring (in the right atrium: 68.5% ± 6.0% and 22.2% ± 10.2%, respectively). The evolution of the arrhythmic patterns to sinus node disease with atrial standstill (AS) was associated with giant atria with extensive low voltage and atrial scarring areas (in the right atrium: 99.5% ± 0.7% and 57.5% ± 33.2%, respectively). LGE-MRI-proven biatrial fibrosis (Utah stage IV) was associated with AS. Atrial conduction was slow and heterogeneous, with lines of conduction blocks. The progressive extension and spatial distribution of the scarring/fibrosis were strictly associated with the different types of arrhythmias. CONCLUSION: The evolution of the amount and distribution of atrial scarring/fibrosis constitutes the structural substrate for the different types of atrial arrhythmias in a pure genetic model of arrhythmogenic atrial cardiomyopathy.


Asunto(s)
Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Atrios Cardíacos/patología , Imagen por Resonancia Magnética , Adulto , Arritmias Cardíacas/genética , Cicatriz , Medios de Contraste , Técnicas Electrofisiológicas Cardíacas , Femenino , Fibrosis , Gadolinio DTPA , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Modelos Genéticos
15.
Biochem Biophys Res Commun ; 436(4): 578-84, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23727574

RESUMEN

Micro RNAs are small, non-coding RNA molecules that regulate gene expression via either translational inhibition or mRNA degredation. Enhancer of zeste homolog 2 (EZH2)-mediated hypertrophic signaling is a major regulatory response to hypertrophic stimuli. In this study, we constructed AAC rat models and PE-induced hypertrophic cardiomyocytes. We demonstrated that miR-214 relative levels were upregulated, whereas EZH2 was downregulated in both vivo and vitro models. Further, one conserved base-pairing site in the EZH2 3'-untranslated region (UTR) was verified. Mutation of the site in the EZH2 3'-UTR completely blocked the negative effect of miR-214 on EZH2, suggesting that EZH2 is a direct target for miR-214 regulation. Using a gain-of-function approach, incorporating the lentivirus constructed miR-214 and its sponge, we demonstrated that miR-214 significantly regulated endogenous levels of EZH2 gene expression; whereas, changes in the expression of the Sine oculis homeobox homolog gene were induced by an adrenergic receptor agonist in the AAC rat model. Having made this study it is possible to conclude that the negative regulation of EZH2 expression contributed to miR-214-mediated cardiac hypertrophy.


Asunto(s)
Cardiomegalia/genética , MicroARNs/fisiología , Complejo Represivo Polycomb 2/metabolismo , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Proteína Potenciadora del Homólogo Zeste 2 , Células HEK293 , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Homología de Secuencia de Ácido Nucleico , Transducción de Señal
16.
Environ Pollut ; 333: 122119, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385358

RESUMEN

Fipronil (FIL) use is currently regulated in several countries due to its specific toxicity to bees. This study investigated the possible developmental toxicities as well as the acute toxicities of FIL, fipronil sulfide (FIL-SI), and fipronil sulfone (FIL-SO) to zebrafish (Danio rerio) embryos. At concentrations up to 5000 µg L-1, FIL- and FIL-SI-treated embryos exhibited significant mortality at 96 h postfertilization. Body length was significantly shortened with increasing concentrations in FIL- and FIL-SI-treated embryos. However, FIL-SO-treated embryos exhibited low mortality with high hatching rates. Body length was also significantly shortened in FIL-SO-treated embryos. Regarding the number of intersegmental vessels (ISVs), all chemical-treated embryos showed high ISV numbers with increasing concentrations of each chemical. FIL and FIL-SI induced abnormal heart formation with heart dysfunction in embryos, whereas FIL-SO did not induce any difference in heart development compared with the control. Abnormal heart formation may be related to the upregulation of nppa responsible for the expression of natriuretic peptides in embryos. Embryonic acetylcholinesterase activity was decreased gradually according to the increase in FIL and FIL-SI concentrations, whereas FIL-SO did not cause any change in enzyme activity. Il-1ß responsible for the occurrence of injury or infection was highly upregulated in FIL-SI- and FIL-SO-treated embryos. Therefore, reduction to FIL-SI may be associated with FIL toxicity, whereas oxidation to FIL-SO may be a detoxification route in the environment.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/metabolismo , Acetilcolinesterasa/metabolismo , Contaminantes Químicos del Agua/metabolismo , Embrión no Mamífero
17.
Front Cardiovasc Med ; 10: 1149717, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363091

RESUMEN

Early-onset atrial fibrillation (AF) can be the manifestation of a genetic atrial myopathy. However, specific genetic identification of a mutation causing atrial fibrosis is rare. We report a case of a young patient with an asymptomatic AF, diagnosed during a routine examination. The cardiac MRI revealed extensive atrial fibrosis and the electrophysiology study showed extensive areas of low voltage. The genetic investigation identified a homozygous pathogenic variant in the NPPA gene in the index case and the presence of the variant in heterozygosity in both parents.

18.
Physiol Rep ; 10(15): e15417, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35927940

RESUMEN

The AGTRAP-PLOD1 locus is a conserved gene cluster containing several blood pressure regulatory genes, including CLCN6, MTHFR, NPPA, and NPPB. Previous work revealed that knockout of Clcn6 on the Dahl Salt-Sensitive (SS) rat background (SS-Clcn6) resulted in lower diastolic blood pressure compared to SS-WT rats. Additionally, a recent study found sickle cell anemia patients with mutations in CLCN6 had improved survival and reduced stroke risk. We investigated whether loss of Clcn6 would delay the mortality of Dahl SS rats on an 8% NaCl (HS) diet. No significant difference in survival was found. The ability of Clcn6 to affect mRNA expression of nearby Mthfr, Nppa, and Nppb genes was also tested. On normal salt (0.4% NaCl, NS) diets, renal Mthfr mRNA and protein expression were significantly increased in the SS-Clcn6 rats. MTHFR reduces homocysteine to methionine, but no differences in circulating homocysteine levels were detected. Nppa mRNA levels in cardiac tissue from SS-Clcn6 rat in both normotensive and hypertensive conditions were significantly reduced compared to SS-WT. Nppb mRNA expression in SS-Clcn6 rats on a NS diet was also substantially decreased. Heightened Mthfr expression would be predicted to be protective; however, diminished Nppa and Nppb expression could be deleterious and by preventing or blunting vasodilation, natriuresis, and diuresis that ought to normally occur to offset blood pressure increases. The conserved nature of this genetic locus in humans and rats suggests more studies are warranted to understand how mutations in and around these genes may be influencing the expression of their neighbors.


Asunto(s)
Hipertensión , Cloruro de Sodio , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Presión Sanguínea/genética , Canales de Cloruro/genética , Genes Reguladores , Homocisteína , Humanos , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , ARN Mensajero , Ratas , Ratas Endogámicas Dahl , Cloruro de Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo
19.
Methods Mol Biol ; 2573: 89-113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040589

RESUMEN

Adeno-associated virus serotype 9 (AAV9) is often used in heart research involving gene delivery due to its cardiotropism, high transduction efficiency, and little to no pathogenicity, making it highly applicable for gene manipulation, in vivo. However, current AAV9 technology is limited by the lack of strains that can selectively express and elucidate gene function in an atrial- and ventricular-specific manner. In fact, study of gene function in cardiac atria has been limited due to the lack of an appropriate tool to study atrial gene expression in vivo, hindering progress in the study of atrial-specific diseases such as atrial fibrillation, the most common cardiac arrhythmia in the USA.This chapter describes the method for the design and production of such chamber-specific AAV9 vectors, with the use of Nppa and Myl2 promoters to enhance atrial- and ventricular-specific expression. While several gene promoter candidates were considered and tested, Nppa and Myl2 were selected for use here because of their clearly defined regulatory elements that confer cardiac chamber-specific expression. Accordingly, Nppa (-425/+25) and Myl2 (-226/+36) promoter fragments are inserted into AAV9 vectors. The atrial- and ventricular-specific expression conferred by these new recombinant AAV9 was confirmed in a double-fluorescent Cre-dependent reporter mouse model. At only 450 and 262 base pairs of Nppa and Myl2 promoters, respectively, these AAV9 that drive chamber-specific AAV9 transgene expression address two major limitations of AAV9 technology, i.e., achieving chamber-specificity while maximizing space in the AAV genome for insertion of larger transgenes.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Dependovirus/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Atrios Cardíacos/metabolismo , Ratones , Serogrupo
20.
ESC Heart Fail ; 9(1): 729-739, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34734498

RESUMEN

AIMS: Elevated brain natriuretic peptide (BNP) and the N-terminal fragment of its pro-hormone (NT-proBNP) have become established biomarkers for heart failure and are associated with cardiovascular morbidity and mortality. Investigating sources of inter-individual heterogeneity, particularly genetic factors, could help better identify patients at risk of future cardiovascular disease. The aim of this study was to estimate the heritability of circulating NT-proBNP levels, to perform a genome-wide association study (GWAS) and gene-candidate analysis focused on NPPB-NPPA genes on these levels, and to examine their association with cardiovascular or metabolic outcomes. METHODS AND RESULTS: A total of 1555 individuals from the STANISLAS study were included. The heritability of circulating NT-proBNP levels was estimated at 15%, with seven single nucleotide polymorphisms (SNPs) reaching the significant threshold in the GWAS. All above SNPs were located on the same gene cluster constituted of MTHFR, CLCN6, NPPA, NPPB, and C1orf167. NPPA gene expression was also associated with NT-proBNP levels. Moreover, six other SNPs from NPPA-NPPB genes were associated with diastolic function (lateral e' on echocardiography) and metabolic features (glycated haemoglobin). CONCLUSIONS: The heritability of natriuretic peptides appears relatively low (15%) and mainly based on the same gene cluster constituted of MTHFR, CLCN6, NPPA, NPPB, and C1orf167. Natriuretic peptide polymorphisms are associated with natriuretic peptide levels and diastolic function. These results suggest that natriuretic peptide polymorphisms may have an impact in the early stages of cardiovascular and metabolic disease.


Asunto(s)
Factor Natriurético Atrial , Estudio de Asociación del Genoma Completo , Factor Natriurético Atrial/metabolismo , Estudios de Cohortes , Humanos , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Péptidos Natriuréticos , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA