RESUMEN
Cyclic peptides have been excellent source of drug leads. With the advances in discovery platforms, the pharmaceutical industry has a growing interest in cyclic peptides and has pushed several into clinical trials. However, structural complexity of cyclic peptides brings extreme challenges for structure elucidation efforts. Isotopic fine structure analysis, Nuclear magnetic resonance (NMR), and detailed tandem mass spectrometry rapidly provided peptide sequence for streptnatamide A, a cyclic peptide isolated from a marine-derived Streptomyces sp. Marfey's analysis determined the stereochemistry of all amino acids, enabling the unambiguous structure determination of this compound. A non-ribosomal peptide synthetase biosynthetic gene cluster (stp) was tentatively identified and annotated for streptnatamide A based on the in silico analysis of whole genome sequencing data. These analytical tools will be powerful tools to overcome the challenges for cyclic peptide structure elucidation and accelerate the development of bioactive cyclic peptides.
Asunto(s)
Péptidos Cíclicos , Streptomyces , Péptidos Cíclicos/química , Streptomyces/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Espectrometría de Masas en Tándem/métodosRESUMEN
Abnormal vasoconstriction, inflammation, and vascular remodeling can be promoted by angiotensin II (Ang II) in the renin-angiotensin system (RAS), leading to vascular dysfunction diseases such as hypertension and atherosclerosis. Researchers have recently focused on angiotensin I-converting enzyme inhibitory peptides (ACEIPs), that have desirable efficacy in vascular dysfunction therapy due to Ang II reduction by inhibiting ACE activity. Promising methods for the large-scale preparation of ACEIPs include selective enzymatic hydrolysis and microbial fermentation. Thus far, ACEIPs have been widely reported to be hydrolyzed from protein-rich sources, including animals, plants, and marine organisms, while many emerging microorganism-derived ACEIPs are theoretically biosynthesized through the nonribosomal peptide synthase (NRPS) pathway. Notably, vasodilatation, anti-inflammation, and vascular reconstruction reversal of ACEIPs are strongly correlated. However, the related molecular mechanisms underlying signal transduction regulation in vivo remain unclear. We provide a comprehensive update of the ACE-Ang II-G protein-coupled type 1 angiotensin receptor (AT1R) axis signaling and its functional significance for potential translation into therapeutic strategies, particularly targeting AT1R by ACEIPs, as well as specific related signaling pathways. Future studies are expected to verify the biosynthetic regulatory mechanism of ACEIPs via the NRPS pathway, the effect of gut microbiota metabolism on vascular dysfunction and rigorous studies of ACE-Ang II-AT1R signaling pathways mediated by ACEIPs in large animals and humans.