RESUMEN
Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery.
Asunto(s)
Betacoronavirus/química , Betacoronavirus/enzimología , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Alanina/farmacología , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Dominio Catalítico , ARN Polimerasa Dependiente de ARN de Coronavirus , Microscopía por Crioelectrón , Modelos Químicos , Modelos Moleculares , ARN Viral/metabolismo , SARS-CoV-2 , Transcripción Genética , Replicación ViralRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.
Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Patógeno , Biosíntesis de Proteínas , Empalme del ARN , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Células A549 , Animales , COVID-19/virología , Chlorocebus aethiops , Células HEK293 , Humanos , Interferones/metabolismo , Transporte de Proteínas , ARN Mensajero/metabolismo , ARN Ribosómico 18S/metabolismo , ARN Citoplasmático Pequeño/química , ARN Citoplasmático Pequeño/metabolismo , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/metabolismo , Células Vero , Proteínas no Estructurales Virales/químicaRESUMEN
In a recent characterization of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variability present in 30 diagnostic samples from patients of the first COVID-19 pandemic wave, 41 amino acid substitutions were documented in the RNA-dependent RNA polymerase (RdRp) nsp12. Eight substitutions were selected in this work to determine whether they had an impact on the RdRp activity of the SARS-CoV-2 nsp12-nsp8-nsp7 replication complex. Three of these substitutions were found around the polymerase central cavity, in the template entry channel (D499G and M668V), and within the motif B (V560A), and they showed polymerization rates similar to the wild type RdRp. The remaining five mutations (P323L, L372F, L372P, V373A, and L527H) were placed near the nsp12-nsp8F contact surface; residues L372, V373, and L527 participated in a large hydrophobic cluster involving contacts between two helices in the nsp12 fingers and the long α-helix of nsp8F. The presence of any of these five amino acid substitutions resulted in important alterations in the RNA polymerization activity. Comparative primer elongation assays showed different behavior depending on the hydrophobicity of their side chains. The substitution of L by the bulkier F side chain at position 372 slightly promoted RdRp activity. However, this activity was dramatically reduced with the L372P, and L527H mutations, and to a lesser extent with V373A, all of which weaken the hydrophobic interactions within the cluster. Additional mutations, specifically designed to disrupt the nsp12-nsp8F interactions (nsp12-V330S, nsp12-V341S, and nsp8-R111A/D112A), also resulted in an impaired RdRp activity, further illustrating the importance of this contact interface in the regulation of RNA synthesis.
Asunto(s)
Mutación Puntual , ARN Viral , SARS-CoV-2 , Proteínas no Estructurales Virales , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , ARN Viral/genética , ARN Viral/metabolismo , Humanos , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Polimerizacion , COVID-19/virología , Sustitución de Aminoácidos , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Modelos MolecularesRESUMEN
The microtubule (MT) is a highly dynamic polymer that functions in various cellular processes through MT hyperacetylation. Thus, many viruses have evolved mechanisms to hijack the MT network of the cytoskeleton to allow intracellular replication of viral genomic material. Coronavirus non-structural protein 8 (nsp8), a component of the viral replication transcriptional complex, is essential for viral survival. Here, we found that nsp8 of porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with a zoonotic potential, inhibits interferon (IFN)-ß production by targeting melanoma differentiation gene 5 (MDA5), the main pattern recognition receptor for coronaviruses in the cytoplasm. Mechanistically, PDCoV nsp8 interacted with MDA5 and induced autophagy to degrade MDA5 in wild-type cells, but not in autophagy-related (ATG)5 or ATG7 knockout cells. Further screening for autophagic degradation receptors revealed that nsp8 interacts with sequestosome 1/p62 and promotes p62-mediated selective autophagy to degrade MDA5. Importantly, PDCoV nsp8 induced hyperacetylation of MTs, which in turn triggered selective autophagic degradation of MDA5 and subsequent inhibition of IFN-ß production. Overall, our study uncovers a novel mechanism employed by PDCoV nsp8 to evade host innate immune defenses. These findings offer new insights into the interplay among viruses, IFNs, and MTs, providing a promising target to develop anti-viral drugs against PDCoV.IMPORTANCECoronavirus nsp8, a component of the viral replication transcriptional complex, is well conserved and plays a crucial role in viral replication. Exploration of the role mechanism of nsp8 is conducive to the understanding of viral pathogenesis and development of anti-viral strategies against coronavirus. Here, we found that nsp8 of PDCoV, an emerging enteropathogenic coronavirus with a zoonotic potential, is an interferon antagonist. Further studies showed that PDCoV nsp8 interacted with MDA5 and sequestosome 1/p62, promoting p62-mediated selective autophagy to degrade MDA5. We further found that PDCoV nsp8 could induce hyperacetylation of MT, therefore triggering selective autophagic degradation of MDA5 and inhibiting IFN-ß production. These findings reveal a novel immune evasion strategy used by PDCoV nsp8 and provide insights into potential therapeutic interventions.
Asunto(s)
Infecciones por Coronavirus , Deltacoronavirus , Enfermedades de los Porcinos , Animales , Autofagia , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Deltacoronavirus/metabolismo , Interferones/metabolismo , Microtúbulos/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Porcinos , Enfermedades de los Porcinos/virologíaRESUMEN
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has resulted in substantial morbidity and mortality. The basis of severe disease in humans is difficult to determine without the use of experimental animal models. Mice are resistant to infection with ancestral strains of SARS-CoV-2, although many variants that arose later in the pandemic were able to directly infect mice. In almost all cases, viruses that naturally infected mice or were engineered to enable mouse infection required mouse passage to become virulent. In most cases, changes in structural and nonstructural changes occurred during mouse adaptation. However, the mechanism of increased virulence in mice is not understood. Here, using a recently described strain of mouse-adapted SARS-CoV-2 (rSARS2-MA30N501Y), we engineered a series of recombinant viruses that expressed a subset of the mutations present in rSARS2-MA30N501Y. Mutations were detected in the spike protein and in three nonstructural proteins (nsp4, nsp8, and nsp9). We found that infection of mice with recombinant SARS-CoV-2 expressing only the S protein mutations caused very mild infection. Addition of the mutations in nsp4 and nsp8 was required for complete virulence. Of note, all these recombinant viruses replicated equivalently in cultured cells. The innate immune response was delayed after infection with virulent compared to attenuated viruses. Further, using a lineage tracking system, we found that attenuated virus was highly inhibited in the ability to infect the parenchyma, but not the airway after infection. Together, these results indicate that mutations in both the S protein and nonstructural proteins are required for maximal virulence during mouse adaptation.IMPORTANCEUnderstanding the pathogenesis of coronavirus disease 2019 (COVID-19) requires the study of experimental animals after infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). For this purpose, several mouse-adapted SARS-CoV-2 strains have been developed. Here, using a strain of mouse-adapted virus that causes a range of diseases ranging from mild to severe, we show that mutations in both a structural protein [spike (S) protein] and nonstructural proteins are required for maximal virulence. Thus, changes in the S protein, the most widely studied viral protein, while required for mouse adaptation, are not sufficient to result in a virulent virus.
Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Mutación , SARS-CoV-2 , Proteínas no Estructurales Virales , Animales , Ratones , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , COVID-19/virología , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , Virulencia , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Chlorocebus aethiops , Replicación Viral , FemeninoRESUMEN
The nonstructural proteins 7 and 8 (nsp7 and nsp8) of SARS-CoV-2 are highly important proteins involved in the RNA-dependent polymerase (RdRp) protein replication complex. In this study, we analyzed the global mutation of nsp7 and nsp8 in 2022 and 2023 and analyzed the effects of mutation on the viral replication protein complex using bio-chemoinformatics. Frequently occurring variants are found to be single amino acid mutations for both nsp7 and nsp8. The most frequently occurring mutations for nsp7 which include L56F, L71F, S25L, M3I, D77N, V33I and T83I are predicted to cause destabilizing effects, whereas those in nsp8 are predicted to cause stabilizing effects, with the threonine to isoleucine mutation (T89I, T145I, T123I, T148I, T187I) being a frequent mutation. A conserved domain database analysis generated critical interaction residues for nsp7 (Lys-7, His-36 and Asn-37) and nsp8 (Lys-58, Pro-183 and Arg-190), which, according to thermodynamic calculations, are prone to destabilization. Trp-29, Phe-49 of nsp7 and Trp-154, Tyr-135 and Phe-15 of nsp8 cause greater destabilizing effects to the protein complex based on a computational alanine scan suggesting them as possible new target sites. This study provides an intensive analysis of the mutations of nsp7 and nsp8 and their possible implications for viral complex stability.
RESUMEN
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that has the potential to infect humans. Histone deacetylase 6 (HDAC6) is a unique type IIb cytoplasmic deacetylase with both deacetylase activity and ubiquitin E3 ligase activity, which mediates a variety of cellular processes by deacetylating histone and nonhistone substrates. In this study, we found that ectopic expression of HDAC6 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC6-specific inhibitor (tubacin) or knockdown of HDAC6 expression by specific small interfering RNA. Furthermore, we demonstrated that HDAC6 interacted with viral nonstructural protein 8 (nsp8) in the context of PDCoV infection, resulting in its proteasomal degradation, which was dependent on the deacetylation activity of HDAC6. We further identified the key amino acid residues lysine 46 (K46) and K58 of nsp8 as acetylation and ubiquitination sites, respectively, which were required for HDAC6-mediated degradation. Through a PDCoV reverse genetics system, we confirmed that recombinant PDCoV with a mutation at either K46 or K58 exhibited resistance to the antiviral activity of HDAC6, thereby exhibiting higher replication compared with wild-type PDCoV. Collectively, these findings contribute to a better understanding of the function of HDAC6 in regulating PDCoV infection and provide new strategies for the development of anti-PDCoV drugs. IMPORTANCE As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has sparked tremendous attention. Histone deacetylase 6 (HDAC6) is a critical deacetylase with both deacetylase activity and ubiquitin E3 ligase activity and is extensively involved in many important physiological processes. However, little is known about the role of HDAC6 in the infection and pathogenesis of coronaviruses. Our present study demonstrates that HDAC6 targets PDCoV-encoded nonstructural protein 8 (nsp8) for proteasomal degradation through the deacetylation at the lysine 46 (K46) and the ubiquitination at K58, suppressing viral replication. Recombinant PDCoV with a mutation at K46 and/or K58 of nsp8 displayed resistance to the antiviral activity of HDAC6. Our work provides significant insights into the role of HDAC6 in regulating PDCoV infection, opening avenues for the development of novel anti-PDCoV drugs.
Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Animales , Antivirales/farmacología , Antivirales/metabolismo , Coronavirus/metabolismo , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Lisina/metabolismo , Porcinos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Replicación ViralRESUMEN
SARS-CoV-2 has developed a variety of approaches to counteract host innate antiviral immunity to facilitate its infection, replication and pathogenesis, but the molecular mechanisms that it employs are still not been fully understood. Here, we found that SARS-CoV-2 NSP8 inhibited the production of type I and III interferons (IFNs) by acting on RIG-I/MDA5 and the signaling molecules TRIF and STING. Overexpression of NSP8 downregulated the expression of type I and III IFNs stimulated by poly (I:C) transfection and infection with SeV and SARS-CoV-2. In addition, NSP8 impaired IFN expression triggered by overexpression of the signaling molecules RIG-I, MDA5, and MAVS, instead of TBK1 and IRF3-5D, an active form of IRF3. From a mechanistic view, NSP8 interacts with RIG-I and MDA5, and thereby prevents the assembly of the RIG-I/MDA5-MAVS signalosome, resulting in the impaired phosphorylation and nuclear translocation of IRF3. NSP8 also suppressed the TRIF- and STING- induced IFN expression by directly interacting with them. Moreover, ectopic expression of NSP8 promoted virus replications. Taken together, SARS-CoV-2 NSP8 suppresses type I and III IFN responses by disturbing the RIG-I/MDA5-MAVS complex formation and targeting TRIF and STING signaling transduction. These results provide new insights into the pathogenesis of COVID-19.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteínas Adaptadoras del Transporte Vesicular/genética , Helicasa Inducida por Interferón IFIH1/genética , Interferones , SARS-CoV-2/metabolismo , Transducción de SeñalRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) has been identified to be a mutation hot spot, with the P323L mutation being commonly observed in viral genomes isolated from North America. RdRp forms a complex with nonstructural proteins nsp7 and nsp8 to form the minimal replication/transcription machinery required for genome replication. As mutations in RdRp may affect formation of the RdRp-nsp7-nsp8 supercomplex, we analyzed viral genomes to identify mutations in nsp7 and nsp8 protein sequences. Based on in silico analysis of predicted structures of the supercomplex comprising of native and mutated proteins, we demonstrate that specific mutations in nsp7 and nsp8 proteins may have a role in stabilization of the replication/transcription complex.
Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus/genética , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/genética , Compartimentos de Replicación Viral/química , Secuencia de Aminoácidos , Simulación por Computador , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Genoma Viral , Humanos , Modelos Moleculares , Mutación , Estabilidad Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Compartimentos de Replicación Viral/metabolismoRESUMEN
Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the harm caused by coronaviruses to the world cannot be underestimated. Recently, a novel coronavirus (severe acute respiratory syndrome coronavirus-2 [SARS-CoV-2]) initially found to trigger human severe respiratory illness in Wuhan City of China in 2019, has infected more than six million people worldwide by 21 June 2020, and which has been recognized as a public health emergency of international concern as well. And the virus has spread to more than 200 countries around the world. However, the effective drug has not yet been officially licensed or approved to treat SARS-Cov-2 and SARS-Cov infection. NSP12-NSP7-NSP8 complex of SARS-CoV-2 or SARS-CoV, essential for viral replication and transcription, is generally regarded as a potential target to fight against the virus. According to the NSP12-NSP7-NSP8 complex (PDB ID: 7BW4) structure of SARS-CoV-2 and the NSP12-NSP7-NSP8 complex (PDB ID: 6NUR) structure of SARS-CoV, NSP12-NSP7 interface model, and NSP12-NSP8 interface model were established for virtual screening in the present study. Eight compounds (Nilotinib, Saquinavir, Tipranavir, Lonafarnib, Tegobuvir, Olysio, Filibuvir, and Cepharanthine) were selected for binding free energy calculations based on virtual screening and docking scores. All eight compounds can combine well with NSP12-NSP7-NSP8 in the crystal structure, providing drug candidates for the treatment and prevention of coronavirus disease 2019 and SARS.
Asunto(s)
Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Descubrimiento de Drogas/métodos , Modelos Moleculares , Bibliotecas de Moléculas PequeñasRESUMEN
Nucleotide analogs targeting viral RNA polymerase have been proved to be an effective strategy for antiviral treatment and are promising antiviral drugs to combat the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. In this study, we developed a robust in vitro nonradioactive primer extension assay to quantitatively evaluate the efficiency of incorporation of nucleotide analogs by SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Our results show that many nucleotide analogs can be incorporated into RNA by SARS-CoV-2 RdRp and that the incorporation of some of them leads to chain termination. The discrimination values of nucleotide analogs over those of natural nucleotides were measured to evaluate the incorporation efficiency of nucleotide analog by SARS-CoV-2 RdRp. In agreement with the data published in the literature, we found that the incorporation efficiency of remdesivir-TP is higher than that of ATP and incorporation of remdesivir-TP caused delayed chain termination, which can be overcome by higher concentrations of the next nucleotide to be incorporated. Our data also showed that the delayed chain termination pattern caused by remdesivir-TP incorporation is different for different template sequences. Multiple incorporations of remdesivir-TP caused chain termination under our assay conditions. Incorporation of sofosbuvir-TP is very low, suggesting that sofosbuvir may not be very effective in treating SARS-CoV-2 infection. As a comparison, 2'-C-methyl-GTP can be incorporated into RNA efficiently, and the derivative of 2'-C-methyl-GTP may have therapeutic application in treating SARS-CoV-2 infection. This report provides a simple screening method that should be useful for evaluating nucleotide-based drugs targeting SARS-CoV-2 RdRp and for studying the mechanism of action of selected nucleotide analogs.
Asunto(s)
Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Evaluación Preclínica de Medicamentos/métodos , Nucleótidos/farmacología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/genética , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/química , Alanina/genética , Alanina/farmacología , Antivirales/química , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Nucleótidos/química , ARN , ARN Viral/biosíntesis , Proteínas no Estructurales ViralesRESUMEN
Replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome is mediated by a complex of non-structural proteins (NSPs), of which NSP7 and NSP8 serve as subunits and play a key role in promoting the activity of RNA-dependent RNA polymerase (RdRp) of NSP12. However, the stability of subunits of the RdRp complex has rarely been reported. Here, we found that NSP8 was degraded by the proteasome in host cells, and identified tripartite motif containing 22 (TRIM22) as its E3 ligase. The interferon (IFN) signaling pathway was activated upon viral invasion into host cells, and TRIM22 expression increased. TRIM22 interacted with NSP8 and ubiquitinated it at Lys97 via K48-type ubiquitination. TRIM22 overexpression significantly reduced viral RNA and protein levels. Knockdown of TRIM22 enhanced viral replication. This study provides a new explanation for treating patients suffering from SARS-CoV-2 with IFNs and new possibilities for drug development targeting the interaction between NSP8 and TRIM22.IMPORTANCENon-structural proteins (NSPs) play a crucial role in the replication of severe acute respiratory syndrome coronavirus 2, facilitating virus amplification and propagation. In this study, we conducted a comprehensive investigation into the stability of all subunits comprising the RNA-dependent RNA polymerase complex. Notably, our results reveal for the first time that NSP8 is a relatively unstable protein, which is found to be readily recognized and degraded by the proteasome. This degradation process is mediated by the host E3 ligase tripartite motif containing 22 (TRIM22), which is also a member of the interferon stimulated gene (ISG) family. Our study elucidates a novel mechanism of antiviral effect of TRIM22, which utilizes its own E3 ubiquitin ligase activity to hinder viral replication by inducing ubiquitination and subsequent degradation of NSP8. These findings provide new ideas for the development of novel therapeutic strategies. In addition, the conserved property of NSP8 raises the possibility of developing broad antiviral drugs targeting the TRIM22-NSP8 interaction.
Asunto(s)
COVID-19 , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , SARS-CoV-2/metabolismo , Complejo de la Endopetidasa Proteasomal , ARN Polimerasa Dependiente del ARN/metabolismo , Interferones , Replicación Viral , Proteínas de Motivos Tripartitos/genética , Proteínas Represoras/genética , Antígenos de Histocompatibilidad MenorRESUMEN
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replicates and evades detection using ER membranes and their associated protein machinery. Among these hijacked human proteins is selenoprotein S (selenos). This selenoprotein takes part in the protein quality control, signaling, and the regulation of cytokine secretion. While the role of selenos in the viral life cycle is not yet known, it has been reported to interact with SARS-CoV-2 nonstructural protein 7 (nsp7), a viral protein essential for the replication of the virus. We set to study whether selenos and nsp7 interact directly and if they can still bind when nsp7 is bound to the replication and transcription complex of the virus. Using biochemical assays, we show that selenos binds directly to nsp7. In addition, we found that selenos can bind to nsp7 when it is in a complex with the coronavirus's minimal replication and transcription complex, comprised of nsp7, nsp8, and the RNA-dependent RNA polymerase nsp12. In addition, through crosslinking experiments, we mapped the interaction sites of selenos and nsp7 in the replication complex and showed that the hydrophobic segment of selenos is essential for binding to nsp7. This arrangement leaves an extended helix and the intrinsically disordered segment of selenos-including the reactive selenocysteine-exposed and free to potentially recruit additional proteins to the replication and transcription complex.
Asunto(s)
Proteínas de la Membrana , SARS-CoV-2 , Selenoproteínas , Transcripción Genética , Proteínas no Estructurales Virales , Replicación Viral , Humanos , ARN Polimerasa Dependiente del ARN/química , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Selenoproteínas/genética , Selenoproteínas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas de la Membrana/metabolismoRESUMEN
Autophagy plays an important role in the interaction between viruses and host cells. SARS-CoV-2 infection can disrupt the autophagy process in target cells. However, the precise molecular mechanism is still unknown. In this study, we discovered that the Nsp8 of SARS-CoV-2 could cause an increasing accumulation of autophagosomes by preventing the fusion of autophagosomes and lysosomes. From further investigation, we found that Nsp8 was present on mitochondria and can damage mitochondria to initiate mitophagy. The results of experiments with immunofluorescence revealed that Nsp8 induced incomplete mitophagy. Moreover, both domains of Nsp8 orchestrated their function during Nsp8-induced mitophagy, in which the N-terminal domain colocalized with mitochondria and the C-terminal domain induced auto/mitophagy. This novel finding expands our understanding of the function of Nsp8 in promoting mitochondrial damage and inducing incomplete mitophagy, which helps us to understand the etiology of COVID-19 as well as open up new pathways for creating SARS-CoV-2 treatment methods.
RESUMEN
SARS-CoV-2 has been a pandemic threat to human health and the worldwide economy, but efficient treatments are still lacking. Type I and III interferons are essential for controlling viral infection, indicating that antiviral innate immune signaling is critical for defense against viral infection. Phase separation, one of the basic molecular processes, governs multiple cellular activities, such as cancer progression, microbial infection, and signaling transduction. Notably, recent studies suggest that phase separation regulates antiviral signaling such as the RLR and cGAS-STING pathways. Moreover, proper phase separation of viral proteins is essential for viral replication and pathogenesis. These observations indicate that phase separation is a critical checkpoint for virus and host interaction. In this study, we summarize the recent advances concerning the regulation of antiviral innate immune signaling and SARS-CoV-2 infection by phase separation. Our review highlights the emerging notion that phase separation is the robust modulator of innate antiviral signaling and viral infection.
RESUMEN
Background: The RNA-dependent RNA polymerase (RdRp) complex, essential in viral transcription and replication, is a key target for antiviral therapeutics. The core unit of RdRp comprises the nonstructural protein NSP12, with NSP7 and two copies of NSP8 (NSP81 and NSP82) binding to NSP12 to enhance its affinity for viral RNA and polymerase activity. Notably, the interfaces between these subunits are highly conserved, simplifying the design of molecules that can disrupt their interaction. Methods: We conducted a detailed quantum biochemical analysis to characterize the interactions within the NSP12-NSP7, NSP12-NSP81, and NSP12-NSP82 dimers. Our objective was to ascertain the contribution of individual amino acids to these protein-protein interactions, pinpointing hotspot regions crucial for complex stability. Results: The analysis revealed that the NSP12-NSP81 complex possessed the highest total interaction energy (TIE), with 14 pairs of residues demonstrating significant energetic contributions. In contrast, the NSP12-NSP7 complex exhibited substantial interactions in 8 residue pairs, while the NSP12-NSP82 complex had only one pair showing notable interaction. The study highlighted the importance of hydrogen bonds and π-alkyl interactions in maintaining these complexes. Intriguingly, introducing the RNA sequence with Remdesivir into the complex resulted in negligible alterations in both interaction energy and geometric configuration. Conclusion: Our comprehensive analysis of the RdRp complex at the protein-protein interface provides invaluable insights into interaction dynamics and energetics. These findings can guide the design of small molecules or peptide/peptidomimetic ligands to disrupt these critical interactions, offering a strategic pathway for developing effective antiviral drugs.
RESUMEN
Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins. We demonstrate the utility of the DCR to functionally assess SARS-CoV-2 genes and candidate human binding partners. We show that NSP8 engages in strong genetic interactions with several human candidates, most prominently with the ATE1 arginyltransferase to induce actin arginylation and cytoskeletal disorganization, and that two ATE1 inhibitors can reverse NSP8 phenotypes. The DCR enables parallel global-scale functional analysis of SARS-CoV-2 components in a prime genetic model system.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , SARS-CoV-2/genética , Drosophila , Actinas , Animales Modificados GenéticamenteRESUMEN
Accurate and simple diagnostic tests for coronavirus disease 2019 (COVID-19) are essential components of the pandemic response. In this study, we evaluated a one-tube reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay coupled with clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-mediated endpoint detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in clinical samples. RT-LAMP-CRISPR is fast and affordable, does not require bulky thermocyclers, and minimizes carryover contamination risk. Results can be read either visually or with a fluorometer. RT-LAMP-CRISPR assays using primers targeting a highly expressed nsp8 gene and previously described nucleocapsid (N) gene primers were designed. The analytical characteristics and diagnostic performance of RT-LAMP-CRISPR assays were compared to those of a commercial real-time RT-PCR E gene assay. The limits of detection (LODs) of the nsp8 and N RT-LAMP-CRISPR assays were 750 and 2,000 copies/mL, which were higher than that of the commercial real-time RT-PCR assay (31.3 copies/mL). Despite the higher LOD, RT-LAMP-CRISPR assays showed diagnostic sensitivity and specificity of 98.6% and 100%, respectively, equivalent to those of the real-time RT-PCR assay (P = 0.5). The median fluorescence reading from the nsp8 assay (378.3 raw fluorescence unit [RFU] [range, 215.6 to 592.6]) was significantly higher than that of the N gene assay (342.0 RFU [range, 143.0 to 576.6]) (P < 0.0001). In conclusion, we demonstrate that RT-LAMP-CRISPR assays using primers rationally designed from highly expressed gene targets are highly sensitive, specific, and easy to perform. Such assays are a valuable asset in resource-limited settings. IMPORTANCE Accurate tests for the diagnosis of SARS-CoV-2, the virus causing coronavirus disease 2019 (COVID-19), are important for timely treatment and infection control decisions. Conventional tests such as real-time reverse transcription-PCR (RT-PCR) require specialized equipment and are expensive. On the other hand, rapid antigen tests suffer from a lack of sensitivity. In this study, we describe a novel assay format for the diagnosis of COVID-19 that is based on principles of loop-mediated isothermal amplification (LAMP) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas chemistry. A major advantage of this assay format is that it does not require expensive equipment to perform, and results can be read visually. This method proved to be fast, easy to perform, and inexpensive. The test compared well against an RT-PCR assay in terms of the ability to detect SARS-CoV-2 RNA in clinical samples. No false-positive test results were observed. The new assay format is ideal for SARS-CoV-2 diagnosis in resource-limited settings.
Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Prueba de COVID-19 , ARN Viral/genética , Técnicas de Diagnóstico Molecular/métodos , Cartilla de ADNRESUMEN
Replication of the SARS-CoV-2 genome is a fundamental step in the virus life cycle and inhibiting the SARS-CoV2 replicase machinery has been proven recently as a promising approach in combating the virus. Despite this recent success, there are still several aspects related to the structure, function and dynamics of the CoV-2 polymerase that still need to be addressed. This includes understanding the dynamicity of the various polymerase subdomains, analyzing the hydrogen bond networks at the active site and at the template entry in the presence of water, studying the binding modes of the nucleotides at the active site, highlighting positions for acceptable nucleotides' substitutions that can be tolerated at different positions within the nascent RNA strand, identifying possible allosteric sites within the polymerase structure and studying their correlated dynamics relative to the catalytic site. Here, we combined various cutting-edge modelling tools with the recently resolved SARS-CoV-2 cryo-EM polymerase structures to fill this gap in knowledge. Our findings provide a detailed analysis of the hydrogen bond networks at various parts of the polymerase structure and suggest possible nucleotides' substitutions that can be tolerated by the polymerase complex. We also report here three 'druggable' allosteric sites within the NSP12 RdRp that can be targeted by small molecule inhibitors. Our correlated motion analysis shows that the dynamics within one of the newly identified sites are linked to the active site, indicating that targeting this site can significantly impact the catalytic activity of the SARS-CoV-2 polymerase.Communicated by Ramaswamy H. Sarma.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/química , Sitio Alostérico , Enlace de Hidrógeno , ARN Viral/química , Nucleótidos , Antivirales/farmacologíaRESUMEN
Upon activation by the pathogen through T-cell receptors (TCRs), γδT cells suppress the pathogenic replication and thus play important roles against viral infections. Targeting SARS-CoV-2 via γδT cells provides alternative therapeutic strategies. However, little is known about the recognition of SARS-CoV-2 antigens by γδT cells. We discovered a specific Vγ9/δ2 CDR3 by analyzing γδT cells derived from the patients infected by SARS-CoV-2. Using a cell model exogenously expressing γδ-TCR established, we further screened the structural motifs within the CDR3 responsible for binding to γδ-TCR. Importantly, these sequences were mapped to NSP8, a non-structural protein in SARS-CoV-2. Our results suggest that NSP8 mediates the recognition by γδT cells and thus could serve as a potential target for vaccines.