Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(15): 3936-3948.e10, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34192529

RESUMEN

In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , ARN Mensajero/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Unión Competitiva , Humanos , Inmunoglobulina G/metabolismo , Mutación/genética , Dominios Proteicos , Hipermutación Somática de Inmunoglobulina/genética
2.
Cell ; 184(9): 2332-2347.e16, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33761326

RESUMEN

The SARS-CoV-2 spike (S) glycoprotein contains an immunodominant receptor-binding domain (RBD) targeted by most neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite (designated site i) recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge, albeit selecting escape mutants in some animals. Indeed, several SARS-CoV-2 variants, including the B.1.1.7, B.1.351, and P.1 lineages, harbor frequent mutations within the NTD supersite, suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs for protective immunity and vaccine design.


Asunto(s)
Antígenos Virales/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/virología , Cricetinae , Mapeo Epitopo , Variación Genética , Modelos Moleculares , Mutación/genética , Pruebas de Neutralización , Dominios Proteicos , ARN Viral/genética , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/ultraestructura
3.
Immunity ; 55(6): 998-1012.e8, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35447092

RESUMEN

SARS-CoV-2 infection or vaccination produces neutralizing antibody responses that contribute to better clinical outcomes. The receptor-binding domain (RBD) and the N-terminal domain (NTD) of the spike trimer (S) constitute the two major neutralizing targets for antibodies. Here, we use NTD-specific probes to capture anti-NTD memory B cells in a longitudinal cohort of infected individuals, some of whom were vaccinated. We found 6 complementation groups of neutralizing antibodies. 58% targeted epitopes outside the NTD supersite, 58% neutralized either Gamma or Omicron, and 14% were broad neutralizers that also neutralized Omicron. Structural characterization revealed that broadly active antibodies targeted three epitopes outside the NTD supersite including a class that recognized both the NTD and SD2 domain. Rapid recruitment of memory B cells producing these antibodies into the plasma cell compartment upon re-infection likely contributes to the relatively benign course of subsequent infections with SARS-CoV-2 variants, including Omicron.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Humanos , Células B de Memoria , SARS-CoV-2
4.
J Med Virol ; 96(2): e29452, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38314852

RESUMEN

The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been accompanied by the emergence of viral mutations that pose a great challenge to existing vaccine strategies. It is not fully understood with regard to the role of mutations on the SARS-CoV-2 spike protein from emerging viral variants in T cell immunity. In the current study, recombinant eukaryotic plasmids were constructed as DNA vaccines to express the spike protein from multiple SARS-CoV-2 strains. These DNA vaccines were used to immunize BALB/c mice, and cross-T cell responses to the spike protein from these viral strains were quantitated using interferon-γ (IFN-γ) Elispot. Peptides covering the full-length spike protein from different viral strains were used to detect epitope-specific IFN-γ+ CD4+ and CD8+ T cell responses by fluorescence-activated cell sorting. SARS-CoV-2 Delta and Omicron BA.1 strains were found to have broad T cell cross-reactivity, followed by the Beta strain. The landscapes of T cell epitopes on the spike protein demonstrated that at least 30 mutations emerging from Alpha to Omicron BA.5 can mediate the escape of T cell immunity. Omicron and its sublineages have 19 out of these 30 mutations, most of which are new, and a few are inherited from ancient circulating variants of concerns. The cross-T cell immunity between SARS-CoV-2 prototype strain and Omicron strains can be attributed to the T cell epitopes located in the N-terminal domain (181-246 aa [amino acids], 271-318 aa) and C-terminal domain (1171-1273 aa) of the spike protein. These findings provide in vivo evidence for optimizing vaccine manufacturing and immunization strategies for current or future viral variants.


Asunto(s)
COVID-19 , Vacunas de ADN , Animales , Ratones , Humanos , Epítopos de Linfocito T/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Inmunidad Celular , Mutación , Interferón gamma , Anticuerpos Antivirales , Anticuerpos Neutralizantes
5.
EMBO Rep ; 23(10): e54322, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35999696

RESUMEN

The emergence of SARS-CoV-2 variants has exacerbated the COVID-19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N-terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised. We demonstrate that NTD deletions are important for efficient entry by the Alpha and Omicron variants and that this correlates with spike stability. Phylogenetic analysis reveals extensive NTD loop length polymorphisms across the sarbecoviruses, setting an evolutionary precedent for loop remodelling. Guided by these analyses, we demonstrate that variations in NTD loop length, alone, are sufficient to modulate virus entry. We propose that variations in NTD loop length act to fine-tune spike; this may provide a mechanism for SARS-CoV-2 to navigate a complex selection landscape encompassing optimisation of essential functionality, immune-driven antigenic variation and ongoing adaptation to a new host.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Filogenia , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
6.
Bioessays ; 44(12): e2200181, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36253101

RESUMEN

The transactivation response-DNA binding protein of 43 kDa (TDP-43) is an aggregation-prone nucleic acid-binding protein linked to the etiology of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). These conditions feature the accumulation of insoluble TDP-43 aggregates in the neuronal cytoplasm that lead to cell death. The dynamics between cytoplasmic and nuclear TDP-43 are altered in the disease state where TDP-43 mislocalizes to the cytoplasm, disrupting Nuclear Pore Complexes (NPCs), and ultimately forming large fibrils stabilized by the C-terminal prion-like domain. Here, we review three emerging and poorly understood aspects of TDP-43 biology linked to its aggregation. First, how post-translational modifications in the proximity of TDP-43 N-terminal domain (NTD) promote aggregation. Second, how TDP-43 engages FG-nucleoporins in the NPC, disrupting the pore permeability and function. Third, how the importin α/ß heterodimer prevents TDP-43 aggregation, serving both as a nuclear import transporter and a cytoplasmic chaperone.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Humanos , alfa Carioferinas/metabolismo , Carioferinas , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Proteínas de Unión al ADN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo
7.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891776

RESUMEN

Neural tube defects (NTDs), which are caused by impaired embryonic neural tube closure, are one of the most serious and common birth defects. Peptidyl-prolyl cis/trans isomerase 1 (Pin1) is a prolyl isomerase that uniquely regulates cell signaling by manipulating protein conformation following phosphorylation, although its involvement in neuronal development remains unknown. In this study, we explored the involvement of Pin1 in NTDs and its potential mechanisms both in vitro and in vivo. The levels of Pin1 expression were reduced in NTD models induced by all-trans retinoic acid (Atra). Pin1 plays a significant role in regulating the apoptosis, proliferation, differentiation, and migration of neurons. Moreover, Pin1 knockdown significantly was found to exacerbate oxidative stress (OS) and endoplasmic reticulum stress (ERs) in neuronal cells. Further studies showed that the Notch1-Nrf2 signaling pathway may participate in Pin1 regulation of NTDs, as evidenced by the inhibition and overexpression of the Notch1-Nrf2 pathway. In addition, immunofluorescence (IF), co-immunoprecipitation (Co-IP), and GST pull-down experiments also showed that Pin1 interacts directly with Notch1 and Nrf2. Thus, our study suggested that the knocking down of Pin1 promotes NTD progression by inhibiting the activation of the Notch1-Nrf2 signaling pathway, and it is possible that this effect is achieved by disrupting the interaction of Pin1 with Notch1 and Nrf2, affecting their proteostasis. Our research identified that the regulation of Pin1 by retinoic acid (RA) and its involvement in the development of NTDs through the Notch1-Nrf2 axis could enhance our comprehension of the mechanism behind RA-induced brain abnormalities.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA , Defectos del Tubo Neural , Tretinoina , Animales , Femenino , Humanos , Ratones , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Tubo Neural/metabolismo , Tubo Neural/efectos de los fármacos , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/inducido químicamente , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Estrés Oxidativo/efectos de los fármacos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Transducción de Señal/efectos de los fármacos , Tretinoina/metabolismo , Tretinoina/farmacología
8.
Proteins ; 91(2): 137-146, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36000388

RESUMEN

Thermostable direct hemolysin (TDH) is a ~19 kDa, hemolytic pore-forming toxin from the gram-negative marine bacterium Vibrio parahaemolyticus, one of the causative agents of seafood-borne acute gastroenteritis and septicemia. Previous studies have established that TDH exists as a tetrameric assembly in physiological state; however, there is limited knowledge regarding the molecular arrangement of its disordered N-terminal region (NTR)-the absence of which has been shown to compromise TDH's hemolytic and cytotoxic abilities. In our current study, we have employed single-particle cryo-electron microscopy to resolve the solution-state structures of wild-type TDH and a TDH construct with deletion of the NTR (NTD), in order to investigate structural aspects of NTR on the overall tetrameric architecture. We observed that both TDH and NTD electron density maps, resolved at global resolutions of 4.5 and 4.2 Å, respectively, showed good correlation in their respective oligomeric architecture. Additionally, we were able to locate extra densities near the pore opening of TDH which might correspond to the disordered NTR. Surprisingly, under cryogenic conditions, we were also able to observe novel supramolecular assemblies of TDH tetramers, which we were able to resolve to 4.3 Å. We further investigated the tetrameric and inter-tetrameric interaction interfaces to elaborate upon the key residues involved in both TDH tetramers and TDH super assemblies. Our current structural study will aid in understanding the mechanistic aspects of this pore-forming toxin and the role of its disordered NTR in membrane interaction.


Asunto(s)
Toxinas Bacterianas , Vibrio parahaemolyticus , Vibrio parahaemolyticus/química , Microscopía por Crioelectrón , Proteínas Hemolisinas/química , Proteínas Hemolisinas/toxicidad , Toxinas Bacterianas/química
9.
J Virol ; 96(15): e0095822, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852351

RESUMEN

The spike protein on sarbecovirus virions contains two external, protruding domains: an N-terminal domain (NTD) with unclear function and a C-terminal domain (CTD) that binds the host receptor, allowing for viral entry and infection. While the CTD is well studied for therapeutic interventions, the role of the NTD is far less well understood for many coronaviruses. Here, we demonstrate that the spike NTD from SARS-CoV-2 and other sarbecoviruses binds to unidentified glycans in vitro similarly to other members of the Coronaviridae family. We also show that these spike NTD (S-NTD) proteins adhere to Calu3 cells, a human lung cell line, although the biological relevance of this is unclear. In contrast to what has been shown for Middle East respiratory syndrome coronavirus (MERS-CoV), which attaches sialic acids during cell entry, sialic acids present on Calu3 cells inhibited sarbecovirus infection. Therefore, while sarbecoviruses can interact with cell surface glycans similarly to other coronaviruses, their reliance on glycans for entry is different from that of other respiratory coronaviruses, suggesting sarbecoviruses and MERS-CoV have adapted to different cell types, tissues, or hosts during their divergent evolution. Our findings provide important clues for further exploring the biological functions of sarbecovirus glycan binding and adds to our growing understanding of the complex forces that shape coronavirus spike evolution. IMPORTANCE Spike N-terminal domains (S-NTD) of sarbecoviruses are highly diverse; however, their function remains largely understudied compared with the receptor-binding domains (RBD). Here, we show that sarbecovirus S-NTD can be phylogenetically clustered into five clades and exhibit various levels of glycan binding in vitro. We also show that, unlike some coronaviruses, including MERS-CoV, sialic acids present on the surface of Calu3, a human lung cell culture, inhibit SARS-CoV-2 and other sarbecoviruses. These results suggest that while glycan binding might be an ancestral trait conserved across different coronavirus families, the functional outcome during infection can vary, reflecting divergent viral evolution. Our results expand our knowledge on the biological functions of the S-NTD across diverse sarbecoviruses and provide insight on the evolutionary history of coronavirus spike.


Asunto(s)
Evolución Molecular , Coronavirus del Síndrome Respiratorio de Oriente Medio , Polisacáridos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , COVID-19/virología , Línea Celular , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/clasificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Polisacáridos/metabolismo , Dominios Proteicos , Receptores Virales/metabolismo , SARS-CoV-2/química , SARS-CoV-2/clasificación , SARS-CoV-2/metabolismo , Ácidos Siálicos/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
10.
J Virol ; 96(4): e0195521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34908442

RESUMEN

The receptor binding domain (RBD) of the coronavirus spike protein (S) has been verified to be the main target for potent neutralizing antibodies (nAbs) in most coronaviruses, and the N-terminal domain (NTD) of some betacoronaviruses has also been indicated to induce nAbs. For alphacoronavirus HCoV-229E, its RBD has been shown to have neutralizing epitopes, and these epitopes could change over time. However, whether neutralizing epitopes exist on the NTD and whether these epitopes change like those of the RBD are still unknown. Here, we verified that neutralizing epitopes exist on the NTD of HCoV-229E. Furthermore, we characterized an NTD targeting nAb 5H10, which could neutralize both pseudotyped and authentic HCoV-229E VR740 in vitro. Epitope mapping indicated that 5H10 targeted motif E1 (147-167 aa) and identified F159 as critical for 5H10 binding. More importantly, our results revealed that motif E1 was highly conserved among clinical isolates except for F159. Further data proved that mutations at position 159 gradually appeared over time and could completely abolish the neutralizing ability of 5H10, supporting the notion that position 159 may be under selective pressure during the human epidemic. In addition, we also found that contemporary clinical serum has a stronger binding capacity for the NTD of contemporary strains than historic strains, proving that the epitope on the NTD could change over time. In summary, these findings define a novel neutralizing epitope on the NTD of HCoV-229E S and provide a theoretical basis for the design of vaccines against HCoV-229E or related coronaviruses. IMPORTANCE Characterization of the neutralizing epitope of the spike (S) protein, the major invasion protein of coronaviruses, can help us better understand the evolutionary characteristics of these viruses and promote vaccine development. To date, the neutralizing epitope distribution of alphacoronaviruses is not well known. Here, we identified a neutralizing antibody that targeted the N-terminal domain (NTD) of the alphacoronavirus HCoV-229E S protein. Epitope mapping revealed a novel epitope that was not previously discovered in HCoV-229E. Further studies identified an important residue, F159. Mutations that gradually appeared over time at this site abolished the neutralizing ability of 5H10, indicating that selective pressure occurred at this position in the spread of HCoV-229E. Furthermore, we found that the epitopes within the NTD also changed over time. Taken together, our findings defined a novel neutralizing epitope and highlighted the role of the NTD in the future prevention and control of HCoV-229E or related coronaviruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Coronavirus Humano 229E , Infecciones por Coronavirus , Epítopos , Glicoproteína de la Espiga del Coronavirus , Secuencias de Aminoácidos , Animales , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/inmunología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Epítopos/genética , Epítopos/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
11.
Arch Biochem Biophys ; 750: 109820, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37956938

RESUMEN

The nucleocapsid (N) protein of SARS-CoV-2 plays a pivotal role in encapsulating the viral genome. Developing antiviral treatments for SARS-CoV-2 is imperative due to the diminishing immunity of the available vaccines. This study targets the RNA-binding site located in the N-terminal domain (NTD) of the N-protein to identify the potential antiviral molecules against SARS-CoV-2. A structure-based repurposing approach identified the twelve high-affinity molecules from FDA-approved drugs, natural products, and the LOPAC1280 compound libraries that precisely bind to the RNA binding site within the NTD. The interaction of these potential antiviral agents with the purified NTD protein was thermodynamically characterized using isothermal titration calorimetry (ITC). A fluorescence-based plate assay to assess the RNA binding inhibitory activity of small molecules against the NTD has been employed, and the selected compounds exhibited significant RNA binding inhibition with calculated IC50 values ranging from 8.8 µM to 15.7 µM. Furthermore, the antiviral efficacy of these compounds was evaluated using in vitro cell-based assays targeting the replication of SARS-CoV-2. Remarkably, two compounds, Telmisartan and BMS-189453, displayed potential antiviral activity against SARS-CoV-2, with EC50 values of approximately 1.02 µM and 0.98 µM, and a notable selective index of >98 and > 102, respectively. This study gives valuable insight into developing therapeutic interventions against SARS-CoV-2 by targeting the N-protein, a significant effort given the global public health concern posed due to the virus re-emergence and long COVID-19 disease.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , Síndrome Post Agudo de COVID-19 , Nucleocápside/metabolismo , Termodinámica , ARN , Simulación del Acoplamiento Molecular
12.
BMC Public Health ; 23(1): 2483, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087242

RESUMEN

CONTEXT: Tungiasis is a neglected tropical skin disease endemic in resource-poor communities. It is caused by the penetration of the female sand flea, Tunga penetrans, into the skin causing immense pain, itching, difficulty walking, sleeping and concentrating on school or work. Infection is associated with living in a house with unsealed earthen house floors. METHODS: This feasibility study used a community-based co-creation approach to develop and test simple, locally appropriate, and affordable flooring solutions to create a sealed, washable floor for the prevention of tungiasis. Locally used techniques were explored and compared in small slab trials. The floor with best strength and lowest cost was pilot trialed in 12 households with tungiasis cases to assess its durability and costs, feasibility of installation in existing local houses using local masons and explore community perceptions. Disease outcomes were measured to estimate potential impact. RESULTS: It was feasible to build the capacity of a community-based organization to conduct research, develop a low-cost floor and conduct a pilot trial. The optimal low-cost floor was stabilized local subsoil with cement at a 1:9 ratio, installed as a 5 cm depth slab. A sealed floor was associated with a lower mean infection intensity among infected children than in control households (aIRR 0.53, 95%CI 0.29-0.97) when adjusted for covariates. The cost of the new floor was US$3/m2 compared to $10 for a concrete floor. Beneficiaries reported the floor made their lives much easier, enabled them to keep clean and children to do their schoolwork and eat while sitting on the floor. Challenges encountered indicate future studies would need intensive mentoring of masons to ensure the floor is properly installed and households supervised to ensure the floor is properly cured. CONCLUSION: This study provided promising evidence that retrofitting simple cement-stabilised soil floors with locally available materials is a feasible option for tungiasis control and can be implemented through training of community-based organisations. Disease outcome data is promising and suggests that a definitive trial is warranted. Data generated will inform the design of a fully powered randomized trial combined with behaviour change communications. TRIAL REGISTRATION: ISRCTN 62801024 (retrospective 07.07.2023).


Asunto(s)
Tungiasis , Animales , Niño , Humanos , Femenino , Tungiasis/prevención & control , Tungiasis/epidemiología , Estudios de Factibilidad , Kenia/epidemiología , Estudios Retrospectivos , Tunga , Dolor
13.
Childs Nerv Syst ; 39(11): 3103-3109, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37178370

RESUMEN

BACKGROUND: Neural tube defects (NTD), such as spina bifida, are surgically treatable and primarily preventable non-communicable diseases. How incidence, mortality and disability-adjusted life year (DALYs) rates of NTD have modulated over time is not well defined. Correspondingly, the aim of this study was to quantitively define the global, regional, and national epidemiological trends in these. METHODS: A retrospective review of data from the Global Burden of Disease Study 2019 Database was performed. Global, regional, and national outcomes for NTD were collected for incidence, mortality, and DALY rates and their age-standardized metrics analyzed. There were 7 regions at a regional level, and 204 countries and territories at a national level. RESULTS: Globally, the latest age-standardized rates of incidence, mortality, and DALYs of NTD were 2.1 per 100,000 population, 1.3 per 1000,000, and 117 per 100,000 respectively. All rates demonstrated decreases in the last two decades to now. Regionally, sub-Saharan Africa and North America demonstrated the highest and lowest age-standardized rates of incidence (4.0 vs 0.5 per 100,000), mortality (3.0 vs 0.4 per 100,000), and DALYs (266 vs 33 per 100,000), respectively. Similar to global trends, all regions demonstrated decrease in these rates over the last two decades. Nationally, the highest age-standardized rates were reported in African countries, Central African Republic, with highest incidence rate (7.6 per 100,000), and Burkina Faso with highest mortality rate (5.8 per 100,000) and DALY rate (518 per 100,000). India was the country with the highest number of new NTD cases (22,000 per country) in the most recent year of study. Between 1990 and 2019, 182/204 (89%), 188/204 (92%), and 188/204 (92%) countries and territories demonstrated a decrease in age-standardized incidence, mortality, and DALY rates respectively, with the greatest decreases seen in Saudi Arabia for all statistics. CONCLUSIONS: Between 1990 and 2019, overall trends in incidence, mortality, and DALY rates of NTD have been favorably downtrending globally. Regionally, these rates in the highest sub-Saharan Africa were 8 times greater compared to the lowest North America. Nationally, although the majority of countries showed decreases in these rates, a small number of countries demonstrated uptrending rates of NTD. Understanding the mechanics behind these trends will allow future public health endeavors for both prevention and neurosurgical treatment to be targeted appropriately.


Asunto(s)
Salud Global , Defectos del Tubo Neural , Humanos , Años de Vida Ajustados por Calidad de Vida , África del Sur del Sahara/epidemiología , Arabia Saudita , Incidencia , Defectos del Tubo Neural/epidemiología
14.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36467615

RESUMEN

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

15.
Molecules ; 28(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985506

RESUMEN

Suramin was originally used as an antiparasitic drug in clinics. Here, we demonstrate that suramin can bind to the N-terminal domain of SARS-CoV-2 nucleocapsid protein (N-NTD) and disturb its interaction with RNA. The BLI experiments showed that N-NTD interacts suramin with a dissociate constant (Kd = 2.74 µM) stronger than that of N-NTD with ssRNA-16 (Kd = 8.37 µM). Furthermore, both NMR titration experiments and molecular docking analysis suggested that suramin mainly binds to the positively charged cavity between the finger and the palm subdomains of N-NTD, and residues R88, R92, R93, I94, R95, K102 and A156 are crucial for N-NTD capturing suramin. Besides, NMR dynamics experiments showed that suramin-bound N-NTD adopts a more rigid structure, and the loop between ß2-ß3 exhibits fast motion on the ps-ns timescale, potentially facilitating suramin binding. Our findings not only reveal the molecular basis of suramin disturbing the association of SARS-CoV-2 N-NTD with RNA but also provide valuable structural information for the development of drugs against SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Suramina/farmacología , Proteínas de la Nucleocápside/química , Simulación del Acoplamiento Molecular , Modelos Moleculares , ARN Viral/genética
16.
Emerg Infect Dis ; 28(9): 1755-1764, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35997318

RESUMEN

We evaluated programmatic approaches for skin neglected tropical disease (NTD) surveillance and completed a robust estimation of the burden of skin NTDs endemic to West Africa (Buruli ulcer, leprosy, lymphatic filariasis morbidity, and yaws). In Maryland, Liberia, exhaustive case finding by community health workers of 56,285 persons across 92 clusters identified 3,241 suspected cases. A total of 236 skin NTDs (34.0 [95% CI 29.1-38.9]/10,000 persons) were confirmed by midlevel healthcare workers trained using a tailored program. Cases showed a focal and spatially heterogeneous distribution. This community health worker‒led approach showed a higher skin NTD burden than prevailing surveillance mechanisms, but also showed high (95.1%) and equitable population coverage. Specialized training and task-shifting of diagnoses to midlevel health workers led to reliable identification of skin NTDs, but reliability of individual diagnoses varied. This multifaceted evaluation of skin NTD surveillance strategies quantifies benefits and limitations of key approaches promoted by the 2030 NTD roadmap of the World Health Organization.


Asunto(s)
Úlcera de Buruli , Medicina Tropical , Úlcera de Buruli/epidemiología , Humanos , Liberia/epidemiología , Enfermedades Desatendidas/diagnóstico , Enfermedades Desatendidas/epidemiología , Reproducibilidad de los Resultados
17.
Eur J Immunol ; 51(9): 2296-2305, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34089541

RESUMEN

The increasing numbers of infected cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses serious threats to public health and the global economy. Most SARS-CoV-2 neutralizing antibodies target the receptor binding domain (RBD) and some the N-terminal domain (NTD) of the spike protein, which is the major antigen of SARS-CoV-2. While the antibody response to RBD has been extensively characterized, the antigenicity and immunogenicity of the NTD protein are less well studied. Using 227 plasma samples from COVID-19 patients, we showed that SARS-CoV-2 NTD-specific antibodies could be induced during infection. As compared to the results of SARS-CoV-2 RBD, the serological response of SARS-CoV-2 NTD is less cross-reactive with SARS-CoV, a pandemic strain that was identified in 2003. Furthermore, neutralizing antibodies are rarely elicited in a mice model when NTD is used as an immunogen. We subsequently demonstrate that NTD has an altered antigenicity when expressed alone. Overall, our results suggest that while NTD offers a supplementary strategy for serology testing, it may not be suitable as an immunogen for vaccine development.


Asunto(s)
COVID-19/inmunología , Dominios Proteicos/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Chlorocebus aethiops , Reacciones Cruzadas/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Pandemias/prevención & control , Unión Proteica/inmunología , Células Sf9 , Células Vero
18.
J Virol ; 95(21): e0135721, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34406867

RESUMEN

One of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virulence factors is the ability to interact with high affinity to the ACE2 receptor, which mediates viral entry into cells. The results of our study demonstrate that within a few passages in cell culture, both the natural isolate of SARS-CoV-2 and the recombinant cDNA-derived variant acquire an additional ability to bind to heparan sulfate (HS). This promotes a primary attachment of viral particles to cells before their further interactions with the ACE2. Interaction with HS is acquired through multiple mechanisms. These include (i) accumulation of point mutations in the N-terminal domain (NTD) of the S protein, which increases the positive charge of the surface of this domain, (ii) insertions into the NTD of heterologous peptides containing positively charged amino acids, and (iii) mutation of the first amino acid downstream of the furin cleavage site. This last mutation affects S protein processing, transforms the unprocessed furin cleavage site into the heparin-binding peptide, and makes viruses less capable of syncytium formation. These viral adaptations result in higher affinity of viral particles to heparin, dramatic increase in plaque sizes, more efficient viral spread, higher infectious titers, and 2 orders of magnitude higher infectivity. The detected adaptations also suggest an active role of NTD in virus attachment and entry. As in the case of other RNA-positive (RNA+) viruses, evolution to HS binding may result in virus attenuation in vivo. IMPORTANCE The spike protein of SARS-CoV-2 is a major determinant of viral pathogenesis. It mediates binding to the ACE2 receptor and, later, fusion of viral envelope and cellular membranes. The results of our study demonstrate that SARS-CoV-2 rapidly evolves during propagation in cultured cells. Its spike protein acquires mutations in the NTD and in the P1' position of the furin cleavage site (FCS). The amino acid substitutions or insertions of short peptides in NTD are closely located on the protein surface and increase its positive charge. They strongly increase affinity of the virus to heparan sulfate, make it dramatically more infectious for the cultured cells, and decrease the genome equivalent to PFU (GE/PFU) ratio by orders of magnitude. The S686G mutation also transforms the FCS into the heparin-binding peptide. Thus, the evolved SARS-CoV-2 variants efficiently use glycosaminoglycans on the cell surface for primary attachment before the high-affinity interaction of the spikes with the ACE2 receptor.


Asunto(s)
Evolución Molecular , Heparitina Sulfato/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Adaptación Biológica , Animales , Sitios de Unión , Chlorocebus aethiops , Efecto Citopatogénico Viral , ADN Complementario , Furina/metabolismo , Heparina/metabolismo , Interacciones Huésped-Patógeno , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Pase Seriado , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Ensayo de Placa Viral , Acoplamiento Viral
19.
Microb Pathog ; 166: 105548, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35462014

RESUMEN

Canine coronavirus (CCoV) is generally thought of as a mild, but highly contagious, enteritis of young dogs. This study was to investigate the molecular detection and characteristics of CCoV in Chengdu city, Southwest China. 218 canine fecal samples were collected from four animal hospitals and one animal shelter from 2020 to 2021. Fifty-nine CCoV-positive samples were detected by RT-PCR, including 40 CCoV-I, 25 CCoV-IIa, one CCoV-IIb and 10 untyped. To further analyze the genetic diversity of CCoV, we amplified ten complete spike (S) genes, including four CCoV-I and six CCoV-II strains. The amino acid sequence obtained in this study revealed 85.95% ± 12.55% homology with the reference strains. Moreover, in the N-terminal structural domain, there were two amino acid insertions (17QQ18) in two strains of CCoV-I and four amino acid insertions (95IGTN98) in CCoV-IIb strain. Interestingly, we identified that the S1/S2 cleavage site of the S protein of CCoV strains (SWU-SSX3 and SWU-SSX10) were consistent with feline coronavirus (FCoV). In the evolutionary tree, a strain of CCoV-I (SWU-SSX10) was found to be more closely related to FCoV, while SWU-SSX7 of CCoV-IIb was more closely related to coronavirus from the Chinese ferret badger. In addition, for the first time, recombination in a CCoV-IIb strain was found to occur between two subtypes occurring in the C domain of the S1 subunit, with a breakpoint starting at 2141 nt. The results enriched the epidemiological information of CCoV and provided an important reference for the prevention of CCoV in Chengdu city, Southwest China.


Asunto(s)
Coronavirus Canino , Enfermedades de los Perros , Aminoácidos/genética , Animales , Coronavirus Canino/clasificación , Coronavirus Canino/genética , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/virología , Perros , Filogenia
20.
Curr Genomics ; 23(3): 195-206, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-36777008

RESUMEN

Background: Open spina bifida (myelomeningocele) is the result of the failure of spinal cord closing completely and is the second most common and severe birth defect. Open neural tube defects are multifactorial, and the exact molecular mechanism of the pathogenesis is not clear due to disease complexity for which prenatal treatment options remain limited worldwide. Artificial intelligence techniques like machine learning tools have been increasingly used in precision diagnosis. Objective: The primary objective of this study is to identify key genes for open neural tube defects using a machine learning approach that provides additional information about myelomeningocele in order to obtain a more accurate diagnosis. Materials and Methods: Our study reports differential gene expression analysis from multiple datasets (GSE4182 and GSE101141) of amniotic fluid samples with open neural tube defects. The sample outliers in the datasets were detected using principal component analysis (PCA). We report a combination of the differential gene expression analysis with recursive feature elimination (RFE), a machine learning approach to get 4 key genes for open neural tube defects. The features selected were validated using five binary classifiers for diseased and healthy samples: Logistic Regression (LR), Decision tree classifier (DT), Support Vector Machine (SVM), Random Forest classifier (RF), and K-nearest neighbour (KNN) with 5-fold cross-validation. Results: Growth Associated Protein 43 (GAP43), Glial fibrillary acidic protein (GFAP), Repetin (RPTN), and CD44 are the important genes identified in the study. These genes are known to be involved in axon growth, astrocyte differentiation in the central nervous system, post-traumatic brain repair, neuroinflammation, and inflammation-linked neuronal injuries. These key genes represent a promising tool for further studies in the diagnosis and early detection of open neural tube defects. Conclusion: These key biomarkers help in the diagnosis and early detection of open neural tube defects, thus evaluating the progress and seriousness in diseases condition. This study strengthens previous literature sources of confirming these biomarkers linked with open NTD's. Thus, among other prenatal treatment options present until now, these biomarkers help in the early detection of open neural tube defects, which provides success in both treatment and prevention of these defects in the advanced stage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA