Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 891
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nano Lett ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856974

RESUMEN

In this study, we examined the nanostructured molecular packing and orientations of poly[[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) films formed on water for the application of nanotechnology-based organic electronic devices. First, the nanoscale molecule-substrate interaction between the polymer and water was modulated by controlling the alkyl side chain length in NDI-based copolymers. Increasing alkyl side chain lengths induced a nanomorphological transition from face-on to edge-on orientation, confirmed by molecular dynamics simulations revealing nanostructural behavior. Second, the nanoscale intermolecular interactions of P(NDI2OD-T2) were controlled by varying the volume ratio of the high-boiling-point additive solvent in the binary solvent blends. As the additive solvent ratio increased, the nanostructured molecular orientation of the P(NDI2OD-T2) films on water changed remarkably from edge-on to bimodal with more face-on crystallites, thereby affecting charge transport. Our finding provides essential insights for precise nanoscale morphological control on water substrates, enabling the formation of high-performance polymer films for organic electronic devices.

2.
Small ; : e2311766, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109952

RESUMEN

The concept of creating room-temperature ferromagnets from organic radicals proposed nearly sixty years ago, has recently experienced a resurgence due to advances in organic radical chemistry and materials. However, the lack of definitive design paradigms for achieving stable long-range ferromagnetic coupling between organic radicals presents an uncertain future for this research. Here, an innovative strategy is presented to achieve room-temperature ferromagnets by assembling π-conjugated radicals into π-π stacking aggregates. These aggregates, with ultra-close π-π distances and optimal π-π overlap, provide a platform for strong ferromagnetic (FM) interaction. The planar aromatic naphthalene diimide (NDI) anion radicals form nanorod aggregates with a π-π distance of just 3.26 Å, shorter than typical van der Waals distances. The suppressed electron paramagnetic resonance (EPR) signal and emergent near-infrared (NIR) absorption of the aggregates confirm strong interactions between the radicals. Magnetic measurements of NDI anion radical aggregates demonstrate room-temperature ferromagnetism with a saturated magnetization of 1.1 emu g-1, the highest among pure organic ferromagnets. Theoretical calculations reveal that π-stacks of NDI anion radicals with specific interlayer translational slippage favor ferromagnetic coupling over antiferromagnetic coupling.

3.
Chemistry ; 30(10): e202303768, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38197193

RESUMEN

A simple and effective organolithium approach to the synthesis of 2-substituted benzo[cd]indoles from peri-dihalonaphthalenes and nitriles has been developed. The reaction proceeds via a surprisingly easy intramolecular aromatic nucleophilic substitution facilitated by the "clothespin effect". The discovered transformation provides good isolated yields, allows usage of an extensive range of nitriles, and demonstrates a good substituents tolerance. UV-absorption and NMR spectra of the obtained benzo[cd]indoles and their protonated forms demonstrated exclusive protonation to the indole nitrogen atom even in the presence of two NMe2 groups in positions 5 and 6 (i. e. "proton sponge" moiety).

4.
Chemistry ; : e202401944, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150693

RESUMEN

Fast and sensitive quantification of drugs as emerging pollutants in water bodies is a pressing need in contemporary society, to prevent serious environmental concerns that could negatively impact on human health. This explains the surge of interest in this field, and the need to identify highly selective sensing systems. Addressing this issue, in this work we synthesized two D-glucamine functionalized fluorophores bearing self-assembling cores, as 1,8-naphthalimide and naphthalene diimide. We studied their self-assembly in water solution, and characterized the aggregated formed by determining their stability constant, their morphology and size by scanning electron microscopy, resonance light scattering and dynamic light scattering, as well their solid-state emission ability. Then, we studied their sensing ability, in water, towards pharmaceutically active compounds such as ciprofloxacin, nalidixic acid, carbamazepine and diclofenac sodium salt, by fluorescence investigation. Data collected show that the self-assembling ability is significantly affected by the fluorophore structure, which in turn also determines sensing ability. In particular, the naphtalene diimide-based probe was the most sensitive, with LOD as low as 0.01 mM in the presence of nalidixic acid, which is in line and competitive with more complex sensing systems, recently reported in the literature.

5.
Bioorg Med Chem Lett ; 111: 129903, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053704

RESUMEN

Nitrobenzoxadiazole (NBD)-incorporated naphthalene diimide derivatives were designed and synthesized as candidates of antitumor agents with cytotoxicity against human pancreatic cancer cell MIA PaCa-2. Among these, compounds 1NND and 3NND exhibited fluorescent "turn-off" property toward human telomeric G-quadruplex (G4), which allows the direct measurement of dissociation constant (Kd) of ligands against G4 by fluorescence titration method. Notably, the compound 1NND not only exhibited great cytotoxic activity against MIA PaCa-2 with a half maximal inhibitory concentration (IC50) of 77.9 nM, but also exhibited high affinity against G4 with Kd of 1.72 µM. Furthermore, the target binding properties were investigated by circular dichroism (CD) spectra and further studied by molecular docking methods.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , G-Cuádruplex , Imidas , Naftalenos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , G-Cuádruplex/efectos de los fármacos , Imidas/química , Imidas/farmacología , Imidas/síntesis química , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Naftalenos/química , Naftalenos/farmacología , Naftalenos/síntesis química , Relación Estructura-Actividad
6.
Environ Sci Technol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353102

RESUMEN

Biofiltration is a simple and low-cost method for the cleanup of contaminated water. However, the reduced availability of dissolved chemicals to surface-attached degrader bacteria may limit its efficient use at certain hydraulic loadings. When a direct current (DC) electric field is applied to an immersed packed bed, it invokes electrokinetic processes, such as electroosmotic water flow (EOF). EOF is a surface-charge-induced plug-flow-shaped movement of pore fluids. It acts at a nanometer distance above surfaces and allows the change of microscale pressure-driven flow profiles and, hence, the availability of dissolved contaminants to microbial degraders. In laboratory percolation columns, we assessed the effects of a weak DC electric field (E = 0.5 V·cm-1) on the biodegradation of waterborne naphthalene (NAH) by surface-attached Pseudomonas fluorescens LP6a. To vary NAH bioavailability, we used different NAH concentrations (C0 = 2.7, 5.1, or 7.8 × 10-5 mol·L-1) and Darcy velocities typical for biofiltration (U¯ = 0.2-1.2 × 10-4 m·s-1). In DC-free controls, we observed higher specific degradation rates (qc) at higher NAH concentrations. The qc depended on U¯, suggesting bioavailability restrictions depending on the hydraulic residence times. DC fields consistently increased qc and resulted in linearly increasing benefits up to 55% with rising hydraulic loadings relative to controls. We explain these biodegradation benefits by EOF-altered microscale flow profiles allowing for better NAH provision to bacteria attached to the collectors even though the EOF was calculated to be 100-800 times smaller than bulk water flow. Our data suggest that electrokinetic approaches may give rise to future technical applications that allow regulating biodegradation, for example, in response to fluctuating hydraulic loadings.

7.
Macromol Rapid Commun ; : e2400566, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340480

RESUMEN

The pursuit of innovative organic materials and the examination of the "structure-function" correlation in lithium-ion batteries (LIBs) are crucial and highly desirable. Current research focuses on the creation of novel conjugated organic polymers with polycarbonyl groups and examining the impact of electrode structure on the function of lithium-ion batteries. In this paper, two novel cyanovinylene-based conjugated organic polymers, NBA-TFB and NBA-TFPB, are synthesized using a Knoevenagel condensation reaction with naphthalene diimide as the integral unit. The performance of NBA-TFB and NBA-TFPB as cathodes in lithium-ion batteries is investigated. Improved conductivity and increased active site density in NBA-TFPB resulted in superior electrochemistry compared to NBA-TFB. Specifically, NBA-TFPB exhibited a larger reversible capacity (87.58 mAh g-1 at 0.2C and 88.34% retention after 100 cycles), exceptional rate capability (66.13 mAh g-1 at 5C), and robust cycling stability (99.58% coulombic efficiency at 1C and 60.71% retention after 2000 cycles). This study expands the family of diimide-based naphthalene polymers and provides a strategy for enhancing the performance of organic electrode materials containing polycarbonyl structure.

8.
Bioorg Chem ; 145: 107181, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354503

RESUMEN

The human CC chemokine receptor 8 (CCR8) has been extensively pursued as target for the treatment of various inflammatory disorders. More recently, the importance of CCR8 in the tumor microenvironment has been demonstrated, spurring the interest in CCR8 antagonism as therapeutic strategy in immuno-oncology. On a previously described naphthalene sulfonamide with CCR8 antagonistic properties, the concept of isosterism was applied, leading to the discovery of novel CCR8 antagonists with IC50 values in the nM range in both the CCL1 competition binding and CCR8 calcium mobilization assay. The excellent CCR8 antagonistic activity of the most potent congeners was rationalized by homology molecular modeling.


Asunto(s)
Quimiocinas CC , Receptores de Quimiocina , Humanos , Quimiocinas CC/metabolismo , Quimiocina CCL1/metabolismo , Receptores de Quimiocina/química , Receptores de Quimiocina/metabolismo , Amidas , Receptores CCR8 , Sulfonamidas/farmacología , Naftalenos/farmacología
9.
Bioorg Chem ; 145: 107236, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402796

RESUMEN

In this study, 16 new compounds, six bibenzyls (1-6) and 10 naphthalenes (7-13), including three pairs of naphthalene enantiomers and three known compounds (14-16), were isolated from Dendrobium chrysanthum. Structurally, compounds 1-5 are previously undescribed dimeric bibenzyls, uniquely linked by unusual carbon bonds. The structures of the compounds were determined using spectroscopy and X-ray crystallography. The screening results indicated that 1, 2, and 5 showed remarkable lipid-lowering activities in FFA-induced HepG2 cells, with EC50 values ranging from 3.13 to 6.57 µM. Moreover, 1, 2, and 5 significantly decreased both the mRNA and protein levels of the target SREBP-1c, and 5 also reduced PPARα mRNA and protein levels. Therefore, 1, 2, and 5 are potential drugs against hepatic steatosis by targeting PPARα or SREBP-1c.


Asunto(s)
Bibencilos , Dendrobium , Hígado Graso , Bibencilos/farmacología , Bibencilos/química , Dendrobium/química , PPAR alfa , ARN Mensajero , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Naftalenos/química , Naftalenos/farmacología
10.
Bioorg Chem ; 147: 107372, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653152

RESUMEN

Joining the global demand for the discovery of potent NSAIDs with minimized ulcerogenic effect, new pyrazole clubbed thiazole derivatives 5a-o were designed and synthesized. The new derivatives were initially evaluated for their analgesic activity. Eight compounds 5a, 5c, 5d, 5e, 5f, 5h, 5m, and 5o showed higher activity than Indomethacin (potency = 105-130 % vs. 100 %). Subsequently, they were picked for further evaluation of their anti-inflammatory activity, ulcerogenic liability as well as toxicological studies. Derivatives 5h and 5m showed a potential % edema inhibition after 3 h (79.39 % and 72.12 %, respectively), with a promising safety profile and low ulcer indices (3.80 and 3.20, respectively). The two compounds 5h and 5m were subjected to in vitro COX-1 and COX-2 inhibition assay. The candidate 5h showed nearly equipotent COX-1 inhibition (IC50 = 38.76 nM) compared to the non-selective reference drug Indomethacin (IC50 = 35.72 nM). Compound 5m expressed significant inhibitory activities and a higher COX-2 selectivity index (IC50 = 87.74 nM, SI = 2.05) in comparison with Indomethacin (SI = 0.52), with less selectivity than Celecoxib (SI = 8.31). Simulation docking studies were carried out to gain insights into the binding interaction of compounds 5h and 5m in the vicinity of COX-1 and COX-2 enzymes that illustrated the importance of pyrazole clubbed thiazole core in hydrogen bonding interactions. The thiazole motif of compounds 5h and 5m exhibited a well orientation toward COX-1 Arg120 key residue by hydrogen bonding interactions. Compound 5h revealed an additional arene-cation interaction with Arg120 that could rationalize its superior COX-1 inhibitory activity. Compounds 5h and 5m overlaid the co-crystallized ligand Celecoxib I differently in the active site of COX-2. Compound 5m showed an enhanced accommodation with binding energy of - 6.13 vs. - 1.70 kcal/mol of compounds 5h. The naphthalene ring of compound 5m adopted the Celecoxib I benzene sulfonamide region that is stabilized by hydrogen-arene interactions with the hydrophobic sidechains of the key residues Ser339 and Phe504. Further, the core structure of compound 5m, pyrazole clubbed thiazole, revealed deeper hydrophobic interactions with Ala513, Leu517 and Val509 residues. Finally, a sensitive and accurate UPLC-MS/MS method was developed for the simultaneous estimation of some selected promising pyrazole derivatives in rat plasma. Accordingly, compounds 5h and 5m were suggested to be promising potent analgesic and anti-inflammatory agents with improved safety profiles and a novel COX isozyme modulation activity.


Asunto(s)
Analgésicos , Antiinflamatorios no Esteroideos , Ciclooxigenasa 2 , Edema , Simulación del Acoplamiento Molecular , Tiazoles , Animales , Masculino , Ratones , Ratas , Analgésicos/farmacología , Analgésicos/química , Analgésicos/síntesis química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/síntesis química , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/síntesis química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Edema/tratamiento farmacológico , Edema/inducido químicamente , Estructura Molecular , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Relación Estructura-Actividad , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química
11.
Environ Res ; 247: 118160, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38199464

RESUMEN

Vulnerable populations, such as pregnant women and their fetuses, confront potential health risks due to exposure to environmental toxic compounds. Computational methods have been popular in assessing chemical exposure to populations, contrasting with traditional cohort studies for human biomonitoring. This study proposes a screening-level approach based on physiologically based kinetic (PBK) modeling to evaluate the steady-state exposure of pregnant women to environmental chemicals throughout pregnancy. To exemplify the modeling application, naphthalene was chosen. Simulation results indicated that maternal fat exhibited significant bioaccumulation potential, with the log-transformed BTF of naphthalene at 0.51 mg kg-1 per mg d-1 in the steady state. The placenta was primarily exposed to 0.83 mg/d naphthalene for a 75.2 kg pregnant woman, considering all exposure routes. In the fetal structure, single-organ fetal PBK modeling estimated a naphthalene exposure of 123.64 mg/d to the entire fetus, while multiple-organ fetal PBK modeling further revealed the bioaccumulation highest in fat tissue. The liver identified as the vital organ for metabolism, kBioT,LiverM was demonstrated with the highest sensitivity among rate constants in the maternal body. Furthermore, the first-order kinetic rate constants related to the placenta and blood were found to impact the distribution process of naphthalene in the fetus, influencing gestational exposure. In conclusion, urgent attention is needed to develop a computational biomonitoring tool for assessing toxic chemical exposure in vulnerable populations.


Asunto(s)
Placenta , Mujeres Embarazadas , Humanos , Embarazo , Femenino , Placenta/química , Feto/metabolismo , Simulación por Computador , Naftalenos/análisis , Naftalenos/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34706935

RESUMEN

π-stacking in ground-state dimers/trimers/tetramers of N-butoxyphenyl(naphthalene)diimide (BNDI) exceeds 50 kcal ⋅ mol-1 in strength, drastically surpassing that for the *3[pyrene]2 excimer (∼30 kcal ⋅ mol-1; formal bond order = 1) and similar to other weak-to-moderate classical covalent bonds. Cooperative π-stacking in triclinic (BNDI-T) and monoclinic (BNDI-M) polymorphs effects unusually large linear thermal expansion coefficients (α a , α b , α c , ß) of (452, -16.8, -154, 273) × 10-6 ⋅ K-1 and (70.1, -44.7, 163, 177) × 10-6 ⋅ K-1, respectively. BNDI-T exhibits highly reversible thermochromism over a 300-K range, manifest by color changes from orange (ambient temperature) toward red (cryogenic temperatures) or yellow (375 K), with repeated thermal cycling sustained for over at least 2 y.

13.
Ecotoxicol Environ Saf ; 271: 115975, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244514

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous at relatively high concentrations by atmospheric deposition, and they are threatening to the environment. In this study, the toxicity of naphthalene on tall fescue and its potential responding mechanism was first studied by integrating approaches. Tall fescue seedlings were exposed to 0, 20, and 100 mg L-1 naphthalene in a hydroponic environment for 9 days, and toxic effects were observed by the studies of general physiological studies, chlorophyll fluorescence, and root morphology. Additionally, Ultra Performance Liquid Chromatography - Electrospray Ionization - High-Resolution Mass Spectrometry (UPLC-ESI-HRMS) was used to depict metabolic profiles of tall fescue under different exposure durations of naphthalene, and the intrinsic molecular mechanism of tall fescue resistance to abiotic stresses. Tall fescue shoots were more sensitive to the toxicity of naphthalene than roots. Low-level exposure to naphthalene inhibited the electron transport from the oxygen-evolving complex (OEC) to D1 protein in tall fescue shoots but induced the growth of roots. Naphthalene induced metabolic change of tall fescue roots in 12 h, and tall fescue roots maintained the level of sphingolipids after long-term exposure to naphthalene, which may play important roles in plant resistance to abiotic stresses.


Asunto(s)
Festuca , Lolium , Hidrocarburos Policíclicos Aromáticos , Festuca/metabolismo , Naftalenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Lolium/metabolismo , Espectrometría de Masas
14.
Magn Reson Chem ; 62(10): 712-717, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38816348

RESUMEN

The micellar solubilization of naphthalene from its saturated aqueous solutions using the biosurfactant rhamnolipid was studied. Using the NMR diffusion method, selective measurements of the self-diffusion coefficients of molecules of all components of the solution-naphthalene, rhamnolipid, and water-were carried out at various rhamnolipid concentrations from 0.06 to 100 g/L. Based on the results of diffusometry, the distribution of naphthalene molecules between the states free in solution and states bound by micelles was found. With an increase in the concentration of rhamnolipids, the proportion of bound naphthalene molecules increases from 50% at CRL = 2 g/L to 100% at CRL ≥ 50 g/L. The micelle-water partition coefficient Km and the molar solubilization ratio MSR were calculated.

15.
Chem Biodivers ; 21(2): e202301662, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086017

RESUMEN

In order to determine whether thiazolobenzamide molecules connected to naphthalene could inhibit the growth of three different tumor cell lines, MCF7 (breast carcinoma), A549 (pulmonary carcinoma), and DU145 (prostatic adenocarcinoma) a novel series of ten molecules, designated TA 1-10, was designed, synthesized, and tested. Among these compounds, TA7 showed promising results against cell lines, especially showing exceptional efficacy against breast cancer. Antioxidant activity tests consistently showed the best performance from the TA7 molecule. Furthermore, when a dose of 50 to 500 mg/kg of the total mass of rats is given, the most effective chemical, TA7, did not exhibit any harmful effects during acute oral toxicity tests. The biochemical indicators (SGOT and SGPT) for hepatotoxicity associated with compound TA7 were found to be fairly similar to those of the control group. The findings from molecular docking, XP visualization, and MM-GBSA dG binding investigations are in agreement with the outcomes of in-vitro tests of antioxidant and anticancer capabilities. TA7 was the most effective compound among those that were docked; it bound free energy and had adequate properties for metabolism (biochemical processes), distribution (dispersion), absorption (assimilation), and excretion (elimination). This study found that the TA7 molecule, a thiazole ring system derivative connected to naphthalene, is to be a promising and possible anticancer agent and its efficacy may be further explored in clinical studies.


Asunto(s)
Antineoplásicos , Doxorrubicina , Ratas , Animales , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Doxorrubicina/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Naftalenos/farmacología , Proliferación Celular
16.
Chem Biodivers ; : e202401023, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015085

RESUMEN

A set of novel naphthalene derivatives was synthesized via investment of the electrophilic reaction center of the easily obtainable starting substance, 2-cyano-3-(naphthalen-1-yl)acryloyl chloride (1), with various nitrogen nucleophiles and assessed as potential antitumor agents. The chemical structures of these derivatives were completely specified using several spectral and elemental analyses. The antiproliferative efficacy of the discovered compounds against the human cancer cell lines HepG2 and MCF-7 was investigated. Compounds 12b and 9 have more potent anticancer activity versus MCF-7 breast cancer. DFT calculations for the synthesized compounds were studied to determine molecular geometry, frontier orbital analysis, and molecular electrostatic potential. Compound 2 has the lowest energy gap, the highest softness, and the lowest hardness molecule. Also, the electrophilicity values of the studied molecules provide evidence for their biological effectiveness, as compound 9 had significant antiproliferative activity and a high value of electrophilicity (ω) (0.190 eV).

17.
Arch Pharm (Weinheim) ; 357(10): e2400411, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39008876

RESUMEN

The vascular endothelial growth factor receptor (VEGFR) is a receptor tyrosine kinase that is regarded as an emerging target for abnormal angiogenesis diseases. In this study, novel naphthalene imidazo[1,2-b]pyridazine hybrids as VEGFR selective inhibitors were designed and synthesized using a scaffold hopping strategy based on ponatinib, a multitarget kinase inhibitor. Among the evaluated compounds, derivative 9k (WS-011) demonstrated the most potent inhibitory potency against VEGFR-2 (IC50 = 8.4 nM) and displayed superior VEGFR selectivity over a panel of 70 kinases compared with ponatinib. Furthermore, 9k possessed good cytotoxic effects on various cancer cell lines, especially the colon cancer HT-29 cells, with an acceptable oral bioavailability. Moreover, 9k significantly inhibited the migration and invasion of human umbilical vein endothelial cells (HUVEC) cells and induced apoptosis through the upregulation of apoptotic proteins in HT-29 cells. 9k also effectively suppressed the activation of VEGFR-2 signaling pathways, which in turn inhibited the growth of HT-29 cells and the tube formation of HUVECs in vitro. All of the findings revealed that 9k could be considered a promising antiangiogenesis lead that merits further investigation.


Asunto(s)
Apoptosis , Diseño de Fármacos , Células Endoteliales de la Vena Umbilical Humana , Naftalenos , Inhibidores de Proteínas Quinasas , Piridazinas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Piridazinas/farmacología , Piridazinas/síntesis química , Piridazinas/química , Naftalenos/farmacología , Naftalenos/síntesis química , Naftalenos/química , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células HT29 , Apoptosis/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Imidazoles/farmacología , Imidazoles/síntesis química , Imidazoles/química , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
Nano Lett ; 23(20): 9266-9271, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37812523

RESUMEN

A series of two-dimensional polyimide covalent organic frameworks (2D COF) based on core-substituted naphthalene diimides (cNDIs) were designed and synthesized with the characteristic of tunable bandgap without global structural changes. Cyclic voltammetry (CV) and DFT calculations indicated that COFcNDI-OEt and COFcNDI-SEt possess higher HOMO/LUMO levels and narrower bandgaps than COFNDI-H. Further investigation indicated that the COF bandgaps are not only related to the electron-donating substituents but also varied with respect to the interlayer distances. Moreover, the femtosecond transient absorption (TA) spectra manifested that the electron donor substituents are beneficial to the charge delocalization in the π-columnar unit, resulting in a longer lifetime of charge recombination, which is one of the pivotal prerequisites for high-performance solar cells and photocatalysis.

19.
Molecules ; 29(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893581

RESUMEN

In this study, carbon-quantum-dot (CQD)-decorated TiO2 was prepared using an ultrasonic doping method and applied in the photocatalytic degradation of naphthalene under sunlight irradiation. The CQDs were synthesized from a typical macroalgae via diluted sulfuric acid pretreatment and hydrothermal synthesis using an optimal design, i.e., 3 wt% and 200 °C, respectively. The CQD/TiO2 composite remarkably enhanced the photocatalytic activity. The degradation of naphthalene under a visible light environment indicated that there is a synergistic mechanism between the CQDs and TiO2, in which the generation of reactive oxygen species is significantly triggered; in addition, the N that originated from the macroalgae accelerated the photocatalytic efficiency. Kinetic analysis showed that the photocatalytic behavior of the CQD/TiO2 composite followed a pseudo-first-order equation. Consequently, our combined experimental approach not only provides a facile pretreatment process for bio-CQDs synthesis, but also delivers a suitable TiO2 photocatalyst for the visible environment along with critical insights into the development of harmful macroalgae resources.

20.
J Occup Environ Hyg ; 21(5): 353-364, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38560919

RESUMEN

Structural firefighters are exposed to a complex set of contaminants and combustion byproducts, including volatile organic compounds (VOCs). Additionally, recent studies have found structural firefighters' skin may be exposed to multiple chemical compounds via permeation or penetration of chemical byproducts through or around personal protective equipment (PPE). This mannequin-based study evaluated the effectiveness of four different PPE conditions with varying contamination control measures (incorporating PPE interface design features and particulate blocking materials) to protect against ingress of several VOCs in a smoke exposure chamber. We also investigated the effectiveness of long-sleeve base layer clothing to provide additional protection against skin contamination. Outside gear air concentrations were measured from within the smoke exposure chamber at the breathing zone, abdomen, and thigh heights. Personal air concentrations were collected from mannequins under PPE at the same general heights and under the base layer at abdomen and thigh heights. Sampled contaminants included benzene, toluene, styrene, and naphthalene. Results suggest that VOCs can readily penetrate the ensembles. Workplace protection factors (WPFs) were near one for benzene and toluene and increased with increasing molecular weight of the contaminants. WPFs were generally lower under hoods and jackets compared to under pants. For all PPE conditions, the pants appeared to provide the greatest overall protection against ingress of VOCs, but this may be due in part to the lower air concentrations toward the floor (and cuffs of pants) relative to the thigh-height outside gear concentrations used in calculating the WPFs. Providing added interface control measures and adding particulate-blocking materials appeared to provide a protective benefit against less-volatile chemicals, like naphthalene and styrene.


Asunto(s)
Contaminantes Ocupacionales del Aire , Bomberos , Naftalenos , Exposición Profesional , Ropa de Protección , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Contaminantes Ocupacionales del Aire/análisis , Humanos , Benceno/análisis , Tolueno/análisis , Equipo de Protección Personal , Estireno/análisis , Maniquíes , Humo/análisis , Lugar de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA