Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 42(44): 8373-8392, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36127134

RESUMEN

The chromatin remodeler CHD8 represents a high-confidence risk factor in autism, a multistage progressive neurologic disorder, however the underlying stage-specific functions remain elusive. In this study, by analyzing Chd8 conditional knock-out mice (male and female), we find that CHD8 controls cortical neural stem/progenitor cell (NSC) proliferation and survival in a stage-dependent manner. Strikingly, inducible genetic deletion reveals that CHD8 is required for the production and fitness of transit-amplifying intermediate progenitors (IPCs) essential for upper-layer neuron expansion in the embryonic cortex. p53 loss of function partially rescues apoptosis and neurogenesis defects in the Chd8-deficient brain. Further, transcriptomic and epigenomic profiling indicates that CHD8 regulates the chromatin accessibility landscape to activate neurogenesis-promoting factors including TBR2, a key regulator of IPC neurogenesis, while repressing DNA damage- and p53-induced apoptotic programs. In the adult brain, CHD8 depletion impairs forebrain neurogenesis by impeding IPC differentiation from NSCs in both subventricular and subgranular zones; however, unlike in embryos, it does not affect NSC proliferation and survival. Treatment with an antidepressant approved by the Federal Drug Administration (FDA), fluoxetine, partially restores adult hippocampal neurogenesis in Chd8-ablated mice. Together, our multistage functional studies identify temporally specific roles for CHD8 in developmental and adult neurogenesis, pointing to a potential strategy to enhance neurogenesis in the CHD8-deficient brain.SIGNIFICANCE STATEMENT The role of the high-confidence autism gene CHD8 in neurogenesis remains incompletely understood. Here, we identify a stage-specific function of CHD8 in development of NSCs in developing and adult brains by conserved, yet spatiotemporally distinct, mechanisms. In embryonic cortex, CHD8 is critical for the proliferation, survival, and differentiation of both NSC and IPCs during cortical neurogenesis. In adult brain, CHD8 is required for IPC generation but not the proliferation and survival of adult NSCs. Treatment with FDA-approved antidepressant fluoxetine partially rescues the adult neurogenesis defects in CHD8 mutants. Thus, our findings help resolve CHD8 functions throughout life during embryonic and adult neurogenesis and point to a potential avenue to promote neurogenesis in CHD8 deficiency.


Asunto(s)
Trastorno Autístico , Cromatina , Proteínas de Unión al ADN , Neurogénesis , Animales , Femenino , Masculino , Ratones , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fluoxetina , Hipocampo/metabolismo , Ratones Noqueados , Neurogénesis/fisiología , Proteína p53 Supresora de Tumor , Prosencéfalo
2.
Exp Brain Res ; 241(2): 505-515, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36611122

RESUMEN

Resident neural precursor cells (NPCs) activation is a promising therapeutic strategy for brain repair. This strategy involves stimulating multiple stages of NPCs development, including proliferation, self-renewal, migration, and differentiation. Metformin, an FDA-approved diabetes drug, has been shown to promote the proliferation and differentiation of NPCs. However, it is still unclear whether metformin promotes the migration of NPCs. EVOS living cell imaging system was used for observing the migration for primary NPCs dynamically in vitro after metformin treatment. For in vivo study, a mouse model of ischemic stroke was established through middle cerebral artery occlusion (MCAO). To label the proliferating cell in subventricular zone, BrdU was injected intraperitoneally into the mice. After co-staining with BrdU and doublecortin (DCX), a marker for NPCs, the migration of Brdu and DCX double positive NPCs was detected along the rostral migratory stream (RMS) and around the infarct area using frozen brain sections. Finally, the rotarod test, corner test and beam walking were performed to evaluate the motor functions of the mice after stroke in different groups. The results showed that metformin enhanced NPCs migration in vivo and in vitro by promoting F-actin assembly and lamellipodia formation. What's more, metformin treatment also significantly reduced the infarct volume and alleviated functional dysfunction after stroke. Mechanistically, metformin promoted NPCs migration via up-regulating the CDC42 expression. Taken together, metformin represents an optimal candidate agent for neural repair that is capable of not only expanding the adult NPC population but also subsequently driving them toward the destination for neuronal differentiation.


Asunto(s)
Accidente Cerebrovascular Isquémico , Metformina , Células-Madre Neurales , Accidente Cerebrovascular , Animales , Ratones , Metformina/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/uso terapéutico , Neurogénesis , Accidente Cerebrovascular/tratamiento farmacológico , Diferenciación Celular , Infarto de la Arteria Cerebral Media
3.
BMC Biol ; 14: 57, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27392568

RESUMEN

BACKGROUND: Compartment boundaries are an essential developmental mechanism throughout evolution, designated to act as organizing centers and to regulate and localize differently fated cells. The hindbrain serves as a fascinating example for this phenomenon as its early development is devoted to the formation of repetitive rhombomeres and their well-defined boundaries in all vertebrates. Yet, the actual role of hindbrain boundaries remains unresolved, especially in amniotes. RESULTS: Here, we report that hindbrain boundaries in the chick embryo consist of a subset of cells expressing the key neural stem cell (NSC) gene Sox2. These cells co-express other neural progenitor markers such as Transitin (the avian Nestin), GFAP, Pax6 and chondroitin sulfate proteoglycan. The majority of the Sox2(+) cells that reside within the boundary core are slow-dividing, whereas nearer to and within rhombomeres Sox2(+) cells are largely proliferating. In vivo analyses and cell tracing experiments revealed the contribution of boundary Sox2(+) cells to neurons in a ventricular-to-mantle manner within the boundaries, as well as their lateral contribution to proliferating Sox2(+) cells in rhombomeres. The generation of boundary-derived neurospheres from hindbrain cultures confirmed the typical NSC behavior of boundary cells as a multipotent and self-renewing Sox2(+) cell population. Inhibition of Sox2 in boundaries led to enhanced and aberrant neural differentiation together with inhibition in cell-proliferation, whereas Sox2 mis-expression attenuated neurogenesis, confirming its significant function in hindbrain neuronal organization. CONCLUSIONS: Data obtained in this study deciphers a novel role of hindbrain boundaries as repetitive pools of neural stem/progenitor cells, which provide proliferating progenitors and differentiating neurons in a Sox2-dependent regulation.


Asunto(s)
Tipificación del Cuerpo , Células-Madre Neurales/citología , Rombencéfalo/citología , Factores de Transcripción SOXB1/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Autorrenovación de las Células , Embrión de Pollo , Modelos Biológicos , Células-Madre Neurales/metabolismo , Rombencéfalo/embriología , Esferoides Celulares/citología , Factores de Tiempo
4.
Front Cell Neurosci ; 13: 429, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31607868

RESUMEN

Ischemic stroke is one of the most leading diseases causing death/long-term disability worldwide. Activating endogenous neural stem/progenitors cells (NSPCs), lining in the subventricular zone (SVZ) and dentate gyrus, facilitates injured brain tissue recovery in both short and long-term experimental settings. While, only a few proliferated NSPCs migrate toward the lesions to enhance endogenous repair after ischemia. Here, the results indicated that the functional recovery was evidently improved and the infarct volume was significantly reduced with ascorbic acid (AA) treatment in a dose-dependent manner from 125 to 500 mg/Kg, and the suitable therapeutic concentration was 250 mg/Kg. The possible mechanism might be due to activating sodium-vitamin C cotransporter 2 (SVCT2), which was down-regulated in SVZ after ischemia. Furthermore, immunostaining images depicted the number of migrated NSPCs from SVZ were significantly increased with 250 mg/Kg AA treatment or SVCT2 overexpression under the physiological and pathological condition in vivo. Besides, the data also represented that 250 mg/Kg AA or SVCT2 overexpression facilitated NSPCs migration via promoting F-actin assembling in the manner of up-regulating CDC42 expression using oxygen-glucose deprivation in vitro. Collectively, the present study indicates that SVCT2 promotes NSPCs migration through CDC42 activation to facilitate F-actin assembling, which enlarges the therapeutic scope of AA and the role of SVCT2 in NSPCs migration after brain injury.

5.
Brain Res ; 1675: 51-60, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28866055

RESUMEN

Iris neural stem/progenitor cells from mature porcine eyes were investigated using a new protocol for tissue culture, which consists of dispase treatment and Matrigel embedding. We used a number of culture conditions and found an intense differentiation of neuronal cells from both the iris pigmented epithelial (IPE) cells and the stroma tissue cells. Rod photoreceptor-like cells were also observed but mostly in a later stage of culture. Neuronal differentiation does not require any additives such as fetal bovine serum or FGF2, although FGF2 and IGF2 appeared to promote neural differentiation in the IPE cultures. Furthermore, the stroma-derived cells were able to be maintained in vitro indefinitely. The evolutionary similarity between humans and domestic pigs highlight the potential for this methodology in the modeling of human diseases and characterizing human ocular stem cells.


Asunto(s)
Diferenciación Celular/fisiología , Iris/citología , Iris/fisiología , Células-Madre Neurales/fisiología , Neuronas/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales , Células Cultivadas , Iris/química , Células-Madre Neurales/química , Neuronas/química , Células Fotorreceptoras Retinianas Bastones/química , Sus scrofa , Porcinos
6.
ASN Neuro ; 8(4)2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27511909

RESUMEN

Harmful effects that alter the homeostasis of neural stem or progenitor cells (NSPs) can affect regenerative processes in the central nervous system. We investigated the effect of soluble factors secreted by control or (137)Cs-γ-irradiated glioblastoma or medulloblastoma cells on redox-modulated endpoints in recipient human NSPs. Growth medium harvested from the nonirradiated brain tumor cells, following 24 h of growth, induced prominent oxidative stress in recipient NSPs as judged by overall increases in mitochondrial superoxide radical levels (p < .001), activation of c-jun N-terminal kinase, and decrease in the active form of FoxO3a. The induced oxidative stress was associated with phosphorylation of p53 on serine 15, a marker of DNA damage, induction of the cyclin-cyclin dependent kinase inhibitors p21(Waf1) and p27(Kip1), and perturbations in cell cycle progression (p < .001). These changes were also associated with increased apoptosis as determined by enhanced annexin V staining (p < .001) and caspase 8 activation (p < .05) and altered expression of critical regulators of self-renewal, proliferation, and differentiation. Exposure of the tumor cells to radiation only slightly altered the induced oxidative changes in the bystander NSPs, except for medium from irradiated medulloblastoma cells that was more potent at inducing apoptosis in the NSPs than medium from nonirradiated cells (p < .001). The elucidation of such stressful bystander effects provides avenues to understand the biochemical events underlying the development or exacerbation of degenerative outcomes associated with brain cancers. It is also relevant to tissue culture protocols whereby growth medium conditioned by tumor cells is often used to support the growth of stem cells.


Asunto(s)
Efecto Espectador/fisiología , Glioblastoma/química , Meduloblastoma/química , Células-Madre Neurales/fisiología , Estrés Oxidativo/fisiología , Anexina A5/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Efecto Espectador/efectos de los fármacos , Efecto Espectador/efectos de la radiación , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Línea Celular Transformada , Línea Celular Tumoral , Medios de Cultivo Condicionados/farmacología , Glioblastoma/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Meduloblastoma/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA