Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 178(6): 1362-1374.e16, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447178

RESUMEN

TRPA1 is a chemosensory ion channel that functions as a sentinel for structurally diverse electrophilic irritants. Channel activation occurs through an unusual mechanism involving covalent modification of cysteine residues clustered within an amino-terminal cytoplasmic domain. Here, we describe a peptidergic scorpion toxin (WaTx) that activates TRPA1 by penetrating the plasma membrane to access the same intracellular site modified by reactive electrophiles. WaTx stabilizes TRPA1 in a biophysically distinct active state characterized by prolonged channel openings and low Ca2+ permeability. Consequently, WaTx elicits acute pain and pain hypersensitivity but fails to trigger efferent release of neuropeptides and neurogenic inflammation typically produced by noxious electrophiles. These findings provide a striking example of convergent evolution whereby chemically disparate animal- and plant-derived irritants target the same key allosteric regulatory site to differentially modulate channel activity. WaTx is a unique pharmacological probe for dissecting TRPA1 function and its contribution to acute and persistent pain.


Asunto(s)
Venenos de Escorpión/farmacología , Canal Catiónico TRPA1/metabolismo , Animales , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Escorpiones/metabolismo
2.
Annu Rev Neurosci ; 46: 39-58, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-36913712

RESUMEN

Migraine is a complex neurovascular pain disorder linked to the meninges, a border tissue innervated by neuropeptide-containing primary afferent fibers chiefly from the trigeminal nerve. Electrical or mechanical stimulation of this nerve surrounding large blood vessels evokes headache patterns as in migraine, and the brain, blood, and meninges are likely sources of headache triggers. Cerebrospinal fluid may play a significant role in migraine by transferring signals released from the brain to overlying pain-sensitive meningeal tissues, including dura mater. Interactions between trigeminal afferents, neuropeptides, and adjacent meningeal cells and tissues cause neurogenic inflammation, a critical target for current prophylactic and abortive migraine therapies. Here we review the importance of the cranial meninges to migraine headaches, explore the properties of trigeminal meningeal afferents, and briefly review emerging concepts, such as meningeal neuroimmune interactions, that may one day prove therapeutically relevant.


Asunto(s)
Trastornos Migrañosos , Humanos , Meninges/irrigación sanguínea , Duramadre , Cefalea , Encéfalo
3.
Physiol Rev ; 100(3): 945-982, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31869278

RESUMEN

Itch is a topic to which everyone can relate. The physiological roles of itch are increasingly understood and appreciated. The pathophysiological consequences of itch impact quality of life as much as pain. These dynamics have led to increasingly deep dives into the mechanisms that underlie and contribute to the sensation of itch. When the prior review on the physiology of itching was published in this journal in 1941, itch was a black box of interest to a small number of neuroscientists and dermatologists. Itch is now appreciated as a complex and colorful Rubik's cube. Acute and chronic itch are being carefully scratched apart and reassembled by puzzle solvers across the biomedical spectrum. New mediators are being identified. Mechanisms blur boundaries of the circuitry that blend neuroscience and immunology. Measures involve psychophysics and behavioral psychology. The efforts associated with these approaches are positively impacting the care of itchy patients. There is now the potential to markedly alleviate chronic itch, a condition that does not end life, but often ruins it. We review the itch field and provide a current understanding of the pathophysiology of itch. Itch is a disease, not only a symptom of disease.


Asunto(s)
Prurito/metabolismo , Prurito/fisiopatología , Animales , Humanos , Neuronas/fisiología , Piel/inervación , Médula Espinal/citología , Médula Espinal/fisiología
4.
Circulation ; 149(19): 1516-1533, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38235590

RESUMEN

BACKGROUND: Heart failure is associated with a high rate of mortality and morbidity, and ventricular remodeling invariably precedes heart failure. Ventricular remodeling is fundamentally driven by mechanotransduction that is regulated by both the nervous system and the immune system. However, it remains unknown which key molecular factors govern the neuro/immune/cardio axis that underlies mechanotransduction during ventricular remodeling. Here, we investigated whether the mechanosensitive Piezo cation channel-mediated neurogenic inflammatory cascade underlies ventricular remodeling-related mechanotransduction. METHODS: By ligating the left coronary artery of rats to establish an in vivo model of chronic myocardial infarction (MI), lentivirus-mediated thoracic dorsal root ganglion (TDRG)-specific Piezo1 knockdown rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific Piezo1 knockout mice were used to investigate whether Piezo1 in the TDRG plays a functional role during ventricular remodeling. Subsequently, neutralizing antibody-mediated TDRG IL-6 (interleukin-6) inhibition rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific IL-6 knockdown mice were used to determine the mechanism underlying neurogenic inflammation. Primary TDRG neurons were used to evaluate Piezo1 function in vitro. RESULTS: Expression of Piezo1 and IL-6 was increased, and these factors were functionally activated in TDRG neurons at 4 weeks after MI. Both knockdown of TDRG-specific Piezo1 and deletion of TDRG neuron-specific Piezo1 lessened the severity of ventricular remodeling at 4 weeks after MI and decreased the level of IL-6 in the TDRG or heart. Furthermore, inhibition of TDRG IL-6 or knockdown of TDRG neuron-specific IL-6 also ameliorated ventricular remodeling and suppressed the IL-6 cascade in the heart, whereas the Piezo1 level in the TDRG was not affected. In addition, enhanced Piezo1 function, as reflected by abundant calcium influx induced by Yoda1 (a selective agonist of Piezo1), led to increased release of IL-6 from TDRG neurons in mice 4 weeks after MI. CONCLUSIONS: Our findings point to a critical role for Piezo1 in ventricular remodeling at 4 weeks after MI and reveal a neurogenic inflammatory cascade as a previously unknown facet of the neuronal immune signaling axis underlying mechanotransduction.


Asunto(s)
Inflamación , Canales Iónicos , Infarto del Miocardio , Remodelación Ventricular , Animales , Masculino , Ratones , Ratas , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Inflamación/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Interleucina-6/genética , Canales Iónicos/metabolismo , Canales Iónicos/genética , Mecanotransducción Celular , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Remodelación Ventricular/genética , Remodelación Ventricular/fisiología
5.
Eur J Pediatr ; 183(4): 1619-1627, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38183438

RESUMEN

Neurogenic inflammation is involved in the development and progression of respiratory inflammatory diseases. However, its role in community-acquired pneumonia (CAP) remains unclear. We therefore aimed to investigate plasma levels of neurogenic inflammation-related neuropeptides, calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY), and procalcitonin (PCT) in pediatric patients with CAP and to assess their diagnostic value in viral and bacterial/mixed pneumonia. A total of 124 pediatric patients with CAP (1 month-18 years old) and 56 healthy children of similar ages were prospectively enrolled. The patients were classified as viral (n = 99) and bacterial/mixed (n = 25) pneumonia. Plasma levels of the peptides were quantified by ELISA. ROC analysis was performed to evaluate possible diagnostic value of the peptides. While plasma levels of CGRP, VIP and PCT were significantly higher in patients with CAP than in the control group, respectively, NPY levels were significantly lower. Moreover, plasma levels of all neuropeptides and PCT were significantly higher in bacterial pneumonia patients compared to viral pneumonia patients. ROC analysis revealed that CGRP, SP and NPY had a diagnostic value in distinguishing viral and bacterial/mixed pneumonia. CONCLUSIONS: Our findings suggest that these neuropeptides may be implicated in pediatric CAP. CGRP, SP and NPY together may be a promising candidate in distinguishing viral and bacterial/mixed pneumonia, however, for this, further studies are needed. WHAT IS KNOWN: • Neurogenic inflammation contributes to the development and progression of respiratory inflammatory diseases such as chronic obstructive pulmonary disease and bronchial asthma. WHAT IS NEW: • Plasma levels of neurogenic inflammation related neuropeptides calcitonin gene-related peptide, substance P, vasoactive intestinal peptide and neuropeptide Y are changed in pediatric community-acquired pneumonia. Calcitonin gene-related peptide, substance P and neuropeptide Y are promising candidates in distinguishing viral and bacterial/mixed pneumonia.


Asunto(s)
Neuropéptidos , Neumonía Bacteriana , Humanos , Niño , Péptido Relacionado con Gen de Calcitonina/análisis , Péptido Intestinal Vasoactivo/análisis , Neuropéptido Y/análisis , Sustancia P/análisis , Inflamación Neurogénica , Neumonía Bacteriana/diagnóstico
6.
Int Endod J ; 57(5): 576-585, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294105

RESUMEN

AIM: The purpose of this study was to quantify the effect of five different root canal preparation instruments on Substance P (SP), Calcitonin gene-related peptide (CGRP) and their receptors expression in healthy human periodontal ligament. METHODOLOGY: STROBE guidelines were used to design a study using 60 periodontal ligament samples obtained from healthy lower premolars where extraction was indicated for orthodontic reasons. Prior to extraction 40 of these premolars were equally divided into four groups and root canals were prepared using different systems: Mtwo, Reciproc Blue, HyFlex EDM and Plex-V. Ten premolars were prepared with hand files and served as a positive control group. The remaining 10 premolars where extracted without treatment and served as a negative control group. All periodontal ligament samples were processed to measure the expression of SP, CGRP and their receptors by radioimmunoassay. Kruskal-Wallis and Duncan tests were performed to determine statistically significant differences between the groups for each variable. RESULTS: Greater expression of all the peptides measured were found in the hand-file preparation group, followed by the Reciproc Blue, Mtwo, HyFlex EDM and Plex-V groups. The lower SP, CGRP and their receptors values were for the intact teeth control group. Kruskal-Wallis test showed statistically significant differences amongst groups (p < .001). Dunn post-hoc tests showed statistically significant differences in SP, CGRP and their receptors expression between the intact teeth and the hand-file and Reciproc Blue groups. Hand-file group showed significant differences with the other groups, except with Reciproc Blue, where no differences were observed in any of the peptides measured. Finally, no differences were observed between Plex-V and HyFlex in any of the peptides measured. CONCLUSIONS: Root canal preparation with hand files and Reciproc Blue generates the highest expression of SP, CGRP, NK1 and CGRP1R in human periodontal ligament, whilst Plex-V and HyFlex maintain the basal expression of neuropeptides and their receptors. Mtwo showed intermediate results between Reciproc Blue and HyFlex.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Sustancia P , Humanos , Sustancia P/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ligamento Periodontal/metabolismo , Preparación del Conducto Radicular , Diente Premolar , Cavidad Pulpar , Diseño de Equipo
7.
Lasers Med Sci ; 39(1): 54, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38296870

RESUMEN

Neurogenic inflammation, mediated by T helper 17 cell (Th17) and neurons that release neuropeptides such as substance P (SP), is thought to play a role in the pathogenesis of psoriasis. Excimer light is used in the treatment of psoriasis via induction of T cell apoptosis. The objective of this study is to study the effect of excimer light on active versus stable psoriasis and investigate the levels of substance P and its receptor in both groups. The study included 27 stable and 27 active psoriatic patients as well as 10 matched healthy controls. Clinical examination (in the form of local psoriasis severity index (PSI) and visual analogue scale (VAS)) was done to determine disease severity, level of itching, and quality of life. Tissue levels of SP and neurokinin-1 receptor (NK-1R) were measured by ELISA before and after 9 excimer light sessions in 43 patients. A statistically significant lower levels of PSI and VAS were reached after therapy with no significant difference between the stable and active groups. The mean tissue levels of SP before therapy were significantly higher than the control group. Lower levels of SP and NK-1 receptor were found after treatment overall and in each group. Excimer therapy can be effective for both stable and active plaque psoriasis and this effect could be partly through its role on ameliorating the neurogenic inflammation.


Asunto(s)
Psoriasis , Sustancia P , Humanos , Inflamación Neurogénica , Calidad de Vida , Psoriasis/radioterapia , Prurito
8.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612839

RESUMEN

Chronic inflammatory diseases are considered the most significant cause of death worldwide. Current treatments for inflammatory diseases are limited due to the lack of understanding of the biological factors involved in early-stage disease progression. Nerve growth factor (NGF) is a neurotrophic factor directly associated with inflammatory and autoimmune diseases like osteoarthritis, multiple sclerosis, and rheumatoid arthritis. It has been shown that NGF levels are significantly upregulated at the site of inflammation and play a crucial role in developing a robust inflammatory response. However, little is known about NGF's temporal expression profile during the initial progressive phase of inflammation. This study aimed to determine the temporal expression patterns of NGF in rat skin (epidermis) during adjuvant-induced arthritis (AIA). Sprague Dawley rats were randomly divided into control and complete Freund's adjuvant (CFA)-treated groups. Levels of NGF were evaluated following unilateral AIA at different time points, and it was found that peripheral inflammation due to AIA significantly upregulated the expression of NGF mRNA and protein in a biphasic pattern. These results suggest that NGF signaling is crucial for initiating and maintaining peripheral neurogenic inflammation in rats during AIA.


Asunto(s)
Factor de Crecimiento Nervioso , Inflamación Neurogénica , Animales , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Nervioso/genética , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Inflamación
9.
J Headache Pain ; 25(1): 124, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39080518

RESUMEN

BACKGROUND: The initiation of migraine headaches and the involvement of neuroinflammatory signaling between parenchymal and meningeal cells remain unclear. Experimental evidence suggests that a cascade of inflammatory signaling originating from neurons may extend to the meninges, thereby inducing neurogenic inflammation and headache. This review explores the role of parenchymal inflammatory signaling in migraine headaches, drawing upon recent advancements. BODY: Studies in rodents have demonstrated that sterile meningeal inflammation can stimulate and sensitize meningeal nociceptors, culminating in headaches. The efficacy of relatively blood-brain barrier-impermeable anti-calcitonin gene-related peptide antibodies and triptans in treating migraine attacks, both with and without aura, supports the concept of migraine pain originating in meninges. Additionally, PET studies utilizing inflammation markers have revealed meningeal inflammatory activity in patients experiencing migraine with aura, particularly over the occipital cortex generating visual auras. The parenchymal neuroinflammatory signaling involving neurons, astrocytes, and microglia, which eventually extends to the meninges, can link non-homeostatic perturbations in the insensate brain to pain-sensitive meninges. Recent experimental research has brought deeper insight into parenchymal signaling mechanisms: Neuronal pannexin-1 channels act as stress sensors, initiating the inflammatory signaling by inflammasome formation and high-mobility group box-1 release in response to transient perturbations such as cortical spreading depolarization (CSD) or synaptic metabolic insufficiency caused by transcriptional changes induced by migraine triggers like sleep deprivation and stress. After a single CSD, astrocytes respond by upregulating the transcription of proinflammatory enzymes and mediators, while microglia are involved in restoring neuronal structural integrity; however, repeated CSDs may prompt microglia to adopt a pro-inflammatory state. Transcriptional changes from pro- to anti-inflammatory within 24 h may serve to dampen the inflammatory signaling. The extensive coverage of brain surface and perivascular areas by astrocyte endfeet suggests their role as an interface for transporting inflammatory mediators to the cerebrospinal fluid to contribute to meningeal nociception. CONCLUSION: We propose that neuronal stress induced by CSD or synaptic activity-energy mismatch may initiate a parenchymal inflammatory signaling cascade, transmitted to the meninges, thereby triggering lasting headaches characteristic of migraine, with or without aura. This neuroinflammatory interplay between parenchymal and meningeal cells points to the potential for novel targets for migraine treatment and prophylaxis.


Asunto(s)
Meninges , Trastornos Migrañosos , Enfermedades Neuroinflamatorias , Transducción de Señal , Humanos , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/fisiopatología , Enfermedades Neuroinflamatorias/fisiopatología , Animales , Transducción de Señal/fisiología , Neuronas/metabolismo
10.
J Headache Pain ; 25(1): 178, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39407099

RESUMEN

Migraine is a common and complex neurological disorder that has a high impact on quality of life. Recent advances with drugs that target the neuropeptide calcitonin gene-related peptide (CGRP) have helped, but treatment options remain insufficient. CGRP is released from trigeminal sensory fibers and contributes to peripheral sensitization, perhaps in part due to actions on immune cells in the trigeminovascular system. In this review, we will discuss the potential of cannabinoid targeting of immune cells as an innovative therapeutic target for migraine treatment. We will cover endogenous endocannabinoids, plant-derived phytocannabinoids and synthetically derived cannabinoids. The focus will be on six types of immune cells known to express multiple cannabinoid receptors: macrophages, monocytes, mast cells, dendritic cells, B cells, and T cells. These cells also contain receptors for CGRP and as such, cannabinoids might potentially modulate the efficacy of current CGRP-targeting drugs. Unfortunately, to date most studies on cannabinoids and immune cells have relied on cell cultures and only a single preclinical study has tested cannabinoid actions on immune cells in a migraine model. Encouragingly, in that study a synthetically created stable chiral analog of an endocannabinoid reduced meningeal mast cell degranulation. Likewise, clinical trials evaluating the safety and efficacy of cannabinoid-based therapies for migraine patients have been limited but are encouraging. Thus, the field is at its infancy and there are significant gaps in our understanding of the impact of cannabinoids on immune cells in migraine. Future research exploring the interactions between cannabinoids and immune cells could lead to more targeted and effective migraine treatments.


Asunto(s)
Cannabinoides , Trastornos Migrañosos , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/inmunología , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Animales , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/fisiología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/inmunología , Mastocitos/inmunología , Mastocitos/efectos de los fármacos , Endocannabinoides/metabolismo
11.
Mol Pain ; 19: 17448069231181358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37232078

RESUMEN

Migraine pain is characterized by an intense, throbbing pain in the head area and possesses complex pathological and physiological origins. Among the various factors believed to contribute to migraine are mast cells (MCs), resident tissue immune cells that are closely associated with pain afferents in the meninges. In this review, we aim to examine and discuss recent findings on the individual roles of MCs and the trigeminal nerve in migraine, as well as the various connections between their mechanisms with an emphasis on the contributions those relationships make to migraine. This is seen through MC release of histamine, among other compounds, and trigeminal nerve release of calcitonin-gene-related-peptide (CGRP) and pituitary adenylate cyclase activating peptide-38 (PACAP-38), which are peptides that are thought to contribute to migraine. Secondly, we illustrate the bi-directional relationship of neurogenic inflammation as well as highlight the role of MCs and their effect on the trigeminal nerve in migraine mechanisms. Lastly, we discuss potential new targets for clinical interventions of MC- and trigeminal nerve-mediated migraine, and present future perspectives of mechanistic and translational research.


Asunto(s)
Mastocitos , Trastornos Migrañosos , Humanos , Nervio Trigémino , Péptido Relacionado con Gen de Calcitonina , Dolor , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa
12.
Front Neuroendocrinol ; 66: 101008, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35660551

RESUMEN

While popular belief harbors little doubt that perceived stress can cause hair loss and premature graying, the scientific evidence for this is arguably much thinner. Here, we investigate whether these phenomena are real, and show that the cyclic growth and pigmentation of the hair follicle (HF) provides a tractable model system for dissecting how perceived stress modulates aspects of human physiology. Local production of stress-associated neurohormones and neurotrophins coalesces with neurotransmitters and neuropeptides released from HF-associated sensory and autonomic nerve endings, forming a complex local stress-response system that regulates perifollicular neurogenic inflammation, interacts with the HF microbiome and controls mitochondrial function. This local system integrates into the central stress response systems, allowing the study of systemic stress responses affecting organ function by quantifying stress mediator content of hair. Focusing on selected mediators in this "brain-HF axis" under stress conditions, we distill general principles of HF dysfunction induced by perceived stress.


Asunto(s)
Folículo Piloso , Neuropéptidos , Cabello , Folículo Piloso/fisiología , Humanos , Neurotransmisores , Estrés Psicológico
13.
Muscle Nerve ; 68(3): 308-315, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37382347

RESUMEN

INTRODUCTION/AIMS: The axon-reflex flare response is a reliable method for functional assessment of small fibers in diabetic peripheral neuropathy (DPN), but broad adoption is limited by the time requirement. The aims of this study were to (1) assess diagnostic performance and optimize time required for assessing the histamine-induced flare response and (2) associate with established parameters. METHODS: A total of 60 participants with type 1 diabetes with (n = 33) or without (n = 27) DPN participated. The participants underwent quantitative sensory testing (QST), corneal confocal microscopy (CCM), and flare intensity and area size assessments by laser-Doppler imaging (FLPI) following an epidermal skin-prick application of histamine. The flare parameters were evaluated each minute for 15 min, and the diagnostic performance compared to QST and CCM were assessed using area under the curve (AUC). Minimum time-requirements until differentiation and to achieve results comparable with a full examination were assessed. RESULTS: Flare area size had better diagnostic performance compared with CCM (AUC 0.88 vs. 0.77, p < 0.01) and QST (AUC 0.91 vs. 0.81, p = 0.02) than mean flare intensity, and could distinguish people with and without DPN after 4 min compared to after 6 min (both p < 0.01). Flare area size achieved a diagnostic performance comparable to a full examination after 6 and 7 min (CCM and QST respectively, p > 0.05), while mean flare intensity achieved it after 5 and 8 min (CCM and QST respectively, p > 0.05). DISCUSSION: The flare area size can be evaluated 6-7 min after histamine-application, which increases diagnostic performance compared to mean flare intensity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Histamina , Humanos , Histamina/farmacología , Fibras Nerviosas/fisiología , Axones , Reflejo
14.
Br J Clin Pharmacol ; 89(11): 3232-3246, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37430437

RESUMEN

MRGPRX2, a novel Gaq -coupled human mast cell receptor, mediates non-immune adverse reactions without the involvement of antibody priming. Constitutively expressed by human skin mast cells, MRGPRX2 modulates cell degranulation producing pseudoallergies manifesting as itch, inflammation and pain. The term pseudoallergy is defined in relation to adverse drug reactions in general and immune/non-immune-mediated reactions in particular. A list of drugs with MRGPRX2 activity is presented, including a detailed examination of three important and widely used approved therapies: neuromuscular blockers, quinolones and opioids. For the clinician, the significance of MRGPRX2 is considered as an aid in distinguishing and ultimately identifying specific immune and non-immune inflammatory reactions. Anaphylactoid/anaphylactic reactions, neurogenic inflammation and inflammatory diseases with a clear or strongly suspected association with MRGPRX2 activation are examined. Inflammatory diseases include chronic urticaria, rosacea, atopic dermatitis, allergic contact dermatitis, mastocytosis, allergic asthma, ulcerative colitis and rheumatoid arthritis. MRGPRX2- and allergic IgE/FcεRI-mediated reactions may be clinically similar. Importantly, the usual testing procedures do not distinguish the two mechanisms. Currently, identification of MRGPRX2 activation and diagnosis of pseudoallergic reactions is generally viewed as a process of exclusion once other non-immune and immune processes, particularly IgE/FcεRI-mediated degranulation of mast cells, are ruled out. This does not take into account that MRGPRX2 signals via ß-arrestin, which can be utilized to detect MRGPRX2 activation by employing MRGPRX2 transfected cells to assess MRGPRX2 activation via two pathways, the G-protein-independent ß-arrestin pathway and the G-protein-dependent Ca2+ pathway. Testing procedures, interpretations for distinguishing mechanisms, patient diagnosis, agonist identification and drug safety evaluations are addressed.


Asunto(s)
Anafilaxia , Receptores de IgE , Humanos , Receptores de IgE/metabolismo , Receptores de Neuropéptido/metabolismo , Mastocitos/metabolismo , Inflamación , Inmunoglobulina E , Proteínas de Unión al GTP/metabolismo , beta-Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas del Tejido Nervioso/metabolismo
15.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902434

RESUMEN

The skin, including the hypodermis, is the largest body organ and is in constant contact with the environment. Neurogenic inflammation is the result of the activity of nerve endings and mediators (neuropeptides secreted by nerve endings in the development of the inflammatory reaction in the skin), as well as interactions with other cells such as keratinocytes, Langerhans cells, endothelial cells and mast cells. The activation of TRPV-ion channels results in an increase in calcitonin gene-related peptide (CGRP) and substance P, induces the release of other pro-inflammatory mediators and contributes to the maintenance of cutaneous neurogenic inflammation (CNI) in diseases such as psoriasis, atopic dermatitis, prurigo and rosacea. Immune cells present in the skin (mononuclear cells, dendritic cells and mast cells) also express TRPV1, and their activation directly affects their function. The activation of TRPV1 channels mediates communication between sensory nerve endings and skin immune cells, increasing the release of inflammatory mediators (cytokines and neuropeptides). Understanding the molecular mechanisms underlying the generation, activation and modulation of neuropeptide and neurotransmitter receptors in cutaneous cells can aid in the development of effective treatments for inflammatory skin disorders.


Asunto(s)
Inflamación Neurogénica , Neuropéptidos , Humanos , Células Endoteliales , Piel , Sustancia P/farmacología
16.
Cutan Ocul Toxicol ; 42(3): 118-130, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315295

RESUMEN

Numerous adverse effects on human health have been reported in epidemiological studies of oleoresin capsicum (OC) and other riot control agents (RCAs). Importantly, the daunting risk of such RCAs can be neutralized by optimizing the desired concentration of such agents for mob dispersal. Hence, a nonlethal riot control combinational formulation (NCF) was prepared for dispersing rioters without imparting fatal outcomes. However, for desired utilization of NCF, it is essential to recognize its extent of potential toxicity. Therefore, the current investigation evaluated the dermal toxicity of NCF using experimental animals in compliance with the OECD guidelines. Additionally, few essential metal ions were analyzed and found non -significantly different in the test rats as compared to control rats. Moreover, abnormal dermal morphology and lesions ultrastructural tissue defects were not noticed as evinced by different studies like ultrasonography, histology, and scanning electron microscopy (SEM) respectively. Further, Doppler ultrasonography exhibited non-significantly different blood flow velocity in both groups, whereas miles test demonstrated a significantly increased Evans blue concentration in test rats compared to the control rats, which might be due to an initial increase in blood flow via an instant action of the NCF at the cutaneous sensory nerve endings. However, our results demonstrated NCF can produce initial skin irritating and sensitizing effects in guinea pigs and rabbits without the antecedence of acute toxicity (≤2000 mg/kg) in Wistar rats.


Asunto(s)
Fármacos Dermatológicos , Tumultos , Humanos , Ratas , Animales , Conejos , Cobayas , Ratas Wistar , Piel , Administración Cutánea , Fármacos Dermatológicos/farmacología , Modelos Animales
17.
J Headache Pain ; 24(1): 36, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016284

RESUMEN

BACKGROUND: The role of inflammation and cytokines in the pathophysiology of primary headache disorders is uncertain. We performed a systematic review and meta-analysis to synthesise the results of studies comparing peripheral blood cytokine levels between patients with migraine, tension-type headache, cluster headache, or new daily persistent headache (NDPH), and healthy controls; and in migraine between the ictal and interictal stages. METHODS: We searched PubMed/Medline and Embase from inception until July 2022. We included original research studies which measured unstimulated levels of any cytokines in peripheral blood using enzyme-linked immunosorbent assay or similar assay. We assessed risk of bias using the Newcastle-Ottawa Quality Assessment Scale. We used random effects meta-analysis with inverse variance weighted average to calculate standardised mean difference (SMD), 95% confidence intervals, and heterogeneity for each comparison. This study is registered with PROSPERO (registration number CRD42023393363). No funding was received for this study. RESULTS: Thirty-eight studies, including 1335 patients with migraine (32 studies), 302 with tension-type headache (nine studies), 42 with cluster headache (two studies), and 1225 healthy controls met inclusion criteria. Meta-analysis showed significantly higher interleukin (IL)-6 (SMD 1.07, 95% CI 0.40-1.73, p = 0.002), tumour necrosis factor (TNF)-α (SMD 0.61, 95% CI 0.14-1.09, p = 0.01), and IL-8 (SMD 1.56, 95% CI 0.03-3.09, p = 0.04), in patients with migraine compared to healthy controls, and significantly higher interleukin-1ß (IL-1ß) (SMD 0.34, 95% CI 0.06-0.62, p = 0.02) during the ictal phase of migraine compared to the interictal phase. Transforming growth factor (TGF)-ß (SMD 0.52, 95% CI 0.18-0.86, p = 0.003) and TNF-α (SMD 0.64, 95% CI 0.33-0.96, p = 0.0001) were both higher in patients with tension-type headache than controls. CONCLUSIONS: The higher levels of the proinflammatory cytokines IL-6, IL-8 and TNF-α in migraine compared to controls, and IL-1ß during the ictal stage, suggest a role for inflammation in the pathophysiology of migraine, however prospective studies are required to confirm causality and investigate the mechanisms for the increase in cytokine levels identified. Cytokines may also have a role in tension-type headache. Due a lack of data, no conclusions can be made regarding cluster headache or NDPH.


Asunto(s)
Cefalalgia Histamínica , Trastornos Migrañosos , Cefalea de Tipo Tensional , Humanos , Citocinas , Factor de Necrosis Tumoral alfa , Interleucina-8 , Inflamación
18.
Eur J Neurosci ; 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36485173

RESUMEN

Growing evidence indicates that the parasympathetic system is implicated in migraine headache. However, the cholinergic mechanisms in the pathophysiology of migraine remain unclear. We investigated the effects and mechanisms of cholinergic modulation and a mast cell stabilizer cromolyn in the nitroglycerin-induced in vivo migraine model and in vitro hemiskull preparations in rats. Effects of cholinergic agents (acetylcholinesterase inhibitor neostigmine, or acetylcholine, and muscarinic antagonist atropine) and mast cell stabilizer cromolyn or their combinations were tested in the in vivo and in vitro experiments. The mechanical hyperalgesia was assessed by von Frey hairs. Calcitonin gene-related peptide (CGRP) and C-fos levels were measured by enzyme-linked immunosorbent assay. Degranulation and count of meningeal mast cells were determined by toluidine-blue staining. Neostigmine augmented the nitroglycerin-induced mechanical hyperalgesia, trigeminal ganglion CGRP levels, brainstem CGRP, and C-fos levels, as well as degranulation of mast cells in vivo. Atropine inhibited neostigmine-induced additional increases in CGRP levels in trigeminal ganglion and brainstem while it failed to do this in the mechanical hyperalgesia, C-fos levels, and the mast cell degranulation. However, all systemic effects of neostigmine were abolished by cromolyn. The cholinergic agents or cromolyn did not alter basal release of CGRP, in vitro, but cromolyn alleviated the CGRP-inducing effect of capsaicin while atropine failed to do it. These results ensure for a first time direct evidence that endogenous acetylcholine contributes to migraine pathology mainly by activating meningeal mast cells while muscarinic receptors are involved in CGRP release from trigeminal ganglion and brainstem, without excluding the possible role of nicotinic cholinergic receptors.

19.
Eur J Neurosci ; 55(4): 1015-1031, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32639078

RESUMEN

Calcitonin gene-related peptide (CGRP), substance P and dural mast cells are main contributors in neurogenic inflammation underlying migraine pathophysiology. Modulation of endocannabinoid system attenuates migraine pain, but its mechanisms of action remain unclear. We investigated receptor mechanisms mediating anti-neuroinflammatory effects of endocannabinoid system modulation in in vivo migraine model and ex vivo hemiskull preparations in rats. To induce acute model of migraine, a single dose of nitroglycerin was intraperitoneally administered to male rats. Moreover, isolated ex vivo rat hemiskulls were prepared to study CGRP and substance P release from meningeal trigeminal afferents. We used methanandamide (cannabinoid agonist), rimonabant (cannabinoid receptor-1 CB1 antagonist), SR144528 (CB2 antagonist) and capsazepine (transient receptor potential vanilloid-1 TRPV1 antagonist) to explore effects of endocannabinoid system modulation on the neurogenic inflammation, and possible involvement of CB1, CB2 and TRPV1 receptors during endocannabinoid effects. Methanandamide attenuated nitroglycerin-induced CGRP increments in in vivo plasma, trigeminal ganglia and brainstem and also in ex vivo hemiskull preparations. Methanandamide also alleviated enhanced number and degranulation of dural mast cells induced by nitroglycerin. Rimonabant, but not capsazepine or SR144528, reversed the attenuating effects of methanandamide on CGRP release in both in vivo and ex vivo experiments. Additionally, SR144528, but not rimonabant or capsazepine, reversed the attenuating effects of methanandamide on dural mast cells. However, neither nitroglycerin nor methanandamide changed substance P levels in both in vivo and ex vivo experiments. Methanandamide modulates CGRP release in migraine-related structures via CB1 receptors and inhibits the degranulation of dural mast cells through CB2 receptors. Selective ligands targeting CB1 and CB2 receptors may provide novel and effective treatment strategies against migraine.


Asunto(s)
Endocannabinoides , Trastornos Migrañosos , Animales , Péptido Relacionado con Gen de Calcitonina , Masculino , Trastornos Migrañosos/tratamiento farmacológico , Inflamación Neurogénica , Nitroglicerina , Ratas , Rimonabant/farmacología , Rimonabant/uso terapéutico , Sustancia P
20.
Exp Dermatol ; 31(3): 266-279, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34587317

RESUMEN

It has long been known that there is a special affinity of psoriasis for the scalp: Here, it occurs most frequently, lesions terminate sharply in frontal skin beyond the hair line and are difficult to treat. Yet, surprisingly, scalp psoriasis only rarely causes alopecia, even though the pilosebaceous unit clearly is affected. Here, we systematically explore the peculiar, insufficiently investigated connection between psoriasis and growing (anagen) terminal scalp hair follicles (HFs), with emphasis on shared regulatory mechanism and therapeutic targets. Interestingly, several drugs and stressors that can trigger/aggravate psoriasis can inhibit hair growth (e.g. beta-blockers, chloroquine, carbamazepine, interferon-alpha, perceived stress). Instead, several anti-psoriatic agents can stimulate hair growth (e.g. cyclosporine, glucocorticoids, dithranol, UV irradiation), while skin/HF trauma (Köbner phenomenon/depilation) favours the development of psoriatic lesions and induces anagen in "quiescent" (telogen) HFs. On this basis, we propose two interconnected working models: (a) the existence of a bidirectional "hair follicle-psoriasis axis," along which keratinocytes of anagen scalp HFs secrete signals that favour the development and maintenance of psoriatic scalp lesions and respond to signals from these lesions, and (b) that anagen induction and psoriatic lesions share molecular "switch-on" mechanisms, which invite pharmacological targeting, once identified. Therefore, we advocate a novel, cross-fertilizing and integrative approach to psoriasis and hair research that systematically characterizes the "HF-psoriasis axis," focused on identification and therapeutic targeting of selected, shared signalling pathways in the future management of both, psoriasis and hair growth disorders.


Asunto(s)
Folículo Piloso , Psoriasis , Alopecia/tratamiento farmacológico , Alopecia/metabolismo , Cabello , Folículo Piloso/metabolismo , Humanos , Psoriasis/metabolismo , Cuero Cabelludo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA