RESUMEN
Interleukin-10 (IL-10) is an immunosuppressive cytokine, which plays a vital role in regulating inflammation for inhibiting the generation and function of pro-inflammatory cytokines in vivo or in vitro. In the present study, the full length cDNA of IL-10 was characterized from Nibea albiflora (named as NaIL-10) of 1238 base pairs (bp), containing a 5'-UTR (untranslated region) of 350 bp, a 3'-UTR of 333 bp and an open reading frame (ORF) of 555 bp (Fig. 1A) to encode 184 amino acid residues with a signal peptide at the N-terminus. The sequence analysis showed that NaIL-10 possessed the typical IL-10 family symbolic motif and conversed cysteine residues, similar to its teleost orthologues. Real-time PCR indicated that NaIL-10 had wide distribution in different healthy tissues, with a relatively high expression in immune-related tissues (head kidney, spleen, kidney, liver and gill). Significantly, up-regulations of NaIL-10 after infection against Vibrio parahaemolyticus, Vibrio alginolyticus and Poly I:C were also observed. Subcellular localization manifested that NaIL-10 mainly distributed in the cytoplasm unevenly and aggregately, and there was also a small amount on the cell membrane, indicating that NaIL-10 was secreted to the extracellular space as the known IL-10 homologous molecules. It could co-locate with IL-10 Rα on the membrane of HEK293T cells for their potential interaction, and GST pull-down and Co-IP studies certified the specific and direct interaction between NaIL-10 and NaIL-10 Rα, confirming that an IL-10 ligand-receptor system existed in N.albiflora. The expression of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1ß, were dramatically inhibited in LPS-stimulated RAW264.7 macrophages pre-incubated with recombinant NaIL-10 protein, demonstrating its anti-inflammatory roles. Taken together, the results demonstrated the existence of IL-10 ligand-receptor system in N.albiflora for the first time, and indicated the suppressive function of NaIL-10 on pro-inflammatory cytokine expression in inflammatory response, which would be conducive to better comprehending the role of IL-10 in the immunomodulatory mechanisms of teleost.
Asunto(s)
Secuencia de Aminoácidos , Enfermedades de los Peces , Proteínas de Peces , Regulación de la Expresión Génica , Inmunidad Innata , Interleucina-10 , Filogenia , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Enfermedades de los Peces/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Vibrio parahaemolyticus/fisiología , Alineación de Secuencia/veterinaria , Perfilación de la Expresión Génica/veterinaria , Poli I-C/farmacología , Vibriosis/inmunología , Vibriosis/veterinaria , Cyprinidae/inmunología , Cyprinidae/genética , Vibrio alginolyticus/fisiología , Secuencia de BasesRESUMEN
Interferon-gamma (IFN-γ) is an inflammatory cytokine that plays a crucial role in regulating both innate and cell-mediated immune responses by binding to a receptor complex made up of IFNGR1 and IFNGR2. In this study, the complete cDNA of IFN-γ and IFNGR1 from Nibea albiflora were cloned and functionally characterized (named NaIFN-γ and NaIFNGR1), whose complete cDNA sequences were 1593 bp and 2792 bp, encoding 201 and 399 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis showed that the concluded amino acids sequences of NaIFN-γ and NaIFNGR1 shared high identity with their teleost orthologues including the IFN-γ signature and nuclear localization signal (NLS) motif in NaIFN-γ and FN ⠢ domain in NaIFNGR1. Real-time PCR showed that NaIFN-γ and NaIFNGR1 constitutively expressed in all tested tissues, such as the head-kidney, spleen, liver, kidney, gill, muscle, blood, and intestine with the highest expression of NaIFN-γ and NaIFNGR1 appearing in the liver and gill, respectively. After experiencing stimulation with Polyinosinic-polycytidylic acid (Poly (I:C)), Vibrio alginolyticus (V. alginolyticus) or Vibrio parahaemolyticus (V. parahaemolyticus), NaIFN-γ and NaIFNGR1 mRNA were up-regulated with the time-dependent model. Due to the presence of a nuclear localization signal (NLS), the subcellular localization revealed that NaIFN-γ dispersed throughout the cytoplasm and nucleus. NaIFNGR1, as a member of Cytokine receptor family B, was primarily expressed on the cell membrane. When NaIFN-γ and NaIFNGR1 were co-transfected, their fluorescence signals overlapped on the membrane of HEK 293T cells indicating the potential interaction between IFN-γ and IFNGR1. The GST-pull-down results further showed that NaIFN-γ could directly interact with the extracellular region of NaIFNGR1, further confirming the affinity between IFN-γ and IFNGR1. Taken together, the results firstly demonstrated that the NaIFN-γ ligand-receptor system existed in N.albiflora and played a pivotal part in N.albiflora's immune response against pathogenic bacterial infections, which contributed to the better understanding of the role of IFN-γ in the immunomodulatory mechanisms of teleost.
Asunto(s)
Interferón gamma , Perciformes , Animales , Señales de Localización Nuclear/genética , Secuencia de Aminoácidos , Filogenia , ADN Complementario , Aminoácidos/genéticaRESUMEN
Vibrio harveyi is the primary pathogenic bacteria affecting Nibea albiflora aquaculture. In a previous phase, our laboratory intentionally exposed N. albiflora to V. harveyi and analyzed the outcomes using a combination of genome-wide association study (GWAS) and RNA-seq. The results revealed that the antimicrobial peptide NK-lysin (YdNkl-1) was a candidate gene for resistance to V. harveyi disease in N. albiflora. To investigate the role of the antimicrobial peptide NK-lysin in N. albiflora's antimicrobial immunity, we screened the YdNkl-1 gene from the transcriptome database. The full-length cDNA of YdNkl-1 gene is 508 bp, with an open reading frame (ORF) of 477 bp, encoding 158 amino acids. The deduced amino acid sequence of YdNkl-1 contains a signal peptide (1st-22nd amino acids) and a Saposin B domain (50th-124th amino acids), akin to mammalian NK-lysin. Phylogenetic tree analysis confirmed that the NK-lysin of teleost fish clustered into a single species, and YdNkl-1 was most closely related to Larimichthys crocea. Subcellular localization showed that YdNkl-1 was distributed in cytoplasm and nucleus of yellow drum kidney cells. Furthermore, YdNkl-1 mRNA transcripts were significantly up-regulated in the skin, gill, intestine, head-kidney, liver, and spleen after V. harveyi infection, suggesting a critical role in N. albiflora's defense against V. harveyi infection. Additionally, we purified and observed the YdNkl-1 protein, which exhibited a potent membrane-disrupting effect on V. harveyi, Pseudomonas plecoglossicida, Vibrio parahaemolyticus, Escherichia coli and Bacillus subtilis. These findings underscore the significance of NK-lysin in N. albiflora's resistance to V. harveyi infection and provide new insights into the crucial role of NK-lysin in the innate immunity of teleost fishes.
Asunto(s)
Enfermedades de los Peces , Perciformes , Vibrio parahaemolyticus , Animales , Filogenia , Estudio de Asociación del Genoma Completo , Secuencia de Bases , Proteínas de Peces/química , Perciformes/genética , Perciformes/metabolismo , Antibacterianos , Peces/genética , Vibrio parahaemolyticus/genética , Inmunidad Innata/genética , Clonación Molecular , Péptidos Antimicrobianos , Mamíferos/metabolismoRESUMEN
Galectins are a family of evolutionarily conserved lectins that contain carbohydrate recognition domains (CRDs) specifically recognizing ß-galactoside. Galectin-9 plays a crucial role in various biological processes during pathogenic infections. In a previous study, galectin-9 was identified as a candidate gene for resistance to Vibrio harveyi disease in yellow drum using a genome-wide association study (GWAS) analysis. In this study, a galectin-9 gene was identified from Nibea albiflora and named YdGal-9. The mRNA transcripts of YdGal-9 were distributed in all the detected tissues and the highest level was found in the kidney. The subcellular localization of YdGal-9-EGFP proteins was observed in both nucleus and cytoplasm in the kidney cells of N. albiflora. The expression of YdGal-9 in the brain increased significantly after infection with Vibrio harveyi. The red blood cells from rabbits, Larimichthys crocea, and N. albiflora were agglutinated by the purified recombinant YdGal-9 proteins. The results of the agglutination activity of deletion mutants of YdGal-9 proved that the conserved sugar binding motifs (H-NPR and WG-EE-) were critical for YdGal-9's agglutination activity. In addition, YdGal-9 killed some gram-negative bacteria by inducing cell wall destruction including Pseudomonas plecoglossicida, Aeromonas hydrophila, Escherichia coli, V. parahemolyticus, V. harveyi, and V. alginolyticus. Taken together, these results suggested that the YdGal-9 protein of N. albiflora played a vital role in fighting bacterial infections.
Asunto(s)
Perciformes , Vibrio , Animales , Conejos , Estudio de Asociación del Genoma Completo , Vibrio/genética , Galectinas/química , Perciformes/genética , Filogenia , Proteínas de Peces/químicaRESUMEN
Yellow drum (Nibea albiflora), a commercially important fish species in the coastal regions of southeast China, is highly susceptible to red-head disease caused by Vibrio harveyi B0003. Probiotics have been shown to enhance disease resistance in fish, but whether commensal probiotics could improve of the resistance to red-head disease in yellow drum and possible mechanisms has yet not been reported. A six-week feeding trial was conducted to investigate the red-head disease resistance potentials of five probiotic candidates (Bacillus megaterium B1M2, B. subtilis B0E9, Enterococcus faecalis AT5, B. velezensis DM5 and B. siamensis B0E14), and the liver health, serum and skin immunities, gut and skin mucosal microbiota of yellow drum were determined to illustrate the possible mechanisms. The results showed that autochthonous B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5, P < 0.05) effectively improved red-head disease resistance in yellow drum. Furthermore, B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5) efficiently improve liver health by improving liver morphology and decreasing serum glutamic oxaloacetic transaminase and glutamic propylic transaminase activities pre and post challenged with V. harveyi B0003 (P < 0.05). B. subtilis B0E9 and E. faecalis AT5 led to significant improvement (P < 0.05) in the serum complement 3 content (un-detected after challenged with V. harveyi B0003), lysozyme activity and skin mucosal immunity (such as IL-6, IL-10 and lysozyme expression) pre and post challenged with V. harveyi B0003, which was generally consistent with the cumulative mortality after challenged with V. harveyi B0003. This induced activations of serum and skin mucosal immunities were consistent with the microbiota data showing that B. subtilis B0E9 and E. faecalis AT5 modulated the overall structure of intestinal and skin mucosal microbiota, and in particular, the relative abundance of potentially pathogenic Achromobacter decreased while beneficial Streptococcus, Rothia, and Lactobacillus increased in fish fed with B. subtilis B0E9 and E. faecalis AT5. Overall, autochthonous B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5) can improve liver health, serum and skin immunities (especially up-regulated lysozyme activity and inflammation-related genes expression), positively shape gut and skin mucosal microbiota, and enhance red-head disease resistance of yellow drum.
Asunto(s)
Enfermedades de los Peces , Microbiota , Perciformes , Probióticos , Animales , Resistencia a la Enfermedad , Bacillus subtilis , Inmunidad Mucosa , Enterococcus faecalis , Muramidasa , Probióticos/farmacología , Peces , HígadoRESUMEN
Cytoglobin (Cygb) is a 21-kDa heme-protein that belongs to the globin superfamily and is expressed in vertebrate tissues. It can participate in the oxidative stress response in organisms through the porphyrin ring. Previous studies have shown that this protein, also known as YdCygb, has potential immune abilities in the infection of Vibrio harveyi in yellow drum (Nibea albiflora). In this study, we report the role of Cygb in the immune response of teleost fish for the first time. Quantitative RT-PCR analysis indicated that YdCygb was highly expressed in the liver and intestine of yellow drum, and its expression can be upregulated by pathogenic attack. The cellular distribution of YdCygb-EGFP proteins was observed in cell membrane, cytoplasm, and nucleus in the kidney cells of N. albiflora. Furthermore, a comparative transcriptome analysis between the YdCygb overexpression group and control vector group identified 28 differentially expressed genes (DEGs). The analysis showed that ANPEP, CLDN5, ORM1/2, SERPINC1 and HPN and ITGAM might play important regulatory roles to Cygb in fish. Notably, using GST-pull down technology, we identified 3-phosphoglyceraldehyde dehydrogenase and intermediate filament protein as direct interactors with YdCygb, playing a role against V. harveyi. The molecular and functional characterization of YdCygb provides better understanding of the genetic basis of disease resistance traits in yellow drum and sheds new light on the functioning of Cygb and its potential regulatory signaling pathway as well.
Asunto(s)
Perciformes , Animales , Citoglobina/genética , Perciformes/genética , Transcriptoma , Peces/genética , InmunidadRESUMEN
Galectins are proteins that are involved in the innate immune response against pathogenic microorganisms. In the present study, the gene expression pattern of galectin-1 (named as NaGal-1) and its function in mediating the defense response to bacterial attack were investigated. The tertiary structure of NaGal-1 protein consists of homodimers and each subunit has one carbohydrate recognition domain. Quantitative RT-PCR analysis indicated that NaGal-1 was ubiquitously distributed in all the detected tissues and highly expressed in the swim-bladder of Nibea albiflora, and its expression could be upregulated by the pathogenic Vibrio harveyi attack in the brain. Expression of NaGal-1 protein in HEK 293T cells was distributed in the cytoplasm as well as in the nucleus. The recombinant NaGal-1 protein by prokaryotic expression could agglutinate red blood cells from rabbit, Larimichthys crocea, and N. albiflora. The agglutination of N. albiflora red blood cells by the recombinant NaGal-1 protein was inhibited by peptidoglycan, lactose, D-galactose, and lipopolysaccharide in certain concentrations. In addition, the recombinant NaGal-1 protein agglutinated and killed some gram-negative bacteria including Edwardsiella tarda, Escherichia coli, Photobacterium phosphoreum, Aeromonas hydrophila, Pseudomonas aeruginosa, and Aeromonas veronii. These results set the stage for further studies of NaGal-1 protein in the innate immunity of N. albiflora.
Asunto(s)
Galectina 1 , Perciformes , Animales , Conejos , Galectina 1/metabolismo , Secuencia de Aminoácidos , Galectinas/metabolismo , Perciformes/genética , Inmunidad Innata , Clonación Molecular , Filogenia , Proteínas de Peces/genéticaRESUMEN
The yellow drum (Nibea albiflora) is a marine teleost fish with strong disease resistance, yet the understanding of its immune response and key functional genes is fragmented. Here, RNA-Seq was used to investigate the regulation pathways and genes involved in the immune response to infection with lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (poly (I:C)) on the spleen of the yellow drum. There were fewer differentially expressed genes (DEGs) in the LPS-infected treatment group at either 6 or 48 h. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were mainly significantly enriched in c5-branching dibasic acid metabolic and complement and coagulation cascades pathways. The yellow drum responded more strongly to poly (I:C) infection, with 185 and 521 DEGs obtained under 6 and 48 h treatments, respectively. These DEGs were significantly enriched in the Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Jak-STAT signaling pathway, NOD-like signaling pathway, and cytokine-cytokine receptor interaction. The key functional genes in these pathways played important roles in the immune response and maintenance of immune system homeostasis in the yellow drum. Weighted gene co-expression network analysis (WGCNA) revealed several important hub genes. Although the functions of some genes have not been confirmed, our study still provides significant information for further investigation of the immune system of the yellow drum.
Asunto(s)
Lipopolisacáridos , Perciformes , Animales , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Bazo/metabolismo , Poli I-C/farmacología , Perfilación de la Expresión Génica , Inmunidad/genética , Perciformes/genética , TranscriptomaRESUMEN
Myeloid differentiation factor 88 (MyD88), composed of an N-terminal death domain and a C-terminal Toll/interleukin (IL)-IR homology domain, is a key connector protein in the TLR signal transduction pathway. In this study a novel isoform of MyD88 in Nibea albiflora (named as NaMyD88) was identified and functionally characterized (GenBank accession no. MN384261.1). Its complete cDNA sequence was 1672 bp and contained an open reading frame of 879 bp encoding 292 amino acid residues, which was similar to its teleost fish counterparts in the length. The theoretical molecular mass was 33.63 kDa and the isoelectric point was 5.24. BLASTp analysis suggested that the deduced amino acids sequence of NaMyD88 shared high identity to the known MyD88, for instance, 94.77% identity with Collichthys lucidus. Sequence analysis showed that NaMyD88 protein was consistent with MyD88 protein of other species at three conserved domains, N-terminal DD, short middle domain and C-terminal TIR, and the TIR domain contained three highly conserved motifs: Box1, Box2, and Box3. NaMyD88 and red fluorescent protein (Dsred) were fused and expressed in the cytoplasm of the epithelioma papulosum cyprini (EPC cells). The NaTLR9-TIR-EGFP fusion protein, which was obtained in our previous studies, showed green fluorescence and mainly distributed in the cytoplasm. After co-transfection, NaMyD88-Dsred and NaTLR9-TIR-EGFP obviously overlapped and displayed orange-yellow color. The results showed that the homologous MyD88-Dsred could interact with NaTLR9-TIR-EGFP. Based on this result pcMV-NaMyD88-TIR-Myc plasmids and the pcDNA3.1-NaTLR9-TIR-flag were constructed and co-transfected into 293T cells for the immunoprecipitation test. According to Western blot, the protein eluted by Flag-beads could be detected by anti-Flag-tag antibody and anti-Myc tag antibody respectively, while the protein without NaTLR9-TIR could not be found, which further proved that TLR and MyD88 could interact each other. The prokaryotic plasmid of MyD88-TIR domain was constructed, expressed in BL21 (DE3) and purified by Ni-NAT super flow resin conforming to the expected molecular weight of 27 kDa with the corresponding active sites for its conferring protein-protein interaction functions. Real-time fluorescence quantitative PCR showed that NaMyD88 could be expressed in intestine, stomach, liver, kidney, gill, heart and spleen, with the highest in the kidney, and it was up-regulated after being infected with Polyinosinic:polycytidylic acid - Poly (I:C) and Pseudomonas plecoglossicida, which showed that NaMyD88 was involved in the immune response of N.albiflora. These data afforded a basis for understanding the role of NaMyD88 in the TLR signaling pathway of N.albiflora.
Asunto(s)
Factor 88 de Diferenciación Mieloide , Perciformes , Secuencia de Aminoácidos , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Perciformes/genética , Filogenia , Poli I-CRESUMEN
Phosphoribosyl pyrophosphate synthetases (EC 2.7.6.1) are key enzymes in the biological synthesis of phosphoribosyl pyrophosphate and are involved in diverse developmental processes. In our previous study, the PRPS1 gene was discovered as a key disease-resistance candidate gene in yellow drum, Nibea albiflora, in response to the infection of Vibrio harveyi, through genome-wide association analysis. This study mainly focused on the characteristics and its roles in immune responses of the PRPS1 gene in yellow drum. In the present study, the NaPRPS1 gene was cloned from yellow drum, encoding a protein of 320 amino acids. Bioinformatic analysis showed that NaPRPS1 was highly conserved during evolution. Quantitative RT-PCR demonstrated that NaPRPS1 was highly expressed in the head-kidney and brain, and its transcription and translation were significantly activated by V. harveyi infection examined by RT-qPCR and immunohistochemistry analysis, respectively. Subcellular localization revealed that NaPRPS1 was localized in cytoplasm. In addition, semi-in vivo pull-down assay coupled with mass spectrometry identified myeloid differentiation factor 88 (MyD88) as an NaPRPS1-interacting patterner, and their interaction was further supported by reciprocal pull-down assay and co-immunoprecipitation. The inducible expression of MyD88 by V. harveyi suggested that the linker molecule MyD88 in innate immune response may play together with NaPRPS1 to coordinate the immune signaling in yellow drum in response to the pathogenic infection. We provide new insights into important functions of PRPS1, especially PRPS1 in the innate immunity of teleost fishes, which will benefit the development of marine fish aquaculture.
Asunto(s)
Enfermedades de los Peces , Perciformes , Ribosa-Fosfato Pirofosfoquinasa/metabolismo , Vibrio , Animales , Enfermedades de los Peces/genética , Peces/genética , Estudio de Asociación del Genoma Completo , Inmunidad Innata/genética , Factor 88 de Diferenciación Mieloide/genética , Perciformes/genética , Fosforribosil Pirofosfato , Vibrio/fisiologíaRESUMEN
Toll-like receptors (TLRs) are an important class of molecules involved in non-specific immunity, and they are also the bridge connecting between non-specific immunity and specific immunity. As a vital member of TLR family TLR9 can be activated by bacterial DNA and induce the production of inflammatory cytokines. In this study, a full length of TLR9 homologue of 3677 bp in Nibea albiflora (named as NaTLR9, GenBank accession no: MN125017.1) was characterized, and its ORF was 3180 bp encoding 1059 amino acid residues with a calculated molecular weight of 121.334 kDa (pI = 6.29). Several leucine-rich repeated sequences (LRR domain) and conservative TIR domain were found in NaTLR9, which was mainly expressed in dendritic cells and macrophages. The phylogenetic and synteny analysis further revealed high sequence identity of NaTLR9 with its counterparts of other teleost, confirming their correct nomenclature and conservative during evolution as an important pattern recognition receptor. The NaTLR9-TIR-pEGFP-N1 fusion protein showed green fluorescence and mainly distributed in the cytoplasm. After co-transfection of NaTLR9-TIR-pEGFP-N1 and NaMyD88-pDsRED-Monomer-N1, green fluorescence obviously overlapped with red and changed into yellowish-green, which suggested that there might be the interaction between homologous NaTLR9-TIR and MyD88. Based on this result the pCDNA3.1-NaTLR9-TIR-flag and pcMV-NaMyD88-TIR-Myc plasmids were co-transfected into 293T cells for the immunoprecipitation test. According to Western blot, TLR9 and MyD88 protein could interact with each other. Furthermore, NaTLR9 was ubiquitously expressed in all the investigated tissues, most abundantly in head kidney, followed by stomach, spleen, liver and gill, but lower in muscle. The vitro immune stimulation experiments revealed that Pseudomonas plecoglossicida and polyinosinic-polycytidylic acid [Poly (I:C)] induced higher levels of NaTLR9 mRNA expression with the peaks of 9.52 times at 2 h and 39.91 times at 24 h compared with the control group respectively. The functional domains (LRRs and TIR, named NaTLR9-TIR and NaTLR9-LRR respectively) of NaTLR9 were expressed and purified, the recombinant proteins both could bind three kinds of typical aquatic pathogenic bacteria (Vibrio. parahaemolyticus, Vibrio alginolyticus, and Vibrio harveyi), which showed that NaTLR9 could couple to bacteria by its function domains. The aforementioned results indicated that NaTLR9 played a significant role in the defense against pathogenic bacteria infection in innate immune response of sciaenidae fish, which may provide some further understandings of the regulatory mechanisms in the teleostean innate immune system.
Asunto(s)
Proteínas de Peces , Perciformes , Vibrio parahaemolyticus , Secuencia de Aminoácidos , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata/genética , Perciformes/genética , Perciformes/metabolismo , Filogenia , Poli I-C , Receptor Toll-Like 9/genéticaRESUMEN
Cryptocaryonosis is the greatest threat to most teleost species among all parasitic diseases, causing mass loss to the marine aquaculture industry. Epidemiological investigation of teleost susceptibility to Cryptocaryon irritans infection revealed that yellow drum (Nibea albiflora) is highly resistant. In order to further understand the activation of the immune system in the gill, which is one of the main mucosal-associated lymphoid tissues and a target of parasites, transcriptome analysis of the yellow drum gill was performed. Gill samples were collected from fish challenged after 24 hr and 72 hr with theronts at a median death rate (2050 theronts per gram fish). Gene expression profiles showed that TLR5 was the only receptor that activated the downstream immune response. The infection activated complement cascade through alternative pathway and increased the expression of C5a anaphylatoxin chemotactic receptor 1. In addition, possible antimicrobial molecules, including lipoprotein and haptoglobin, which are responsible for trypanolysis in humans, were among the top significantly upregulated genes at 24 hr. After 72 hr, the expression of secreted immunoglobulin T-related genes was induced. These results suggested a rapid innate and adaptive immune response at the mucosal level. In conclusion, the results provide new perspectives on mucosal immune resistance in yellow drum against cryptocaryonosis and provide the possibility of mining resistance genes for future therapy.
Asunto(s)
Infecciones por Cilióforos/veterinaria , Cilióforos/fisiología , Enfermedades de los Peces/parasitología , Branquias/metabolismo , Perciformes , Transcriptoma , Animales , Infecciones por Cilióforos/parasitología , Branquias/parasitología , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismoRESUMEN
The yellow drum (Nibea albiflora) is an important marine economy fish, that is widely distributed in the coastal waters of the Northwest Pacific. To understand the molecular regulatory mechanism of the yellow drum under temperature stress, transcriptome analysis was performed under five temperature conditions (10 °C, 15 °C, 20 °C, 24 °C, 28 °C) in the present study. Compared with 20 °C, 163, 401, 276, and 372 differentially expressed genes (DEGs) were obtained at 10 °C, 15 °C, 24 °C and 28 °C, respectively. Gene Ontology (GO) analysis indicated that the DEGs were mainly involved in cellular processes, metabolic processes, catalytic activity, membrane and binding. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the temperature adaptive regulation of the yellow drum was mainly involved in signal transduction, metabolism, genetic information and protein processing. Weighted gene co-expression network analysis (WGCNA) showed that HMGB1, STAT4, Noct, C1q and CRT may be the key hub genes in the response of the yellow drum to temperature stress. In addition, 20 genes that may be associated with temperature stress were identified based on comparative analysis between the KEGG enrichment and the WGCNA results. Ten DEGs were selected for further validation using quantitative real-time PCR (qRT-PCR), and the results were consistent with the RNA-seq data. This study explored the transcriptional patterns of the yellow drum under temperature stress and provided fundamental information on the temperature adaptability of this species.
Asunto(s)
Redes Reguladoras de Genes , Perciformes/metabolismo , Termotolerancia , Transcriptoma , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perciformes/genéticaRESUMEN
Massive infection caused by Cryptocaryon irritans is detrimental to the development of marine aquaculture. Recently, our lab found that Nibea albiflora has low sensitivity and low mortality to C. irritans infection. The present study was designed to investigate the mechanisms of the N. albiflora response to C. irritans infection by analyzing transcriptome changes in the skin. Skin samples of control and experimental groups with C. irritans infection were collected at 24 and 72 h (24 h control, 24 h post-infection, 72 h control, and 72 h post-infection). Three parallels were set for each group and sample time, and a total of 12 skin samples were collected for sequencing. Overall, 297,489,843 valid paired-end reads and 48,817 unigenes were obtained with an overall length of 59,010,494 nt. In pairwise comparisons, changes in expression occurred in 1621 (764 upregulated and 857 downregulated), 285 (180 upregulated and 105 downregulated), 993 (489 upregulated and 504 downregulated), and 37 (8 upregulated and 29 downregulated) genes at 24 h control vs 24 h post-infection, 72 h control vs 72 h post-infection, 24 h post-infection vs 72 h post-infection, and 24 h control vs 72 h control, respectively. Gene Ontology (GO) analysis of differentially expressed genes (DEGs) indicated that the number of genes enriched in GO sub-categories were ordered 24 h control vs 24 h post-infection > 24 h post-infection vs 72 h post-infection >72 h control vs 72 h post-infection > 24 h control vs 72 h control. Further analysis showed that immune-related GO terms (including immune system process, complement activation, and humoral immunity) were significantly enriched at both 72 h control vs 72 h post-infection and 24 h post-infection vs 72 h post-infection, but no immune-related GO terms were significantly enriched in the 24 h control vs 72 h control and at 24 h control vs 24 h post-infection, indicating that C. irritans infection mainly affected the physiological metabolism of N. albiflora at an early stage (24 h), and immune-related genes play an important role at a later stage (72 h) of infection. In KEGG pathway analysis, the complement and coagulation cascade pathway are involved in early infection. Hematopoietic cell lineage, natural killer (NK) cell-mediated cytotoxicity, and the intestinal immune network for IgA production are involved in later infection. Further analysis showed that the alternative pathway of complement and coagulation cascades plays an important role in the resistance of N. albiflora to early C. irritans infection. During late infection, CD34, IgM, and IgD were significantly upregulated in the hematopoietic cell lineage pathway. CCR9 was significantly downregulated, and IGH and PIGR were significantly upregulated in the intestinal immune network for IgA production. GZMB and IGH were significantly downregulated in NK cell-mediated cytotoxicity. These findings indicate that acquired immunity at the mRNA level was initiated during later infection. In addition, the IL-17 signaling pathway was enriched by downregulated DEGs at 24 h post-infection vs 72 h post-infection, suggesting the inflammatory response at 24 h was stronger than at 72 h and the invasion of the parasite has a greater impact on the host.
Asunto(s)
Infecciones por Cilióforos/veterinaria , Cilióforos/fisiología , Enfermedades de los Peces/inmunología , Perciformes , Enfermedades de la Piel/veterinaria , Transcriptoma , Animales , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/parasitología , Enfermedades de los Peces/parasitología , Perfilación de la Expresión Génica/veterinaria , Piel/metabolismo , Enfermedades de la Piel/inmunología , Enfermedades de la Piel/parasitologíaRESUMEN
To explore the resistance mechanism of locally infected skin of yellow drum (Nibea albiflora) against Cryptocaryon irritans infection, N. albiflora were infected with C. irritans at a median lethal concentration of 2050 theronts/g fish. Then, the skin of the infected group (24 hT and 72 hT) and the control group (24 hC and 72 hC) were sampled at 24 h and 72 h for quantitative proteomics analysis. A total of 643 proteins were identified, of which 61 proteins were significantly affected by interaction between time and infection, 83 and 119 proteins were significantly affected by the infection and time, respectively. In addition, 17, 61, 81 and 45 differentially expressed proteins (DEPs) were obtained from pairwise comparison (24 hT vs 24 hC, 72 hT vs 72 hC, 72 hT vs 24 hT and 72 hC vs 24 hC), respectively. DEPs in 24 hT vs 24 hC and 72 hT vs 72 hC were mainly enriched in Gene Ontology terms (transferase activity, protein folding and isomerase activity) and Kyoto Encyclopedia of Genes and Genomes pathways (biosynthesis of antibiotics, carbon metabolism and Citrate cycle). Among them, enriched DEPs were malate dehydrogenase 2 (MDH2), malate dehydrogenase 1 ab (MDH 1 ab), citrate synthase, etc. Immune-related DEPs such as complement component C3 and Cell division cycle 42 were involved in response to stimulus and signal transduction, etc. Also, DEPs such as collagen, heat shock protein 75 and MDH2 play a role in helping fish skin wounds to heal and provide energy. Furthermore, protein-protein interaction analysis indicated that 18 proteins such as MDH2, MDH 1 ab, complement C3 and collagen were interrelated. In conclusion, this study found that many proteins in N. albiflora contribute to resist against C. irritans and promote fish recovery.
Asunto(s)
Infecciones por Cilióforos/veterinaria , Enfermedades de los Peces/inmunología , Proteínas de Peces/inmunología , Perciformes , Proteoma/inmunología , Enfermedades de la Piel/veterinaria , Animales , Cilióforos/fisiología , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/parasitología , Enfermedades de los Peces/parasitología , Proteómica/instrumentación , Enfermedades de la Piel/inmunología , Enfermedades de la Piel/parasitologíaRESUMEN
The yellow drum Nibea albiflora is less susceptible to Cryptocaryon irritans infection than is the case with other marine fishes such as Larimichthys crocea, Lateolabrax japonicus, and Pagrus major. To investigate further their resistance mechanism, we infected the N. albiflora with the C. irritans at a median lethal concentration of 2050 theronts/g fish. The skins of the infected and the uninfected fishes were sampled at 24â¯h and 72â¯h followed by an extensive analysis of metabolism. The study results revealed that there were 2694 potential metabolites. At 24â¯h post-infection, 12 metabolites were up-regulated and 17 were down-regulated whereas at 72â¯h post-infection, 22 metabolites were up-regulated and 26 were down-regulated. Pathway enrichment analysis shows that the differential enriched pathways were higher at 24â¯h with 22 categories and 58 subcategories (49 up, 9 down) than at 72â¯h whereby the differential enriched pathways were 6 categories and 8 subcategories (4 up, 4 down). In addition, the principal component analysis (PCA) plot shows that at 24â¯h the metabolites composition of infected group were separately clustered to uninfected group while at 72â¯h the metabolites composition in infected group were much closer to uninfected group. This indicated that C. irritans caused strong metabolic stress on the N. albiflora at 24â¯h and restoration of the dysregulated metabolic state took place at 72â¯h of infection. Also, at 72â¯h post infection a total of 17 compounds were identified as potential biomarkers. Furthermore, out of 2694 primary metabolites detected, 23 metabolites could be clearly identified and semi quantified with a known identification number and assigned into 66 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the enriched KEGG pathways were mainly from metabolic pathway classes, including the metabolic pathway, biosynthesis of secondary metabolites, taurine and hypotaurine metabolism, purine metabolism, linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis. Others were glyoxylate and dicarboxylate metabolism, glutathione metabolism, and alanine, aspartate, and glutamate metabolism. Moreover, out of the identified metabolites, only 6 metabolites were statistically differentially expressed, namely, L -glutamate (up-regulated) at 24â¯h was important for energy and precursor for other glutathiones and instruments of preventing oxidative injury; 15-hydroxy- eicosatetraenoic acid (15-HETE), (S)-(-)-2-Hydroxyisocaproic acid, and adenine (up-regulated) at 72â¯h were important for anti-inflammatory and immune responses during infection; others were delta-valerolactam and betaine which were down-regulated compared to uninfected group at 72â¯h, might be related to immure responses including stimulation of immune system such as production of antibodies. Our results therefore further advance our understanding on the immunological regulation of N. albiflora during immune response against infections as they indicated a strong relationship between skin metabolome and C. irritans infection.
Asunto(s)
Infecciones por Cilióforos/veterinaria , Enfermedades de los Peces/inmunología , Inmunidad Innata/inmunología , Metaboloma/inmunología , Perciformes , Piel/inmunología , Animales , Cilióforos/fisiología , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/parasitología , Enfermedades de los Peces/parasitologíaRESUMEN
The yellow drum (Nibea albiflora) is an economically important maricultured fish in China, but the aquaculture of this species has recently been limited by an increase in overwinter mortalities associated with cold and starvation stress due to global climate changes. To better understand the interaction between starvation and cold-stress-driven overwinter mortality, we investigated the effects of these stresses on the growth performance, liver lesions, and immune response of yellow drum fish. The fish were subjected to different cold treatments and under starvation stress. The experiment lasted 30 days and involved four experimental groups: a fed group and a fasted group maintained at 16⯰C (control), and a fed group and a fasted group subjected to cold stress at 8⯰C. We found that the growth of yellow drum was severely affected by cold temperatures and starvation. Throughout the experimental period, the body weights were significantly lower in the groups subjected to starvation and cold stress than in the control group. The liver cells showed irregular shapes and disorderly arrangements in the stress groups; indicating liver lesions. The gene expressions of antioxidant enzymes (copper, zinc superoxide dismutase, manganese superoxide dismutase, iron superoxide dismutase, and catalase) in the liver were lower in the groups subjected to starvation and cold stress than in the control groups. These results were basically consistent with the enzyme activities of superoxide dismutase and catalase tested in the livers. In addition, activities of immunomodulatory enzymes (alkaline phosphatase and acid phosphatase) were also inhibited in groups subjected to stress throughout the experiment period. These findings suggested that starvation and cold stress inhibited growth, depressed liver function, and suppressed the immune system of yellow drum, which likely would lead to physiological failure and increased susceptibility to infection. The present study offers insights into the physiological and immune response of yellow drum under cold and starvation stress. These insights not only provide baseline information from which effective strategies can be established and appropriate management decisions formulated, but can also be used to improve the overwinter survival of this important fish species in China.
Asunto(s)
Privación de Alimentos , Inmunidad Innata , Longevidad , Perciformes/inmunología , Animales , Frío/efectos adversos , Hígado/anatomía & histología , Hígado/fisiología , Perciformes/crecimiento & desarrolloRESUMEN
Cryptocaryon irritans is a type of marine ectoparasitic ciliate that infects teleost fishes. To illustrate the susceptibility and innate immune mechanism of fishes to C. irritans, four species of marine perciform fishes were selected in Fujian Province, a high-prevalence area of cryptocaryoniasis in China. The survival, diameter/number of tomonts, and infection ratio among Larimichthys crocea, Lateolabrax japonicus, Pagrus major, and Nibea albiflora were compared after artificial infection. Meanwhile, the immobilization titers of four fish species with no C. irritans infection were detected. Results showed that survival and serum immobilization titer of N. albiflora were significantly higher than those of the other three fish species. A strong negative linear correlation was found between the survival/serum immobilization titer and the mean tomont diameter. In addition, the smallest C. irritans infection ratio was found in N. albiflora, implying that the serum of fishes especially that of N. albiflora, inhibited the development of parasitic C. irritans cells, and the smallest tomont size was directly related to the number of infective theronts corresponding to the highest survival of fish. Moreover, complement activity inhibition assays suggested that the alternative complement pathway might play a major role in C. irritans resistance.
Asunto(s)
Infecciones por Cilióforos/veterinaria , Cilióforos/fisiología , Susceptibilidad a Enfermedades/veterinaria , Enfermedades de los Peces/inmunología , Inmunidad Innata , Perciformes/inmunología , Animales , China , Infecciones por Cilióforos/inmunología , Susceptibilidad a Enfermedades/inmunología , Especificidad de la EspecieRESUMEN
Cultured Nibea albiflora rarely die from cryptocaryoniasis. To explore the resistance of N. albiflora against the invasion of Cryptocaryon irritans, in this study, 40 g N. albiflora was artificially infected with C. irritans at a median lethal concentration (2050 theronts/g fish). The food intake, survival, relative infection intensity, and immobilization titer variation of serum and mucus at different time points after the infection were compared. Results showed that the ingestion of N. albiflora could be resumed only 1 day after feed deprivation by the disease, which indicated the quick resilience of N. albiflora. N. albiflora did not die out even if it was cultured continually for up to 15 days at 27 °C in a culture tank with a large quantity of C. irritans tomonts. It was because that, without any exterior force, N. albiflora could block the C. irritans cell proliferation, and then the pathogens disappear gradually. In vitro immobilization titer test results confirmed that the serum and mucus could directly eradicate C. irritans.
Asunto(s)
Infecciones por Cilióforos/veterinaria , Cilióforos/fisiología , Enfermedades de los Peces/parasitología , Perciformes/inmunología , Animales , Cilióforos/genética , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/parasitología , Infecciones por Cilióforos/fisiopatología , Ingestión de Alimentos , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/fisiopatología , Perciformes/crecimiento & desarrollo , Perciformes/parasitología , Perciformes/fisiologíaRESUMEN
Soybean meal (SBM) is an acceptable replacement for unsustainable marine fish meal (FM) in aquaculture. However, we previously reported that high dietary SBM supplementation causes intestinal inflammatory injury in yellow drum (Nibea albiflora). Accordingly, a 4-week SBM-induced enteritis (SBMIE) in yellow drum trial was conducted first, followed by a 4-week additive-supplemented reparative experiment to evaluate the reparative effect of five additives on SBMIE in yellow drum. The control diet comprised 50% FM protein substituted with SBM. The additive-supplemented diet was added with 0.02% curcumin (SBMC), 0.05% berberine (SBM-BBR), 0.5% tea polyphenols (SBM-TPS), 1% taurine (SBM-TAU), or 0.8% glutamine (SBM-GLU) based on the control diet, respectively. The weight gain (WG), specific growth rate (SGR), feed efficiency ratio (FER), and survival rate (SR) of fish fed the additive-supplemented diets were significantly higher than those of fish fed the SBM diet. The WG, SGR, and FER of fish fed the SBMC, SBM-GLU and SBM-TAU diets were significantly higher than those of fish fed other diets. Moreover, fish fed the additive-supplemented diets SBMC and SBM-GLU, exhibited significantly increased intestinal villus height (IVH), intestinal muscular thickness (IMRT), and intestinal mucosal thickness (IMLT) and significantly decreased crypt depth (CD) in comparison with those fed the SBM diets. The relative expression of intestinal tight junction factors (ocln, zo1), cytoskeletal factors (f-actin, arp2/3), and anti-inflammatory cytokines (il10, tgfb) mRNA was remarkably elevated in fish fed additive-supplemented diets than those of fish fed the SBM diet. Whereas, the relative expression of intestinal myosin light chain kinase (mlck) and pro-inflammatory cytokines (il1, il6, tnfa) mRNA was markedly lower in fish fed the additive-supplemented diets. The highest relative expression of intestinal ocln, f-actin, and arp2/3 and the lowest relative expression of intestinal mlck were found in fish fed the SBMC diet. Hence, all five dietary additives effectively repaired the intestinal injury induced by SBM, with curcumin exhibiting the strongest repair effect for SBMIE in yellow drum.