Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Small ; 20(6): e2305258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37797179

RESUMEN

Zeolitic imidazolate frameworks (ZIFs) are a subclass of metal-organic framework that have attracted considerable attention as potential functional materials due to their high chemical stability and ease of synthesis. ZIFs are usually composed of zinc ions coordinated with imidazole linkers, with some other transition metals, such as Cu(II) and Co(II), also showing potential as ZIF-forming cations. Despite the importance of nickel in catalysis, no Ni-based ZIF with permanent porosity is yet reported. It is found that the presence and arrangement of the carbonyl functional groups on the imidazole linker play a crucial role in completing the preferred octahedral coordination of nickel, revealing a promising platform for the rational design of Ni-based ZIFs for a wide range of catalytic applications. Herein, the synthesis of the first Ni-based ZIFs is reported and their high potential as heterogeneous catalysts for Suzuki-Miyaura cross-coupling C─C bond forming reactions is demonstrated.

2.
Chemistry ; 30(5): e202303200, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37903141

RESUMEN

Here we report the stepwise synthesis of new nanographenes (NGs) and polycyclic aromatic hydrocarbons (PAHs) obtained via Scholl ring fusion applied at aromatic homologation compounds, which are obtained through one-step Ni-catalysed Csp2 -F functionalization. The latter are rapidly accessed valid precursors for the Scholl reaction, and screening of experimental conditions allowed us to describe for the first time furanol-bearing PAHs. Mechanistic insights are obtained by DFT to rationalize the formation of the furanol PAHs under moderately acidic conditions. All PAHs and NGs synthesized show moderate/weak fluorescent properties, and all PAHs crystallized show some degree of curvature and are obtained as racemic mixtures. Enantiomeric separation by chiral HPLC of one furanol-bearing PAH allowed the study of their chiroptical CD properties.

3.
Chemistry ; 30(9): e202303189, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37988192

RESUMEN

The redox-active nature of a pincer has been exploited to conduct C-C cross-coupling reactions under mild conditions. A nickel complex with a NNN pincer was dimeric in the solid state, and the structure displayed a Ni2 N2 diamond core. In the dimeric structure, both ligand backbones house an electron, in the iminosemiquinonate form, to keep the metal's oxidation state at +2. In the presence of an aryl Grignard reagent, only 3 mol % loading the nickel complex generates a Kumada cross-coupled product in good yield from a wide variety of aryl-X (X= I, Br, Cl) substrates. That the ligand-based radical remains responsible for promoting such a coupling reaction following a radical pathway is suggested by TEMPO quenching. Furthermore, a radical-clock experiment along with tracing product distribution unambiguously supported the radical's involvement through the catalytic cycle. A series of thorough mechanistic probation, including computational DFT analysis, disclosed the cooperative action of both redox-active pincer ligand and the metal centre to drive the reaction.

4.
Chemistry ; 30(36): e202400440, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38668681

RESUMEN

Nickel-catalyzed intramolecular hydrosilylation can be efficiently achieved with high regio- and stereoselectivities through two distinct methodologies. The first approach utilizes a conventional method, involving the reduction of nickel salt (NiBr2-2,2'-bipyridine) using manganese metal. The second method employs a one-step electrochemical reaction, utilizing the sacrificial anode process and NiBr2bipy catalysis. Both methods yield silylated heterocycles in good to high yields through a syn-exo-dig cyclization process. Control experiments and molecular electrochemistry (cyclic voltammetry) provided further insights into the reaction mechanism.

5.
Chemistry ; : e202401552, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723102

RESUMEN

(Hetero)biaryls are fundamental building blocks in the pharmaceutical industry and rapid access to these scaffolds is imperative for the success of numerous medicinal chemistry campaigns. Herein, a highly general, mild, and chemoselective reductive cross-electrophile coupling between (hetero)aryl iodides and heteroaryl bromides is reported. By employing more reactive (hetero)aryl halides, a broad range of successful substrates (45 examples) were identified. The reaction was also found to be chemoselective for C(sp2)-C(sp2) bond formation between (hetero)aryl iodides and bromides over (hetero)aryl chlorides, which were generally inert under the described reaction conditions. The efficiency of the procedure is also further demonstrated in parallel synthesis library format, on gram scale, as well as in the formal synthesis of Ruxolitinib, a potent JAK inhibitor. As such, we anticipate this method will find widespread utility in the assembly of (hetero)biaryls for medicinal chemistry efforts.

6.
Chemistry ; : e202401591, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844428

RESUMEN

The Ni-catalyzed enantioselective addition reaction of aryl halides to aldehydes was studied with cyanobis(oxazoline) as chiral ligands and Mn as reductant. Aryl and heteroaryl bromides reacted with phenyl aldehyde at room temperature to produce dibenzyl alcohols in 16-99% yields with 53-92% ees. Moreover, the coupling of phenyl chloride with a variety of aryl, heteroaryl and alkyl aldehydes was demonstrated in the presence of cyanobis(oxazoline)/Ni(II) at 60 oC in generally high yields with moderate enantioselectivities.

7.
Chemistry ; : e202401658, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890146

RESUMEN

A new nickel catalyzed cross-electrophile coupling for accessing γ-lactams (isoindolinones) as well as γ-lactones (isobenzofuranones) via carbonylation with CO2 is documented. The protocol exploits the synergistic role of redox-active Ni(II) complexes and AlCl3 as a CO2 activator/oxygen scavenger, leading to the formation of a wide range of cyclic amides and esters (28 examples) in good to high yields (up to 87%). A dedicated computational investigation revealed the multiple roles played by AlCl3. In particular, the simultaneous transient protection of the pendant amino group of the starting reagents and the formation of the electrophilically activated CO2-AlCl3 adduct are shown to concur in paving the way for an energetically favorable mechanistic pathway.

8.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611755

RESUMEN

Density functional theory (DFT) characterizations were employed to resolve the structural and energetic aspects and product selectivities along the mechanistic reaction paths of the nickel-catalyzed three-component unsymmetrical bis-allylation of alkynes with alkenes. Our putative mechanism initiated with the in situ generation of the active catalytic species [Ni(0)L2] (L = NHC) from its precursors [Ni(COD)2, NHC·HCl] to activate the alkyne and alkene substrates to form the final skipped trienes. This proceeds via the following five sequential steps: oxidative addition (OA), ß-F elimination, ring-opening complexation, C-B cleavage and reductive elimination (RE). Both the OA and RE steps (with respective free energy barriers of 24.2 and 24.8 kcal·mol-1) contribute to the observed reaction rates, with the former being the selectivity-controlling step of the entire chemical transformation. Electrophilic/nucleophilic properties of selected substrates were accurately predicted through dual descriptors (based on Hirshfeld charges), with the chemo- and regio-selectivities being reasonably predicted and explained. Further distortion/interaction and interaction region indicator (IRI) analyses for key stationary points along reaction profiles indicate that the participation of the third component olefin (allylboronate) and tBuOK additive played a crucial role in facilitating the reaction and regenerating the active catalyst, ensuring smooth formation of the skipped triene product under a favorably low dosage of the Ni(COD)2 catalyst (5 mol%).

9.
Angew Chem Int Ed Engl ; 63(2): e202311165, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37930784

RESUMEN

A robust electrochemically driven nickel-catalyzed halogen exchange of unsaturated halides and triflates (Br to Cl, I to Cl, I to Br, and OTf to Cl) is reported. A combination of NiCl2 ⋅ glyme as the precatalyst, 2,2'-bipyridine as a ligand, NMP as the solvent, and electrochemistry allowed the generation of a nickel species that promotes reductive elimination of the desired product. This paired electrochemical halogenation is compatible with a range of unsaturated halides and triflates, including heterocycles, dihaloarenes, and alkenes with good functional-group tolerance. Joint experimental and theoretical mechanistic investigations highlighted three catalytic events: i) oxidative addition of the aryl halide to a Ni(0) species to deliver a Ni(II) intermediate; ii) halide metathesis at Ni(II); iii) electrochemical oxidation of Ni(II) to Ni(III) to enable the formation of the desired aryl halide upon reductive elimination. This methodology allows the replacement of heavy halogens (I or Br) or polar atoms (O) with the corresponding lighter and more lipophilic Cl group to block undesired reactivity or modify the properties of drug and agrochemical candidates.

10.
Angew Chem Int Ed Engl ; 63(2): e202311557, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37984444

RESUMEN

Over the last fifty years, the use of nickel catalysts for facilitating organic transformations has skyrocketed. Nickel(0) sources act as useful precatalysts because they can enter a catalytic cycle through ligand exchange, without needing to undergo additional elementary steps. However, most Ni(0) precatalysts are synthesized with stoichiometric aluminum-hydride reductants, pyrophoric reagents that are not atom-economical and must be used at cryogenic temperatures. Here, we demonstrate that Ni(II) salts can be reduced on preparative scale using electrolysis to yield a variety of Ni(0) and Ni(II) complexes that are widely used as precatalysts in organic synthesis, including bis(1,5-cyclooctadiene)nickel(0) [Ni(COD)2 ]. This method overcomes the reproducibility issues of previously reported methods by standardizing the procedure, such that it can be performed anywhere in a robust manner. It can be transitioned to large scale through an electrochemical recirculating flow process and extended to an in situ reduction protocol to generate catalytic amounts of Ni(0) for organic transformations. We anticipate that this work will accelerate adoption of preparative electrochemistry for the synthesis of low-valent organometallic complexes in academia and industry.

11.
Angew Chem Int Ed Engl ; 63(1): e202313655, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37985415

RESUMEN

Performing asymmetric cross-coupling reactions between propargylic electrophiles and aryl nucleophiles is a well-established method to build enantioenriched benzylic alkynes. Here, a catalytic enantioselective propargyl-aryl cross-coupling between two electrophiles was achieved for the first time in a stereoconvergent manner. Propargylic chlorides were treated with aryl iodides as well as heteroaryl iodides in the presence of a chiral nickel complex, and manganese metal was used as a stoichiometric reductant, allowing for the construction of a propargyl C-aryl bond under mild conditions. An alternative dual nickel/photoredox catalytic protocol was also developed for this cross-electrophile coupling in the absence of a metal reductant. The potential utility of this conversion is demonstrated in the facile construction of stereoenriched bioactive molecule derivatives and medicinal compounds based on the diversity of acetylenic chemistry. Detailed experimental studies have revealed the key mechanistic features of this transformation.

12.
Angew Chem Int Ed Engl ; : e202405580, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858168

RESUMEN

Dichloromethane, as a readily available and inexpensive C1 synthon is proposed as a powerful building block for cyclopropanation of alkenes under mild conditions. Herein, we report a highly efficient and versatile dual photoredox system, involving a nickel aminopyridine coordination complex and a photocatalyst, for the cyclopropanation of aromatic olefins using dichloromethane, under visible-light irradiation. The cyclopropanation protocol has been successfully applied at gram scale. Mechanistic studies suggest a Ni(II) pyridyl radical complex as the key intermediate for the homolytic cleavage of the Csp3-Cl bond, generating a chloromethyl radical that is captured by the olefin coupling partner. Our findings also highlight the versatility of this methodology. By directing the radical/polar crossover process, we were able to selectively drive the reaction towards either the formation of cyclopropyl derivatives or the corresponding non-cyclic alkyl chloride products. The methodology also successfully apply to geminal dichloroalkanes, including the formation of spiro[2,2] compounds. Moreover, our methodology extends to the synthesis of deuterium-labelled cyclopropanes, demonstrating its utility in isotopic labelling and broadening its applicability in chemical synthesis and drug development.

13.
Angew Chem Int Ed Engl ; 63(23): e202318689, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38547324

RESUMEN

The stereodefined and highly substituted vinylsilanes are essential building blocks for constructing complex organic molecules. Transition metal-mediated silylmetalation of alkynes was developed to overcome the limitations of conventional hydrosilylations; however, a very limited study was carried out to utilize transient vinylmetal species in cross-coupling reactions. Moreover, they produce syn-adduct, and the anti-selective cross-coupling is still unknown and highly desired. Silylzinc reagents are highly functional group tolerant, however, their synthesis from pyrophoric silyllithium and dissolved lithium salts hampers cross-coupling reactions. Our novel solid silylzinc reagents circumvent these constraints are employed in the anti-selective synthesis of vinylsilanes via a multi-component reaction involving Me3SiZnI, terminal alkynes, and activated alkyl halides. An intensive computational and experimental investigation of the mechanism reveals an equilibrium between the intermediate syn- and anti-adducts; the greater barrier at the single electron reduction of alkyl halides and the thermodynamic stability of the Ni(III) adduct determine the anti-selectivity.

14.
Angew Chem Int Ed Engl ; : e202410743, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963024

RESUMEN

The ubiquitous nature of amines in drug compounds, bioactive molecules and natural products has fueled intense interest in their synthesis. Herein, we introduce a nickel-catalyzed enantioconvergent allenylic amination of methanol-activated allenols. This protocol affords a diverse array of functionalized allenylic amines in high yields and with excellent enantioselectivities. The synthetic potential of this method is demonstrated by employing bioactive amines as nucleophiles and conducting gram-scale reactions. Furthermore, mechanistic investigations and DFT calculations elucidate the role of methanol as an activator in the nickel-catalyzed reaction, facilitating the oxidative addition of the C-O bond of allenols through hydrogen-bonding interactions. The remarkable outcomes arise from a rapid racemization of allenols enabled by the nickel catalyst and from highly enantioselective dynamic kinetic asymmetric transformation of η3-alkadienylnickel intermediates.

15.
Angew Chem Int Ed Engl ; 63(19): e202402849, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38389271

RESUMEN

Functionalized primary alkyl chlorides are precursors to a plethora of scaffolds but their access from chemical feedstocks remains challenging. Herein, we report a concise dual Ni/photoredox catalytic protocol for regioselective chlorocarbonylation of unactivated alkenes that enables rapid access to ß-keto primary chlorides. The catalytic process features an extensive substrate scope, scalability and functional group tolerance. The Ni/photocatalytic Cl⋅ generation and subsequent cross-coupling is implicated for the process based on the control experiments and DFT study. The synthetic utility of the protocol has been further corroborated through functionalization of complex substrates and modifications of the product.

16.
Angew Chem Int Ed Engl ; 63(7): e202317935, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38117662

RESUMEN

An emerging class of C-C coupling transformations that furnish drug-like building blocks involves catalytic hydrocarbonation of alkenes. However, despite notable advances in the field, hydrocarbon addition to gem-difluoroalkenes without additional electronic activation remains largely unsuccessful. This owes partly to poor reactivity and the propensity of difluoroalkenes to undergo defluorinative side reactions. Here, we report a nickel catalytic system that promotes efficient 1,2-selective hydroarylation and hydroalkenylation, suppressing defluorination and providing straightforward access to a diverse assortment of prized organofluorides bearing difluoromethyl-substituted carbon centers. In contrast to radical-based pathways and reactions triggered by hydrometallation via a nickel-hydride complex, our experimental and computational studies support a mechanism in which a catalytically active nickel-bromide species promotes selective carbonickelation with difluoroalkenes followed by alkoxide exchange and hydride transfer, effectively overcoming the difluoroalkene's intrinsic electronic bias.

17.
Angew Chem Int Ed Engl ; 63(16): e202319856, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354272

RESUMEN

C-C linked glutarimide-containing structures with direct utility in the preparation of cereblon-based degraders (PROTACs, CELMoDs) can be assessed in a single step from inexpensive, commercial α-bromoglutarimide through a unique Brønsted-acid assisted Ni-electrocatalytic approach. The reaction tolerates a broad array of functional groups that are historically problematic and can be applied to the simplified synthesis of dozens of known compounds that have only been procured through laborious, wasteful, multi-step sequences. The reaction is scalable in both batch and flow and features a trivial procedure wherein the most time-consuming aspect of reaction setup is weighing out the starting materials.


Asunto(s)
Níquel , Níquel/química , Catálisis , Oxidación-Reducción
18.
Angew Chem Int Ed Engl ; 63(6): e202314355, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37914669

RESUMEN

Cheap, stable and easy-to-handle Werner ammine salts have been known for more than a century; but they have been rarely used in organic synthesis. Herein, we report that the Werner hexammine complex [Ni(NH3 )6 ]Cl2 can be used as both a nitrogen and a catalytic nickel source that allow for the efficient amination of aryl chlorides in the presence of a catalytic amount of bipyridine ligand under the irradiation of 390-395 nm light without the need of any additional catalysts. More than 80 aryl chlorides, including more than 20 drug molecules, were aminated, demonstrating the practicality and generality of this method in synthetic chemistry. A slow NH3 release mechanism is in operation, obviating the problem of catalyst poisoning. Still interestingly, we show that the Werner salt can be easily recovered and reused, solving the problem of difficult recovery of transition metal nickel catalysts. The protocol thus provides an efficient new strategy for the synthesis of primary aryl amines.

19.
Angew Chem Int Ed Engl ; : e202409862, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866703

RESUMEN

Isotopically labeled alkanes play a crucial role in organic and pharmaceutical chemistry. While some deuterated methylating agents are readily available, the limited accessibility of other deuteroalkyl reagents has hindered the synthesis of corresponding products. In this study, we introduce a nickel-catalyzed system that facilitates the synthesis of various deuterium-labeled alkanes through the hydrodeuteroalkylation of d2-labeled alkyl TT salts with unactivated alkenes. Diverging from traditional deuterated alkyl reagents, alkyl thianthrenium (TT) salts can effectively and selectively introduce deuterium at α position of alkyl chains using D2O as the deuterium source via a single-step pH-dependent hydrogen isotope exchange (HIE). Our method allows for high deuterium incorporation, and offers precise control over the site of deuterium insertion within an alkyl chain. This technique proves to be invaluable for the synthesis of various deuterium-labeled compounds, especially those of pharmaceutical relevance.

20.
Angew Chem Int Ed Engl ; 63(17): e202402231, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38407456

RESUMEN

The development of new methods for regio- and stereoselective activation of C-O bonds in ethers holds significant promise for synthetic chemistry, offering advantages in terms of environmental sustainability and economic efficiency. Moreover, the C-N atropisomers represent a fascinating and crucial chiral system, extensively found in natural products, pharmaceutical leads, and the frameworks of advanced materials. In this work, we have introduced a nickel-catalyzed regio- and enantioselective carbon-oxygen arylation reaction for atroposelective synthesis of N-arylisoquinoline-1,3(2H,4H)-diones. The high regioselectivity of C-O cleavage benefits from the high stability of the in situ formed (amido)ethenolate via oxidative addition. Additionally, the self-activation of the aryl C-O bond facilitates the reaction under mild conditions, leading to outstanding enantioselectivities. The diverse post-functionalizations of the axially chiral isoquinoline-1,3(2H,4H)-diones further highlighted the utility of this protocol in preparing valuable C-N atropisomers, including the chiral phosphine ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA